DTREG Predictive Modeling Software www.dtreg.com

Creating a Neural Network

Phil Sherrod phil@philsherrod.com

Copyright © 2014, all rights reserved This material may not be reproduced without permission

Introduction to Neural Networks

- Neural networks are compact models that are widely used for many applications.
- DTREG supports several types of neural networks: perceptrons, probabilistic, general regression, radial basis function and cascade. This tutorial will focus on creating a traditional, perceptron network.
- Perceptron neural networks have an input layer, an output layer and one or two hidden layers. Most commonly, one hidden layer is used.
- DTREG can determine automatically the optimum number of neurons in the hidden layer.

Perceptron Neural Network Structure

• This diagram shows an input layer on the left, a single hidden layer in the middle and an output layer on the right. The number of neurons in the hidden layer is adjustable depending on the problem.

Outline of Steps to Train a Neural Network

- Create a new project, specify the input training file, and select the target and predictor variables. See the Getting-Started tutorial for information about doing this.
- Select "Multilayer perceptron" as the type of model.
- Set training parameters or use the default.
- Train the model.
- Examine the report with model statistics

Select Multilayer Perceptron in Left Panel

5

Change Training Parameters if Desired

Select Multilayer	Multilayer Perceptron Neural Networks (MLP)							
Perceptron	Type of model to build	Model testing and validation	Conjugate gradient parameters					
Number of hidden layers	Multilayer Perceptron Number of network layers Image: Child state of the st	No validation, use all data rows Use variable to select validation rows Random percent: 20 Vfold cross-validation: 10 Leave-one-out validation	Num. convergence tries: 4 Maximum iterations: 10000 Iterations without improvement: 100 Convergence tolerance: 1.000e-005					
Do cross-validation of model	Automatic hidden layer neuron selection Automatically optimize hidden layer 1 Min. 2 Max. 20 Step: 1	How to handle missing values C Don't use rows with missing values Replace missing values with medians	Min. improvement delta: 1.000e-006 Min. gradient: 1.000e-006 Max. minutes execution time: 0					
Let DTREG automatically find optimum number of neurons	Max. steps without change: 8 % rows to use for search: 100 © Cross validate: folds: 4 © Hold-out sample %: 20	Options Compute importance of variables Hidden layer activation function	Training method Scaled conjugate gradient (recommended) Traditional conjugate gradient Write progress report to project log					
Type of transfer functions Prevent over-fitting	Layer 1: 6 Layer 2 4 Overfitting detection & prevention V Use test data to detect overfitting % training rows to hold out: 20 Max. steps without change: 10	Logistic Output layer activation function Logistic Write neuron weights to file Write neuron weights to file	Browse					

Copyright © 2014, Phillip H. Sherrod, all rights reserved. This material may not be reproduced without permission.

Tell DTREG to Train the Model

Click the sicon to start training the model.

Click to start training

Copyright © 2014, Phillip H. Sherrod, all rights reserved. This material may not be reproduced without permission. 7

View Chart of Errors vs. Number Neurons

View Summary of Neural Network

DTREG determined that 5 neurons were optimum for the hidden layer

View Misclassification Summary Table

	👄 DTREG - Iris							- 🗆 💳 X	
	File Edit View Tools Help	Run-analysis View-tree	Charts Ente	er-key					
	🕈 🚔 🖬 🐰 🖿 🛍 🎒	a 🗘 💡							
	Class labels	·	Misclassification Tables						*
	Initial split Category weights	Training Data							
	Misclassification cost		Actual		Misclassified		ied		
	Missing data	Category	Count	Weight	Count	Weight	Percent	Cost	
	Variable weights	Setosa	· 50	50		0	0.000	0.000	
		Versicolor	50	50	1	1	2.000	0.020	
1.333% error	Translate source code	Virginica	50	50	1	1	2.000	0.020	
on training	Miscellaneous	Total	150	150	2	2	1.333	0.013	
data	Generated tree	Overall accu	racy = 98.0	57%					
	Analysis report		Validation Data						
Click to select	- Project parameters		Wicel				accified		
mis-	Variables	= Category	Count	Weight	Count	Weight	Percent	Cost	
classification	Categories								
table	Neural network param	Setosa	50 50	50	10 3	ย 3	0.000	0.000	
	Model size	Virginica	50	50	1	1	2.000	0.020	
	- Misclassification								
2.667%	Confusion matrix	Total	150	150	4	4	2.007	0.027	
error on	<	Overall accu	racy = 97.3	33%					-
validation	Ready	1						NUM	1

Viewing the Confusion Matrix

End of Neural Network Tutorial

This completes the DTREG neural network training tutorial