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DTREG (pronounced D-T-Reg) builds classification and regression decision 
trees, neural networks, support vector machine (SVM), GMDH polynomial 
networks, gene expression programs, K-Means clustering, discriminant analysis 
and logistic regression models that describe data relationships and can be used 
to predict values for future observations.  DTREG also has full support for time 
series analysis. 
 
DTREG accepts a dataset containing of number of rows with a column for each 
variable.  One of the variables is the “target variable” whose value is to be 
modeled and predicted as a function of the “predictor variables”.  DTREG 
analyzes the data and generates a model showing how best to predict the values 
of the target variable based on values of the predictor variables. 
 
DTREG can create classical, single-tree models and also TreeBoost and 
Decision Tree Forest models consisting of ensembles of many trees.  DTREG 
also can generate Neural Networks, Support Vector Machine (SVM), Gene 
Expression Programming/Symbolic Regression, K-Means clustering, GMDH 
polynomial networks, Discriminate Analysis, Linear Regression, and Logistic 
Regression models. 
 
DTREG includes a full Data Transformation Language (DTL) for transforming 
variables, creating new variables and selecting which rows to analyze. 
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Data Mining and Modeling 
 

 

     “Predicting the future is hard, especially if it hasn’t happened yet.” 

      – Yogi Berra 
 

 

Data Mining 

The process of extracting useful information from a set of data values is called “data 

mining”.  Many techniques have been developed for data mining, and there is an art to 

selecting and applying the best method for a particular situation. 

 

DTREG (pronounced D-T-Reg) builds classification and regression decision trees, neural 

networks, support vector machine (SVM), gene expression programming (GEP), K-

Means clustering, discriminant analysis and logistic regression models that describe data 

relationships and predict values for future observations. 

 

DTREG also has full support for time series analysis.  Most of the model types such as 

neural networks, gene expression programming and SVM can be used to model time 

series using lag variables generated by DTREG. 

 

Data mining has great commercial and scientific value.  Consider these cases: 

 

1. A company has collected data showing how much of their product consumers 

buy.  For each consumer, the company has demographic and economic 

information such as age, gender, education, hobbies, income and occupation.  

Since the company has a limited advertising budget, they want to determine how 

to use the demographic data to predict which people are the most likely buyers of 

their product so they can focus their advertising on that group.  A decision tree is 

an excellent tool for this type of analysis because it shows which combination of 

attributes best predict the purchase of the product.  And, a decision tree can be 

used to “score” a set of individuals and rank them by the probability that they will 

respond positively to a marketing effort.  For information about how Lift and 

Gain tables and charts are used for customer targeting, please see page 201. 

 

2. A political campaign wants to maximize the turnout of their supporters on 

Election Day.  Exit polling has been done during previous elections giving a 

breakdown of voting patterns by precinct, race, gender, age and other factors.  

DTREG can analyze this data and generate a decision tree identifying which sets 

of voters should be targeted for get-out-the-vote efforts for upcoming elections. 

 

3. A bank wants to reduce the default rate on personal loans.  Using historical data 

collected for previous borrowers, the bank can use DTREG to generate a decision 

tree that can then be used to “score” candidate borrowers to predict the likelihood 
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that they will default on their loans. 

 

4. An emergency room treats patients with chest pain.  Based on factors such as 

blood pressure, age, gender, severity of pain, location of pain, and other 

measurements, the caregiver must decide whether the pain indicates a heart attack 

or some less critical problem.  A decision tree can be generated to decide which 

patients require immediate attention. 

 

Data Modeling 

One of the most useful applications of statistical analysis is the development of a model 

to represent and explain the relationship between data items (variables).  Many types of 

models have been developed, including linear and nonlinear regression (function fitting), 

discriminant analysis, logistic regression, support vector machines, neural networks and 

decision trees.  Each method has its advantages: there is no single modeling method that 

is best for all applications.  DTREG provides the best, state-of-the-art modeling methods 

including neural networks, decision trees, TreeBoost, decision tree forests, support vector 

machines (SVM), gene expression programming, K-Means clustering, discriminant 

analysis and logistic regression.  By applying the right method to the problem, the analyst 

using DTREG should be able to match or exceed the predictive ability of any other 

modeling program. 

 

Supervised and Unsupervised Machine Learning 

Methods for analyzing and modeling data can be divided into two groups: “supervised 

learning” and “unsupervised learning.”  Supervised learning requires input data that has 

both predictor (independent) variables and a target (dependent) variable whose value is to 

be estimated.  By various means, the process “learns” how to model (predict) the value of 

the target variable based on the predictor variables.  Decision trees, regression analysis 

and neural networks are examples of supervised learning.  If the goal of an analysis is to 

predict the value of some variable, then supervised learning is recommended approach. 

 

Unsupervised learning does not identify a target (dependent) variable, but rather treats all 

of the variables equally.  In this case, the goal is not to predict the value of a variable but 

rather to look for patterns, groupings or other ways to characterize the data that may lead 

to understanding of the way the data interrelates.  Cluster analysis, correlation, factor 

analysis (principle components analysis) and statistical measures are examples of 

unsupervised learning. 

 

Time Series Analysis 

A time series is a sequence of values occurring over a period of time.  Often time series 

describe economic conditions such as price fluctuations, hotel occupancy, airline 

passenger load, etc.  DTREG can build models using methods such as neural networks, 

gene expression programming and SVM to model time series and make future forecasts. 
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Classes of Variables 

You can specify three classes of variables when performing analyses: 

 

Target variable --  The “target variable” is the variable whose values are to be modeled 

and predicted by other variables.  It is analogous to the dependent variable (i.e., the 

variable on the left of the equal sign) in linear regression.  There must be one and only 

one target variable. 

 

Predictor variable --  A “predictor variable” is a variable whose values will be used to 

predict the value of the target variable.  It is analogous to the independent variables (i.e., 

the variables on the right side of the equal sign) in linear regression.  There must be at 

least one predictor variable specified, and there may be many predictor variables.  If more 

than one predictor variable is specified, DTREG will determine how the predictor 

variables can be combined to best predict the values of the target variable.  For time 

series analysis, DTREG can automatically generate lag variables that can be used as 

predictor variables. 

 

Weight variable --  Optionally, you can specify a “weight variable”.  If a weight variable 

is specified, it must a numeric (continuous) variable whose values are greater than or 

equal to 0 (zero).  The value of the weight variable specifies the weight given to a row in 

the dataset.  For example, a weight value of 2 would cause DTREG to give twice as much 

weight to a row as it would to rows with a weight of 1; the effect on model training is the 

same as two occurrences of the row in the dataset.  Weight values may be real (non-

integer) values such as 2.5.  A weight value of 0 (zero) causes the row to be ignored.  If 

you do not specify a weight variable, all rows are given equal weight. 

 

An integer weight value has the same effect on model training as duplicating rows the 

equivalent number of times in the training data.  Since the goal of model training is to 

tune parameters to minimize the overall error (or variance) of the training data, weighted 

(or duplicated) rows that are misclassified add a greater amount to the total error than un-

weighted rows, so they have an increased influence on the model. 

 

While duplicating rows is equivalent to integer weighting during the training process, 

there is a difference during the testing and validation process.  If you manually duplicate 

rows in the training data and specify that you want DTREG to use cross validation for 

testing or you want it to hold out a subset of the data for testing, some of the duplicated 

copies of the rows may be used for training, and some duplicate copies of the same rows 

may be used in the test/validation data.  This results in the testing data using some of the 

same data used for training, and it renders the test results – which are supposed to be 

based on independent data – invalid.  For this reason, if you manually duplicate rows 

rather than using weighting, you must do the validation using the Score function (see 

page 166) rather than using cross validation or hold-out validation. 
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Types of Variables 

Variables may be of two types: continuous and categorical. 

 

Continuous variables with ordered values --  A continuous variable has numeric values 

such as 1, 2, 3.14, -5, etc.  The relative magnitude of the values is significant (e.g., a 

value of 2 indicates twice the magnitude of 1).  Examples of continuous variables are 

blood pressure, height, weight, income, age, and probability of illness.  Some programs 

call continuous variables “ordered”, “ordinal”, “interval” or “monotonic” variables.  If a 

variable is numeric and the values indicate relative magnitude or order, then the variable 

should be declared as continuous even if the numbers are discrete and do not form a 

continuous scale. 

 

Categorical variables with unordered values --  A categorical variable has values that 

function as labels rather than as numbers.  Some programs call categorical variables 

“nominal” variables.  For example, a categorical variable for gender might use the value 

1 for male and 2 for female.  The actual magnitude of the value is not significant; coding 

male as 7 and female as 3 would work just as well.  As another example, marital status 

might be coded as 1 for single, 2 for married, 3 for divorced and 4 for widowed.  DTREG 

allows you to use non-numeric (character string) values for categorical variables.  So 

your dataset could have the strings “Male” and “Female” or “M” and “F” for a 

categorical gender variable.  Because categorical values are stored and compared as 

string values, a categorical value of 001 is different than a value of 1.  In contrast, values 

of 001 and 1 would be equal for continuous variables. 
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Using DTREG 
 

Once you understand the concept of predictive models, it is very easy to use DTREG to 

analyze data and build many types of models. 

 

Installing DTREG 

To install DTREG, run the installation program named DTREGsetup.exe.  A “wizard” 

screen will guide you through the installation process.  You can accept the default 

installation location (C:\Program files\DTREG) or select a different folder location.  When 

the installation finishes, you should see this icon for DTREG on your desktop: 

 

 
 

To launch DTREG, double-click the Shortcut to DTREG icon on your desktop. 

 

DTREG’s Main Screen 

When you launch DTREG, its main screen displays: 

 

 
 

From this screen, you can 

 Create a new project to build a model by clicking  

 Open an existing project by clicking  

 Set options and enter your registration key. 
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Setting DTREG Preferences 

To set DTREG preferences, click “Tools” on the menu bar and select “Preferences” from 

the dropdown menu.  

 

 
 

Default type of model to build:  Select which type of model you would like 

DTREG to create for new projects (single tree, SVM neural network, etc.).  You can 

always change the type of a model later by modifying its properties. 

 

Max. execution threads:  Specify how many execution threads you want DTREG 

to use during its computations.  If you have a multi-CPU system, you can increase the 

speed of calculation by allowing DTREG to use more than one CPU, but this will place a 

heavier load on your system. 

 

Execution priority:  Specify the preferred execution for DTREG to use during an 

analysis.  Currently the execution priority is only applied to neural network training 

processes. 
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Entering DTREG Registration Key 

When you register DTREG, you will receive a registration key.  To enter your key, click 

“Enter-key” on the main menu and enter your key in the screen that appears:  
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Creating a New Project 

To create a new project, click the leftmost icon on the toolbar that looks like this:  

Project “wizard” screens will guide you through setting up the project.  The first screen 

looks like this: 

 

 
 

There are several fields on this page. 

 

 Title of project – This is an optional field.  If you wish, you can specify a title to 

be displayed for this project. 

 Input data file – This is a required field.  Specify the device, folder and name of 

the file containing the input (learning) dataset to be used to build the tree.  The 

data must be in a comma separated value (CSV) file with the names of the 
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variables on the first line.  Please see page 36 for detailed information about the 

format of input data files.  You can click the “Browse files” button to browse for 

the file rather than typing it in. 

 Character used for a decimal point in the input data file – Select whether a 

period or a comma will be used to indicate the decimal point in numeric values in 

the input data file.  The American standard decimal point marker is a period while 

the European standard is a comma.  This setting affects only data read from the 

input file; a period always is used as the decimal point marker in the generated 

report. 

 Character used to separate columns – Select the character that will be used to 

separate columns in the input file.  The default separator is a comma, but you may 

select any character you wish to use. 

 Data subsetting – If you wish, you can tell DTREG to use only a subset of the 

records in the data file for the analysis.  This speeds up the analysis and is useful 

when experimenting with different model settings.  If you tell DTREG to use a 

subset of the data, specify the percentage of the rows that you want it to use.  

Since random selection is used to select the rows, the actual number of rows used 

may be slightly different than the percent you specify. 

 File where information about this project is to be stored – This is a required 

field.  Specify the name of the project file where DTREG will store parameters 

and computed values for the project.  DTREG project files are stored with the 

type “.dtr” (for example, “Iris.dtr”).  You can click the “Browse file” button to 

browse for the directory where you want to store the file. 

 Notes about this project – This is an optional field.  You can enter any notes that 

you want to store with the project data. 

 

After you finish filling in these fields, click the “Next” button at the bottom of the screen 

to advance to the next screen.  The following property pages will be displayed: 

 Time series/Regular predictive model (see page 41) 

 Variables (see page 41) 

 

New Project Example 

To illustrate the process of creating a new project, let’s consider a concrete case.  We will 

look at the steps involved in setting up a DTREG project to classify species of irises 

based on measurements of the plants.  The data we will use is from the classic study 

devised by R. A. Fisher in 1936 (Fischer, 1936).  First, we need to prepare a data file to 

be read by DTREG.  Such an example data file is provided with the DTREG distribution 

and installed in the Examples directory under the DTREG installation directory.  The 

name of the file is Iris.csv.  Here are a few lines from that file: 
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Species,"Sepal length","Sepal width","Petal length","Petal width" 

Setosa,5.1,3.5,1.4,0.2 

Setosa,4.9,3,1.4,0.2 

Setosa,4.7,3.2,1.3,0.2 

Versicolor,7,3.2,4.7,1.4 

Versicolor,6.4,3.2,4.5,1.5 

Versicolor,6.9,3.1,4.9,1.5 

Virginica,6.3,3.3,6,2.5 

Virginica,5.8,2.7,5.1,1.9 

Virginica,7.1,3,5.9,2.1 

 

The first line of the file has the names of the variables separated by whatever character 

you selected as the column delimiter (by default it is a comma).  In this case, there are 5 

variables: Species, Sepal length, Sepal width, Petal length and Petal width.  Variable 

names and values that contain spaces or the column separator character should be 

enclosed in quote marks.  The records following this are the actual data observations (one 

per plant).  There is one value for each of the five variables.  See page 36 for additional 

information about the format of data files. 

 

In this example, we are trying to predict the species of iris, so “Species” is a categorical 

target variable.  The other four variables are continuous predictor variables. 
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Here is the first screen we set up for this project: 
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On the second screen specify whether this is a time series analysis or a regular predictive 

model.  Also, select the type of model to build (single tree, TreeBoost, neural network, 

etc.) 
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On the third screen, specify information about the variables: 

 

 
 

Species is the target variable, and it is categorical.  The other four variables are 

continuous predictor variables. 

 

After you finish the last setup screen for the project, DTREG asks if you want to save the 

settings for the project: 

 

 
 

We will click “Yes” and save the project settings in a file named Iris.dtr. 
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Opening an Existing Project 

All of the information about a DTREG project is stored in a project database.  This 

includes parameters that control the analysis, information about variables, the name of the 

data input file, the generated report, and information required to construct and display the 

generated predictive model.  These project files have the file type “.dtr”.  You can open 

project files, examine the report, modify parameters and rerun the analysis. 

 

The actual input data is not stored in the project file but remains in the original comma 

separated value (CSV) file.  The project file stores only the name of the input data file. 

 

To open an existing project file, click the  icon on the toolbar. 

 

If you are reopening a project that was opened recently, you can click the “File” entry on 

the main menu line, and select the project from the list of recent projects. 

 

Once you open a project, the last report generated for it will be displayed in the right 

panel, and the left panel will show a list of property pages you can select to review and 

change option settings. 
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Example Projects Installed With DTREG 

The DTREGsetup installation program installs a set of example projects in a folder 

named “Examples” under the DTREG installation directory.  This is C:\Program 

files\DTREG\Examples, unless you selected a different folder during installation.  A good 

way to get started using DTREG is to browse the examples in that directory and run some 

of them.  See page 373 for additional information about example analyses. 
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Running an Analysis 

Once you have created a new project or opened an existing project, you can tell DTREG 

to perform an analysis.  To do this, click the  icon on the toolbar.  You can also click 

“Run-analysis” on the main menu. 

 

While an analysis is running, a progress screen similar to this will be displayed: 

 

 
 

When the analysis finishes, the new report will be displayed in the main right panel. 
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Viewing the Generated Decision Tree 

Once an analysis has been completed, you can view the generated decision tree by 

clicking the  toolbar icon or by clicking “View-tree” on the main menu.  To save the 

decision tree in a jpg, png or bmp disk file, click the disk icon.  To print the decision tree, 

click the printer icon. 

 

 
 

Command Line Operation 

In production environments it may be useful to operate DTREG in command-line mode 

to build models.  Model building parameters are stored in a command file and in a 

“template project”.  DTREG can then be run from the command line or using a batch 

(.bat) file to build new models.  Command line operation is available only in the 

Enterprise Version of DTREG. 

 

In order to use DTREG in command line mode, three things are required: (1) a template 

project describing the analysis; (2) a command file providing information about files and 

operations; (3) a command line to invoke DTREG. 

 

The Template Project 

Because DTREG has many types of models and many options and parameters for each 

type of model, it is impractical to have a command language to describe all of these 

features.  Instead, a Template Project is used to describe the type of model to be created 

and to specify options and parameters for the operation.  To create a template project, run 
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DTREG in interactive mode, specify a data file with the variables to be analyzed, select 

the type of model to build, and select options and parameters.  Then save the project in a 

standard DTREG project file (.dtr file). 

 

The Command File 

The command file is a text file that contains commands that control the model building 

process.  You can use Notepad, Wordpad or any other text editor to create the command 

file.  The suggested file type is .cmd, but you can use any extension you wish. 

 

The following commands may be placed in a command file.  Some commands are 

required, and some are optional. 

 

FOLDER (optional) – Specifies a default folder where all of the files are specified.  If the 

FOLDER command is not specified, you must specify the folder as part of the file 

specification on each command. 

 

Syntax:  FOLDER device_and_folder 

 

Example: FOLDER C:\Work\Campaign1 

 

PROJECT (required) – Specifies the name of the file with the template project.  

 

Syntax: PROJECT file_name 

 

Example: PROJECT C:\Campaign1\AdModel.dtr 

 

OUTPUT (optional) – Specifies the name of the file where the generated model is to be 

written.  If no OUTPUT command is specified, then the model is not saved.  If you 

simply want to use the template project to score data, it is not necessary to specify an 

OUTPUT command.  

 

Syntax: OUTPUT file_name 

 

Example: OUTPUT C:\Campaign1\AdTreeBoost.dtr 

 

DATA (optional) – Specifies the name of the data file that will be used to train the model. 

If you are just performing scoring and not building a model, then you can omit the DATA 

command. 

 

Syntax: DATA file_name 

 

Example: DATA C:\Campaign1\Tennessee.csv 
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REPORT (optional) – Specifies the name of the file where the analysis report is to be 

written.  If you do not use a REPORT command, then the analysis report is not saved.  

 

Syntax: REPORT file_name 

 

Example: REPORT C:\Campaign1\TennesseeLog.txt 

 

SCOREINPUT (optional) – Specifies the name of a data file is to be used as input for 

scoring by the generated model.  If you want scoring done, you must specify both a 

SCOREINPUT and a SCOREOUTPUT command.  Omit the SCOREINPUT and 

SCOREOUTPUT commands if you are building a model and do not want scoring done.  

 

Syntax: SCOREINPUT file_name 

 

Example: SCOREINPUT C:\Campaign1\Nashville.csv 

 

SCOREOUTPUT (optional) – Specifies the name of the data file where output from the 

scoring function (with predicted target values) is to be written.  

 

Syntax: SCOREOUTPUT file_name 

 

Example: SCOREOUTPUT C:\Campaign1\NashvillePredict.csv 

 

BUILDMODEL (optional) – Specify this command if you want DTREG to build a new 

predictive.  If you only want to use the template project to do scoring, you should omit 

the BUILDMODEL command.  

 

Syntax: BUILDMODEL 

 
TRANSLATE (optional) – Specifies that DTREG is to convert the model to C source 
code and write it to the specified file.  This option is available only in the Enterprise 
Version of DTREG. 
 
Syntax TRANSLATE file_name 
 
Example: TRANSLATE C:\Campaign1\NeuralCode.c 

 

REM (optional) – Comment line. 

 

Example: REM Analysis of Tennessee data 

 



30 

 

Example Command Files 
 

This is an example command file to build a model: 

 
REM Build a new model whose name is NewProject.dtr 
FOLDER  C:\Campaign1 
PROJECT  OriginalProject.dtr 
OUTPUT  NewProject.dtr 
DATA  TrainingData.csv 
BUILDMODEL 

 

This is an example file that does scoring using an existing project but which does not 

build a new project: 

 
REM  Score the Tennessee.csv file 
FOLDER  C:\Campaign1 
PROJECT  ResponseModel.dtr 
SCOREINPUT  Tennessee.csv 
SCOREOUTPUT  TennesseeScore.csv 

 

The Command Line 

The command file to start DTREG in command line mode is: 

 
DTREG  /cmd=”command_file” [/options] 

 

The /cmd=”command_file” switch specifies the name of the command file that is to be 

executed.  You should provide a full file specification including device and folder.  For 

example: 

 
DTREG /cmd=”C:\Campaign1\BuildModel.cmd” 

 

Options: 

 

The following optional switches may be specified: 

 

/MINIMIZE – Start DTREG in minimized mode so that it does not display its screen. 

 

/HIDE – Do not display the execution screen at all. 
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Specifying Properties for a Model 
 

You can specify properties for a model when you create it initially or you can change the 

properties for a project you have already created.  The properties for a model display in 

the left panel and correspond to the project property screens. 

 

To specify properties for a model, click one of the items shown under “Model” in the left 

panel: 

 

 
 

The Model screen displays with tabs for each property, similar to the one shown below: 
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Each property page is described below. 
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Design Property Page 

The Design property page specifies general information about the model. 

 

 
 

Title of project – Specify a descriptive title for the project.  This is simply 

commentary information and may be omitted if you wish. 

 

Write a report of the analysis to a project_Log.txt disk file – If this box is 

checked, DTREG will generate an analysis log file named project_Log.txt where project 

is the name of the DTREG project file.  The log file contains the same information that is 

displayed in the analysis output panel. 

 

Type of model to build – Select the type of model that DTREG should build. 
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How to categorize continuous variables – The values of continuous predictor 

variables are grouped into categories before they are used to build a decision tree.  

Specify in this field the maximum number of categories that are to be used to group 

continuous predictor variable values.  The more categories you allow, the smaller and 

more precise the category ranges will be.  However, as you increase the number of 

categories, the computation time also increases.  If you allow up to 100 categories, then 

each category will be 1% of the range of the values. 

 

Decision tree cluster analysis control – This value tells DTREG when to 

switch from an exhaustive search of predictor categories to a faster but slightly less 

accurate clustering method.  This control is enabled only when building a classification 

tree.  When the target variable is categorical and a predictor variable is also categorical, 

an exhaustive search would require DTREG to evaluate a potential split for every 

possible combination of categories of the predictor variable.  The number of splits is 

equal to 2
(k-1)

-1 where k is the number of categories of the predictor variable.  For 

example, if there are 5 predictor categories, 15 splits are tried; if there are 10 categories, 

511 splits are tried; if there are 16 categories, 32767 splits are tried.  Because of this 

exponential growth, the computational time makes it impractical to do an exhaustive 

search for more than about 12 predictor categories.  To handle this situation, DTREG will 

switch to a faster but slightly less accurate method when the number of categories of a 

predictor variable exceeds the value you specify for this parameter.  This allows DTREG 

to build classification trees even when a categorical predictor has hundreds or even 

thousands of categories. 

 

Tree fitting algorithm – This parameter applies to single decision tree models.  

Select which algorithm you want DTREG to use to split nodes in the tree.  TreeBoost 

models are always built using an algorithm that minimizes misclassification costs, so the 

algorithm selection boxes will be disabled for TreeBoost models.  Here are the choices: 

 

 Gini -- The Gini splitting method is the default and recommended method for 

classification trees.  Each split is chosen to maximize the heterogeneity of the 

categories of the target variable in the child nodes. 

 

 Entropy – The Entropy splitting method is an alternate method that can be 

selected for classification trees.  Experiments have shown that entropy and Gini 

generally yield similar trees after pruning. 

 

 Misclassification cost -- This method causes DTREG to use the split that 

minimizes the misclassification cost among the child nodes. 

 

 Variance -- The variance splitting method is always used for regression trees.  It 

causes DTREG to use the split that minimizes the sum of variance (i.e. sum of 

squared errors) in the child nodes. 
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Bins for Lift/Gain – Specify how many “bins” to use when computing and displaying 

the table of lift and gain values (see page 201).  

 

Notes about this project – This is a free-form text field where you can enter any 

notes you want to save regarding the project.  

 

Analysis report log file – If you wish, you can direct DTREG to write a copy of the 

analysis report (show in the right portion of the screen) to a log file.  

 

Analysis report XML file – If you enable this option, DTREG will create an 

analysis report in XML format so that it can be read by other programs.  This feature is 

available only in the Enterprise Version of DTREG.  
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Data Property Page 

The Data Property Page allows you to select the data file you want to use for the project. 

 

 
 

Data File Format 

The data file must be a text (ASCII) file with the values for one row (case) per line.  Most 

database and spreadsheet programs such as Access and Excel can generate Comma 

Separated Value (CSV) formatted files that you can use as input to DTREG. 

 

Data Subsetting – If you wish, you can tell DTREG to use only a subset of the records in 

the data file for the analysis.  This speeds up the analysis and is useful when 

experimenting with different model settings.  If you tell DTREG to use a subset of the 

data, specify the percentage of the rows that you want it to use.  Since random selection is 

used to select the rows, the actual number of rows used may be slightly different than the 

percent you specify. 
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Balance Target Categories –  When there is a large imbalance between the number of 

data rows with different target categories, model training tends to give priority to 

minimizing the error on the categories with more rows.  The result is that the popular 

categories have low misclassification rates, but the categories with fewer training rows 

have a high level of misclassification error.  DTREG provides three ways to mitigate the 

problems with target category imbalance: 

 

1. Weight rows of minority categories – If you check this box, DTREG will 

increase the weight (importance) of data rows that have minority categories of the 

target variable.  The weights are adjusted so that the sum of the weights for the 

rows with each target category are the same.  This option may be used with cross-

validation and leave-one-out validation. 

2. Subset popular categories – If you check this box, DTREG will attempt to 

balance the number of data rows having each category of the target variable by 

selecting only a subset of the records that have target categories with excessive 

rows.  This option causes DTREG to select only a subset of the rows with the 

most popular categories so that the data used for training will have approximately 

the same number of rows for all target categories as the least popular category 

has.  Note that using this option means that rows with popular categories will not 

be included in the analysis. 

3. Replicate rows in minority categories – If you check this box then DTREG will 

replicate (duplicate) data rows in the input file that are members of minority target 

categories (i.e., categories with fewer rows than the most popular category).  The 

result will be that each target category will have approximately the same number 

of rows as the category with the maximum number of rows in the input file.  If 

you use this option, then you cannot rely on cross-validation to validate the 

model, because the hold-out rows in validation folds may be replicated copies of 

rows that are used to train the model.  The only way to do legitimate validation 

with this option is to split the data file outside of DTREG, then build the model 

with some of the data and run the held-out portion through the Score function (see 

page 163) to measure the misclassification error. 

 

Write validation hold-back records to a file – If you check this box, you can specify a 

file where DTREG will write the records held back for validation.  This is useful when 

you want to use the records selected for validation for your own, external tests.  Note that 

this option is effective only when you specify that validation is to be done by holding 

back a percentage of the input dataset. 

 

Set PCA transform – If you click this button, DTREG will prompt you for an auxiliary 

project file containing a PCA transformation function created by a previous analysis.  The 

PCA transformation will be bound to this project, and new variables with names PCn will 

be created for the PCA transformed values.  See page 352 for detailed information about 

using this feature.  This feature is available only in the Enterprise Version of DTREG. 
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There are four selections related to the format of the input data file: 

 

1. Character used for a decimal point in the input data file – Select whether a 

period or a comma will be used to indicate the decimal point in numeric values in 

the input data file.  The American standard decimal point marker is a period while 

the European standard is a comma.  This setting affects only data read from the 

input file; a period always is used as the decimal point marker in the generated 

report. 

2. Character used to separate columns – Select the character that will be used to 

separate columns in the input file.  The default separator is a comma, but you may 

select any character you wish to use. 

3. Custom missing value indicator – Specify the character that will be used to 

indicate missing values in the data file.  If a data field is entirely blank or consists 

only of the question mark character (“?”) DTREG treats it as a missing value.  If 

wish to specify a character to denote missing values in addition to question mark, 

check this box and specify the character in the associated edit box. 

4. Convert missing predictor values to category – Normally, when the value of a 

predictor variable is missing (not specified or specified as ‘.’ or ‘?’), it is treated 

internally with a special missing value code that means no information is 

available.  DTREG has a number of techniques for imputing the estimated values 

of missing values including surrogate splitters and surrogate variables.  However, 

some analyses may need to treat a missing value like another category of a 

variable rather than as an unknown value.  If you check this option and a missing 

value is encountered for a categorical predictor variable, then the missing value is 

converted to the specified category label, and it is handled just as if the category 

label string had been specified in the data file.  The replacement of missing values 

with a category label is done only for predictor variables (not target variables) that 

are declared to be categorical.  Missing values for continuous predictor variables 

are always treated as missing (unknown) values. 

 

The first row in the file must contain the names of the variables.  If a variable name 

contains commas, you must enclose it in quote marks.  You may enclose variable names 

in quotes even if they do not contain commas.  If a variable name or a data value contains 

a quote character (“) you must enclose the value in quote marks and specify a double 

quote mark to represent each single quote mark in the value.  For example a value Toys 

“R” Us would be specified “Toys “”R”” Us”. 

 



39 

 

Here is an example of a data file.  Note that the third variable, “Gross income” is 

enclosed in quotes. 

 
Age, Sex, “Gross income” 

20,Male,25000 

30,Female,42000 

55,Male,76000 

43,Male,44000 

50,Female,82000 

 

Specifying Variable Attributes in the Data File 

 

You can optionally follow the name of a variable by a set of attributes enclosed in curly 

braces.  Here is an example of such a data line:  

 
Age{Continuous,Predictor}, Sex{Categorical,Predictor}, “Gross income”{Continuous,Target} 

20,Male,25000 

30,Female,42000 

55,Male,76000 

43,Male,44000 

50,Female,82000 

 

Note that the attributes are in curly braces, they go immediately after the name of the 

variable and before the character that separates variables.  If multiple attributes are 

specified, they are separated by commas in the list.  If the name of a variable is in quote 

marks, the attributes follow the closing quote mark.  Here are the available attributes: 

 

Target This is the target variable 

Predictor This is a predictor variable 

Weight This is the weight variable 

Unused This variable is not used (default) 

Categorical Variable has categorical values 

Continuous Variable has continuous values (default) 

Character Variable is to be treated as a character string 

 

The more common way to set variable attributes is using the Variable Property Page 

described on page 41. 
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Continuing Data Lines 

Long data lines can be continued to the following line by placing a backslash (‘\’) 

character as the last character on the line being continued.  For example, the following 

continued line: 

 
Age, Sex,\ 

“Gross income” 

 

is equivalent to: 

 
Age, Sex, “Gross income” 

 

Specifying Missing Values in Data Files 

To indicate a missing value in a dataset, use the following: 

 A field that is entirely empty (nothing between the commas). 

 The question mark character (‘?’) 

 A single period (‘.’). 

 A character you specify using the “Custom missing value indicator” specification. 

 

 

For example, in the following data set the value of Age is missing in the first row, the 

value of Sex is missing in the second row, and the value of Gross income is missing in 

the third row. 

 
Age, Sex, “Gross income” 

.,Male,25000 

30,,42000 

55,Male,? 

43,Male,44000 

50,Female,82000 
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Variables Property Page 

The Variables property page is used to specify the class and category of each variable. 

 

 
 

The list will show the name of each variable as was found on the first row of the data file 

for the project (see description of the Data property screen on page 36). 

 

The following columns are shown next to the variable names.  Click on a box in a column 

to turn a property on or off for a variable. 

 

 Target – If this box is checked, the selected variable is the target variable for the 

model.  One and only one variable may be designated as the target variable. 

 

 Predictor – If this box is checked, the selected variable will be used as a predictor 

variable when creating the model.  You must select at least one predictor variable, 

and you may select many predictor variables. 

 

 Weight – If this box is checked, the selected variable will be used as the weight 

variable.  If a weight variable is selected, its values will be used to weight the 

rows of the data.  If no weight variable is selected, all rows receive the same 

weight. 
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 Categorical – Check this box if the variable is categorical (nominal).  Leave the 

box unchecked if the variable is continuous or ordinal.  Categorical variables may 

have either numeric or text (e.g. “Male” or “Female”) values in the data file.  

Continuous variables must have numeric values. 

 

 Character – Check this box if the values of the variable can have general 

character values such as “Male”, “Female”, “Yes”, “No”, etc.  Leave the box 

unchecked if the values of the variable are strictly numeric.  Only categorical 

variables can store character values; continuous variables store only numeric 

values.  The default setting for categorical variables is character type.  Note: the 

setting of this attribute only affects the code generated by the Translate function 

(see page 169).  It does not affect the building of the model or the operation of the 

Score function.  C and C++ code generated for variables declared to have 

character values are defined with char[nnn] declarations.  Numeric variables are 

defined as type long.  SAS
®
 code initializes character or numeric variables 

depending on this setting.  It is legal to declare a categorical variable to be of type 

character even if it has only numeric values. 

 

Several buttons are shown at the right side of the list: 

 

 Predictor range – If you have a lot of variables and want to set all of the 

variables in a range to be predictor variables or not to be predictor variables, then 

click this button.  It will display a screen where you can select the first and last 

variables in the range that you want to designate as being (or not being) 

predictors.  This is often a lot easier and faster than clicking hundreds of boxes. 

 

 All predictors – Click this button to check the predictor boxes for all variables.  

Note, you must then select one of the variables as the target variable. 
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 Predictor coverage – If you click this button, the following screen will be 

displayed: 

 

 
 

These procedures can be used to reduce the number of predictor variables when 

there are many missing values in the data or when the distribution of rows for a 

categorical variable are highly unbalanced.  There are two procedures: 

 

Predictor coverage – If you use this procedure, DTREG will scan the data rows 

and remove any predictor variables (set them to unused) if the percentage of data 

rows with missing values for a variable exceeds the specified value. 

 

 

Predictor category balance – If you use this procedure, DTREG will check each 

categorical predictor variable and compute the “balance” which is the ratio of the 

number of rows with the most popular category and the number of rows with the 

least popular category.  If the ratio exceeds the specified value, then the variable 

is removed as a predictor. . 
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 Type range – Click this button if you want to set the type of a range of variables 

to be categorical or continuous.  It will display a screen where you can select the 

first and last variables in the range whose type is to be set. 

 

 All continuous – Click this button to uncheck the categorical checkboxes for all 

variables (i.e. to set the class of all variables to be continuous). 

 

 All numeric – Click this button to uncheck all of the character checkboxes for all 

variables (i.e., set all variables to hold only numeric values).  The boxes for 

variables that are known to have non-numeric values will remain checked. 

 

 All character – Click this button to check the character attribute boxes for all 

variables.  Continuous variables can never store character values, so only 

categorical variables are affected. 

 

 All reset – Click this button to reset (uncheck) all boxes. 

 

 Search – If there are a large number of variables, you can click Search to locate a 

variable whose name contains a specified string.  The list of variables will be 

scrolled so the matching variable is visible, but it may not be displayed at the top 

of the screen.  Often, the variable located will be positioned near the bottom of the 

screen. 

 

There are three category distribution report options available at the bottom of the page: 

 

 Report category statistics for categorical variables – If selected, a Summary of 

Categories report will be generated with information about the categories for all 

categorical predictor and target variables.  For additional information, please see 

page 181. 

 Report category statistics for continuous variables – If selected, a report will 

be generated with information about the categories for all continuous predictor 

and target variables. 

 Report min., max., mean for continuous variables – If selected, DTREG will 

report the minimum, maximum, mean and standard deviation for each continuous 

predictor variable. 

 

Surrogate Variables 

This section of the page is used to set parameters for surrogate variables.  Please see page 

358 for detailed information about surrogate variables. 

 

 Number of surrogates to store – This is the maximum number of surrogate 

variables that DTREG will store for each predictor variable.  Fewer surrogates 

may be stored if no significant associations are found. 
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 Minimum surrogate association – The association computed for each potential 

surrogate is compared to this value.  If the association is smaller than this, then 

the surrogate is excluded. 

 

 Maximum polynomial order – This controls whether linear, quadratic, or cubic 

functions are used for surrogate associations.  If a polynomial order greater than 1 

is specified, DTREG computes the association for all polynomials up to that 

order, and it only uses the higher order polynomials if they provide superior fit 

(association) over lower-order polynomials. 

 

 Report surrogate variables – If this option is checked, then DTREG adds a table 

to the analysis report showing which surrogate variables were stored for each 

predictor along with the polynomial coefficients and the association.  See page 

182 for an example of the surrogate variable report. 

 

 

Validation Property Page 

The Validation Property Page is used to select variables to control hold-out validation 

and cross-validation. . 

 

 
 

Cross-validation Control Variable 

Normally when cross validation is used to evaluate the quality of a model, DTREG 

assigns a random set of rows to each validation fold after stratifying on the target 

variable.  If you wish, you can select a variable whose values will determine which cross 

validation fold each row will be placed in rather than using random selection.  If a 

variable is used, it must be a categorical variable; there will be one fold for each category 

of the variable. 
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A cross validation control variable is useful for a situation where you have a number of 

similar observations that are clustered in a small number of groups.  If the observations 

within a cluster are very similar (i.e., cohorts), then performing cross validation where 

observations from the same cluster are both used to build a validation model and evaluate 

it will result in overly optimistic results.  In this case, it would be proper to use the cluster 

number to control the cross validation folds so nearly similar cases are grouped in a fold. 

 

Validation row selection variable This variable and the associated category selects the 

rows that are to be held-out and used for model validation if you select the validation 

method “Use variable to select validation rows” on the property page for the model.  

Select the variable to control hold-out rows in the upper field, and select the category of 

that variable that is to be held out in the lower field.  Any rows that have categories other 

than the specified category will be used in the training data for the model.  Only 

categorical variables may be used as hold-out control variables.  You can use the DTL 

facility (see page 153) to create a selection variable. 

 

Validation data row report file – If you enable this option and specify a file name in the 

edit field, then DTREG will write a record to the file showing which rows were used for 

validation, and it will show the predicted value for each validation row.  Each row in the 

file has 4 columns: (1) the data row number (1 based), (2) the actual value of the target 

variable, (3) the predicted value of the target variable, and (4) an indication of 

correct/incorrect classification or the residual value if doing regression. 
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Time Series Property Page 

The Time Series property page is used to specify whether a time series or a regular 

predictive model is to be created.  You also specify parameters for time series models.  

See the chapter beginning on page 139 for additional information about time series 

analysis. 

 

 
 

Time series or normal predictive model – Select whether you wish to build a 

time series model or a normal predictive model to predict a target variable from predictor 

variables. 

 

Type of model to build – Select which type of model you want DTREG to build for 

the time series.  The following types of models may be used: (1) Single tree, (2) 

TreeBoost, (3) SVM, (4) Gene expression programming, (5) Multilayer perceptron neural 
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network, (6) GRNN neural network, (7) GMDH polynomial network, (8) RBF neural 

network, (9) cascade correlation.  While single trees may be used, they are not 

recommended because they do a poor job of predicting continuous values.  Gene 

expression programming models work well, because they can generate very general 

functions.  GRNN neural networks also often work well. 

 

Range of lag values to generate – Time series models normally use lagged 

values of the target variable as predictor variables.  A lag variable has the value of the 

target variable that occurred a specified number of periods ago.  Specify the minimum 

and maximum periods for which you want DTREG to generate lag variables. 

 

Automatic removal of trend – Usually it is easier to build accurate time series 

models if the series is stable over time.  If a series has a linear or exponential growth 

trend, DTREG can remove the trend by fitting a linear or exponential function to the 

series and then subtracting that function from the time series values.  There are several 

choices: 

 

 None – Do not attempt to remove a trend from the series. 

 Linear – Fit a linear function to the series and use it to remove the trend. 

 Exponential – Fit an exponential function to the series. 

 Automatic – Try both linear and exponential functions and use the best one. 

 Stabilize variance – If the variance (amplitude) of the series is increasing or 

decreasing regularly over time, this option causes DTREG to attempt to stabilize 

it so that the variance is constant.  Note: about 20% of the time variance 

stabilization improves models and 80% it hurts them, so try it both ways and 

compare the results. See page 143 for additional information. 

 

Generated variables – In this section you can select if you want DTREG to generate lag 

or other types of variables.  For a time series, lag variables are almost always generated 

for the target variable.  If there are additional predictor variables you can optionally 

instruct DTREG to generate lag variables for them too.  Several types of variables can be 

generated: 

 

 Lag – A lag variable is the value of a variable that occurred the specified number 

of observations in the past.  For example, if Y[100] is the current value of the Y 

variable, then a lag variable with a lag setting of 10 would have the value of 

Y[90]. 

 SMA – Simple moving average.  This is the average value of the variable over the 

number of preceding observations equal to the specified lag.  The values receive 

equal weight when averaging. 
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 LMA – Linearly weighted moving average.  This is a moving average computed 

using a linear weighting with the observations closest to the current observation 

receiving more weight than older observations. 

 
 EMA – Exponentially weighted moving average.  This is a moving average 

computed using an exponential weighting function with the observations closest 

to the current observation receiving more weight than older observations. 

 
 Delta – This is the difference between the value of the variable one step before 

the current observation and the value (lag+1) steps behind.  For example, if the 

lag is set to 10, then delta for Y[100] = Y[99] – Y[89]. 

 LTrend – This is the value of an observation predicted by a linear equation fitted 

through the number of points preceding the point.  The lag value controls how 

many points before the current point are used for the fitted line. 

 Slope – This is the slope of a linear equation fitted through the number of points 

preceding the point.  The lag value controls how many points before the current 

point are used for the fitted line. 

 

Variables generated by DTREG are available for selection as predictor variables on the 

Variables property page.  Here is an example of variables generated for the Passengers 

variable with a lag of 2: 
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Note that you can select which of the lag variables you wish to use as predictors. 

 

Validation of forward predictions – If you enable this option, DTREG will use 

the specified number of observations at the end of the series to validate (check) the 

predictions of the model.  The model will be built using only the observations before 

those being held out for validation, and then the model will be used to generate predicted 

values for the held-out validation observations, and they will be compared.  Statistics on 

the quality of the fit will be written to the analysis report, and the Time Series chart can 

be used to view the predicted and actual values.  See page 145 for additional information. 

 

Print validation values and forecasts – If this option is selected, DTREG will 

include the values of the validation rows and the predicted forecast values in the analysis 

report. 

 

Forecast future values – If this option is selected, then DTREG will use the time 

series model to generate forecasts for future observations beyond the end of the series.  

The forecast values are written to the analysis report, and the Time Series chart can be 

used to view them. 

 

Print future forecast values – If this option is selected, DTREG will display in the 

analysis report forecast values for the specified number of periods. 

 

Write forecast to file – If you check this box, you can specify where the forecast 

values are to be written. 
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Single Tree Model Property Page 

The Single Tree property page is used to specify parameters for single tree models. 

 

 
 

Type of model to build – Select the type of model that DTREG should build.  The 

controls on this screen are disabled for any type of model other than single tree. 

 

Minimum rows in a node – This specifies the minimum number of rows that may 

fall in a node after splitting.  A split will not be allowed if either of the resulting child 

nodes had fewer than this number of rows. 

 

Minimum size node to split – This specifies that a node (group) should never be 

split if it contains fewer rows than the specified value. 

 

Maximum tree levels – Specify the maximum number of levels in the tree that you 

want DTREG to construct when it is building the tree.  It is best to let DTREG initially 

build a large tree with many levels and then allow the pruning phase of the analysis to 

remove levels.  See page 366 for information about how pruning is done. 
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Generate report of tree splits – If you check this box DTREG will write a report 

of each node split to the analysis log.  If the tree is large, this report will be large. 

Method for validating and pruning the tree – select the method to be used by 

DTREG to test the tree that it builds. 

 

No validation, use full tree – If you check this button, DTREG will build the full 

decision tree for the model and will do no testing or pruning.  A full, unpruned tree is 

sometimes called an “exploratory tree”. 

 

V-Fold cross-validation – If you check this button, DTREG will use V-fold cross-

validation to determine the statistically optimal tree size.  You may specify how many 

“folds” (cross-validation trees) are to be used for the validation; a value of 10 is 

recommended.  Specifying a larger value increases the computation time and rarely 

results in a more optimal tree.  For a detailed description of V-fold cross validation, 

please see page 369. 

 

Random percent of rows – If you check this button, DTREG will hold back from the 

model building process the specified percent of the data rows.  The rows are selected 

randomly from the full dataset, but they are chosen so as to stratify the values of the 

target variable.  Once the model is built, the rows that were held back are run through the 

tree and the misclassification rate is reported.  If you enable tree pruning, the tree will be 

pruned to the size that optimizes the fit to the random test rows.  The advantage of this 

method over V-fold cross-validation is speed – only one tree has to be created rather than 

(V+1) trees that are required for V-fold cross-validation.  The disadvantage is that the 

random rows that are held back do not contribute to the model as it is constructed, so the 

model may be an inferior representation of the training data.  Generally, V-fold cross-

validation is the recommended method for small to medium size data sets where 

computation time is not significant, and random-holdback validation can be used for 

large datasets where the time required to build (V+1) trees would be excessive. 

 

Use variable to select validation rows – If you check this button, DTREG uses the hold-

out control variable specified on the Validation Property Page (see page 45) to control 

which variables are held-out during model training and used to test the model.  Rows 

with the specified category on the control variable are held out and used for testing; rows 

with any other category are used to train the model.  This option is enabled only if a hold-

out variable has been selected on the Validation Property Page. 

 

Fixed number of terminal nodes – If you check this button, DTREG will prune the tree 

to the specified number of terminal nodes.  The cost-complexity values computed for the 

tree are used to guide the pruning so that the least significant nodes are pruned to reduce 

the tree to the specified size.  When this option is selected, cross-validation trees are not 

generated, so it is much faster than doing full cross-validation on large trees; however, 

there is no assurance that the generated tree has the optimal number of nodes.  This 

option is useful when you are generating exploratory trees. 
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Smooth minimum spikes – If you check this button, DTREG will smooth out 

fluctuations in the error rate for various size models by averaging the misclassification 

rates for neighboring tree sizes.  During the pruning process, DTREG must identify the 

tree size that produces the minimum misclassification error (residual) for the validation 

data; this is the optimal size to which the tree will be pruned.  Sometimes the error rate 

fluctuates as the tree size increases, and an anomalous minimum “spike” may occur in a 

region where the surrounding error rates are much higher.  This happens more often when 

using random-row-holdback validation than when using V-fold cross-validation which 

tends to average out error rate values.  If you enable smoothing of minimum spikes, 

DTREG averages each error-rate/tree-size value with its neighboring values.  The effect 

is to cause DTREG to seek regions where the minimum values are consistently low rather 

than isolated low values.  The generated trees may be larger, but they usually are more 

stable when used for scoring.  The value associated with this button specifies how many 

values are to be averaged for smoothing.  For example, a smoothing value of 3 causes 

DTREG to compute the average of three points – the center point and the neighboring 

points on the left and right. 

 

Tree Pruning Control – Select options in this group to control how DTREG prunes 

the tree to the optimal size.  Note: You must select V-fold cross validation to enable tree 

pruning.  For additional information about how tree pruning is performed, please see 

page 366. 

 

Prune to minimal cross-validated error – If you select this option, DTREG will prune 

the tree to the number of nodes that produce the minimal error in the cross-validation 

trees.  This is the theoretically optimal tree size, but it may be only marginally better than 

a smaller tree with a slightly larger error value.  For additional information, please see 

page 371. 

 

Allow one standard error from minimum – If you select this option, DTREG will be 

allowed to prune the tree to a smaller number of nodes such that the cross-validated error 

cost of the smaller tree is no more than one standard error from the minimal cross-

validated error value.  The advantage of selecting this option is that DTREG generates a 

smaller and simpler tree; however, the tree may not be quite as good at predicting future 

values as the larger, optimal tree.  Research has shown that the misclassification cost 

values tend to decrease to a valley as the tree size is pruned and then increase gradually 

once the pruned tree size passes the optimal size.  Typically, the decrease is not smooth 

and there is some roughness in the cost values around the optimal point; so, allowing 

pruning to a smaller, slightly less optimal tree is probably not statistically significant, and 

you end up with a smaller, simpler model. 

 

Allow this many S.E. from min. – If you check this box, you can specify an exact 

number of standard error intervals to allow the pruning to select a smaller tree.  If you 

specify 1 for the standard error interval, then this option is equivalent to selecting “Allow 

one standard error from minimum”. 
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Do not prune the tree – Select this option if you want DTREG to perform cross-

validation but not prune the tree.  You will get the cross-validation statistics, but the full, 

unpruned tree will be generated. 

 

TreeBoost Property Page 

 

TreeBoost models often can provide greater predictive accuracy than single-tree models, 

but they have the disadvantage that you cannot visualize them the way you can a single 

tree; TreeBoost models are more of a “black box”. 

 

For more technical information about TreeBoost, please see the chapter starting on page 

245. 

 

When you select the TreeBoost property page, you will see a screen like this: 
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Type of model to build:  Select the type of model you want DTREG to build.  If you 

select a type of model other than TreeBoost, the other controls on this screen will be 

disabled. 

 

Maximum number of trees in series:  Specify how many trees you want DTREG to 

generate in the TreeBoost series.  If you select the appropriate options in the right panel, 

DTREG will prune (truncate) a series to the optimal size after building it.  You can click 

Charts on the main menu followed by Model Size to view a chart that shows how the 

error rates vary with the number of trees in the series. 

 

Depth of individual trees:  Specify how many levels of splits each tree in the TreeBoost 

series should have.  The number of terminal nodes in a tree is equal to 2
k
 where k is the 

number of levels.  So, for example, a tree with a depth of 1 has two terminal nodes, a tree 

with a depth of 2 has 4 terminal nodes, and a tree with a depth of 3 has 8 terminal nodes.  

Because many trees contribute to the model generated by TreeBoost, usually it is not 

necessary for individual trees to be very large.  Experiments have shown that trees with 4 

to 8 levels generally perform well, but if there are a large number of predictor variables 

or there are many categories for the predictors, you should try increasing the tree depth to 

10 or 12.  The depth should be at least as large as the number of variable interactions.  If 

you have a categorical predictor variable with many classes (for example, postal zip 

code) it may be necessary to increase the tree depth to allow DTREG to partition the data 

into more groups.  If the predictions from a TreeBoost model are not as accurate as those 

from the corresponding single-tree model, try increasing the depth of the TreeBoost trees. 

 

Minimum size node to split – This specifies that a node should never be split if it 

contains fewer rows than the specified value. 

 

Proportion of rows in each tree:  Research has shown (Friedman, 1999b) that 

TreeBoost generates the most accurate models with minimum over fitting if only a 

portion of the data rows are used to build each tree in the series.  Specify for this 

parameter the proportion of rows that are to be used to build each tree in the series; a 

value of 0.5 is recommended (i.e., half of the rows).  The specified proportion of the rows 

are chosen randomly from the full set of rows.  (This is the stochastic part of stochastic 

gradient boosting.) 

 

Huber’s quantile cutoff:  The TreeBoost algorithm uses Huber’s M-regression loss 

function to evaluate error measurements for regression models (Huber, 1964).  This loss 

function is a hybrid of ordinary least-squares (OLS) and least absolute deviation (LAD).  

For residuals less than a cutoff point, the squared error values are used.  For residuals 

greater than the cutoff point, absolute values are used.  The virtue of this method is that 

small to medium residuals receive the traditional least-squares treatment, but large 

residuals (which may be anomalous cases, mismeasurements or incorrectly coded values) 

do not excessively perturb the function.  After the residuals are calculated, they are sorted 

by absolute value and the ones below the specified quantile cutoff point are then squared 

while those in the quantile above the cutoff point are used as absolute values.  The 

recommended value is 0.9 which causes the smaller 90% of the residuals to be squared 
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and the most extreme 10% to be used as absolute values.  Huber’s quantile cutoff 

parameter is used only for regression analyses and not for classification analyses. 

 

Influence trimming factor:  This parameter is strictly for speed optimization; in most 

cases it has little or no effect on the final TreeBoost model.  When building a TreeBoost 

model, the residual values from the existing tree series are used as the input data for the 

next tree in the series.  As the series grows, the existing model may do an excellent job of 

fitting many of the data rows, and the new trees being constructed are only dealing with 

the unusual cases.  “Influence trimming” allows DTREG to exclude from the next tree 

build process rows whose residual values are very small.  The default parameter setting 

of 0.1 excludes rows whose total residual represent only 10% of the total residual weight.  

In some case, a small minority of the rows represent most of the residual weight, so most 

of the rows can be excluded from the next tree build.  Influence trimming is only used 

when building classification models. 

 

Shrinkage factor:  Research has shown (Friedman, 2001) that the predictive accuracy of 

a TreeBoost series can be improved by apply a weighting coefficient that is less than 1 (0 

< v < 1) to each tree as the series is constructed.  This coefficient is called the “shrinkage 

factor”.  The effect is to retard the learning rate of the series, so the series has to be longer 

to compensate for the shrinkage, but its accuracy is better.  Tests have shown that small 

shrinkage factors in the range of 0.1 yield dramatic improvements over TreeBoost series 

built with no shrinkage (v = 1).  The tradeoff in using a small shrinkage factor is that the 

TreeBoost series is longer and the computational time increases. 

 

If “Auto” shrinkage factor is selected, the shrinkage factor is calculated by DTREG based 

on the number of data rows in the training data set. 

 

Let NumRows = the number of data rows in the training data set. 

Then, ShrinkFactor = max(0.01, 0.1 * min(1.0, NumRows/10000)) 

 

If you prefer, you can select the “Fixed” option and specify a shrinkage factor. 

 

If you experience significant over fitting of the TreeBoost model (much better fit on 

training data than test data), try decreasing the shrinkage factor.  Note that “Auto” mode 

will never use a shrinkage factor less than 0.1.  If over fitting is a problem, try switching 

to the “fixed” setting and specify values in the range of 0.05. 

 

Limit max. nodes per tree: If you enable this option, DTREG will build each tree in the 

TreeBoost series to the maximum depth and then prune it by removing the least 

significant nodes so that it has no more than the specified number of terminal (leaf) 

nodes.  It is recommended that you leave this box unchecked and limit the size of trees by 

setting the maximum tree depth.  The main reason for pruning trees in the series is to 

reduce the amount of memory space required by very large models. 
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Pruning Methods for TreeBoost Series 

 

TreeBoost series are less prone to problems with over fitting than single-tree models, but 

they can benefit from validation and pruning to the optimal size to minimize the error on 

a test dataset.  In the case of a TreeBoost series, “pruning” consists of truncating the 

series to the optimal number of trees. 

 

No validation, use full tree series:  All of the data rows are used to “train” the 

TreeBoost series.  No validation or pruning is performed. 

 

Use variable to select validation rows – If you check this button, DTREG uses the hold-

out control variable specified on the Validation Property Page (see page 45) to control 

which variables are held-out during model training and used to test the model.  Rows 

with the specified category on the control variable are held out and used for testing; rows 

with any other category are used to train the model.  This option is enabled only if a hold-

out variable has been selected on the Validation Property Page. 

 

Random percent of rows – If you check this button, DTREG will hold back from the 

model building process the specified percent of the data rows.  The rows are selected 

randomly from the full dataset, but they are chosen so as to stratify the values of the 

target variable.  Once the model is built, the rows that were held back are run through the 

tree and the misclassification rate is reported.  If you enable tree pruning, the tree will be 

pruned to the size that optimizes the fit to the random test rows.  The advantage of this 

method over V-fold cross-validation is speed – only one TreeBoost series has to be 

created rather than (V+1) tree series that are required for V-fold cross-validation.  The 

disadvantage is that the random rows that are held back do not contribute to the model as 

it is constructed, so the model may be an inferior representation of the training data.  

Generally, V-fold cross-validation is the recommended method for small to medium size 

data sets where computation time is not significant, and random-holdback validation can 

be used for large datasets where the time required to build (V+1) tree series would be 

excessive. 

 

V-Fold cross-validation – If you check this button, DTREG will use V-fold cross-

validation to determine the statistically optimal size for the TreeBoost series.  You may 

specify how many “folds” (cross-validation trees) are to be used for the validation; a 

value in the range 3 to 10 is recommended.  Specifying a larger value increases the 

computation time and rarely results in a more optimal tree.  For additional information 

about V-fold cross validation, please see page 369. 
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This is the process used for cross validation of a TreeBoost series: 

 

First, a primary series is created using all of the data rows.  This series is grown to the 

maximum allowable length. 

 

The data rows are randomly divided into V sets, where V is the number of folds.  Hence, 

each set has 1/V of the total rows. 

 

A TreeBoost series is created for each of the V folds (i.e., V TreeBoost series are created).  

The nth series is built using all of the row data sets except for the nth data set.  In other 

words, one set of data (1/V rows) is excluded (held back) from each series, and it is a 

different set of rows that is held back each time. 

 

After the nth series is created using all data rows except for those in the nth set, the rows 

in the nth set that were held back are used to compute the misclassification rate for the 

series.  The misclassification rate is computed for the series using only the first tree, then 

the first two trees in the series, then the first three, up to the total length of the series.  The 

error rate is stored for each possible number of trees in the series. 

 

One the V cross-validation series have been created and their error rates have been 

computed using the held-back rows, the error rates for each length of series is averaged 

across the V series and the length with the minimum error average is used. 

 

If pruning was requested, the primary series that was created using all data rows is then 

pruned to the length with the minimum error rate as determined by cross validation. 

 

Smooth minimum spikes – If you check this button, DTREG will smooth out 

fluctuations in the error rate for various size models by averaging the misclassification 

rates for neighboring tree series sizes.  Sometimes, the error rate fluctuates as the tree size 

increases, and an anomalous minimum “spike” may occur in a region where the 

surrounding error rates are much higher.  This happens more often when using random-

row-holdback validation than when using V-fold cross-validation which tends to average 

out error rate values.  If you enable smoothing of minimum spikes, DTREG averages 

each error-rate/tree-size value with its neighboring values.  The effect is to cause DTREG 

to seek regions where the minimum values are consistently low rather than isolated low 

values.  The generated TreeBoost series may be longer, but they usually are more stable 

when used for scoring.  The value associated with this button specifies how many values 

are to be averaged for smoothing.  For example, a smoothing value of 3 causes DTREG 

to compute the average of three points – the center point and the neighboring points on 

the left and right. 

 

Minimum trees in series – If you check this box, you can specify the minimum number 

of trees in the series after pruning.  DTREG will not prune the series to a length shorter 

than the specified value.  Some TreeBoost series have erratic behavior with small 

numbers of trees.  Sometimes the error rate is very low with series consisting of one or 

two trees, then the error rate jumps up and gradually declines.  In cases like this, the short 
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series is unreliable, and it is undesirable to prune to that length even if the minimum error 

occurs with one or two trees.  By specifying the minimum number of trees in the series, 

you can guarantee that pruning will not truncate the series below a specified length. 

 

Prune (truncate) series to minimum error:  If this box is checked, DTREG will 

truncate the TreeBoost series at the length that has the minimum validation error as 

determined by the validation method selected above.  If this box is not checked, then 

DTREG will use the validation method to measure the error rate, but the full series will 

be retained. 

 

Prune tolerance percent:  Check this box to allow DTREG to prune the series to a 

smaller number of trees than the minimum validation point.  In many cases, the 

improvement from adding trees to a series may be small, and the error rate will decline 

slowly with a long, nearly-horizontal “tail” on the model-size chart.  In cases like this, it 

is possible to prune many trees from the series with only a small increase in the error rate.  

If you enable this option, then DTREG will prune the series to a smaller size than the 

absolute minimum as long as the error rate does not increase by more than the percentage 

factor that you specify.  For example, if the minimum error point in the series has an error 

(misclassification) rate of 20% and you specify a pruning tolerance factor of 10%, then 

DTREG will be allowed to prune the series to a shorter length as long as the error rate 

does not exceed 22% (20 + 0.10*20). 

 

Cross validate after pruning:  If this box is checked and V-fold cross validation is 

selected, DTREG will recomputed the cross-validated error rate after pruning the series 

so that the validation error accurately reflects the truncated series.  This doubles the time 

required for cross validation.  If this box is not checked, the error rate for the full, un-

truncated TreeBoost series is used for validation statistics. 

 

Cross validation variable importance: If you check this option, then DTREG will 

compute the importance of variables for each cross validation fold, it will calculate the 

geometric mean of the importance across folds, and it will provide a separate report of the 

variables showing the mean cross-validation importance.  This is an alternate way to 

compute variable importance that minimizes the importance of variables that are 

relatively unimportant on any cross validation fold.  It may give a more accurate message 

or variable importance when some variables are sensitive to specific data values. 

 

Predictor variable selection:  In some cases, it may be possible to improve the quality 

of a TreeBoost model by considering only a random subset of the predictors for each split 

rather than all predictors.  This is somewhat similar to the predictor selection method 

used by Decision Tree Forest Models.  However, most of the time it is better to allow all 

predictors to be considered for each split, so you should always try building the model 

that way. 
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Decision Tree Forest Property Page 

 

Decision tree forest models often can provide greater predictive accuracy than single-tree 

models, but they have the disadvantage that you cannot visualize them the way you can a 

single tree; decision tree forest models are more of a “black box”. 

 

For more technical information about decision tree forests, please see the chapter starting 

on page 249. 

 

When you select the decision tree forest property page, you will see a screen like this: 

 

 
 

Type of model to build:  Select the type of model you want DTREG to build.  If you 

select a model type other than decision tree forest, all of the other controls on this screen 

will be disabled. 
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Forest size controls 

Generally, the larger a decision tree forest is, the more accurate the prediction.  There are 

two types of size controls available (1) the number of trees in the forest and (2) the size of 

each individual tree. 

 

Number of trees in forest -- This specifies how many trees are to be constructed in the 

decision tree forest.  It is recommended that a minimum value of 100 be used. 

 

Minimum size node to split – A node in a tree in the forest will not be split if it has 

fewer than this number of rows in it. 

 

Maximum tree levels – Specify the maximum number of levels (depth) that each tree in 

the forest may be grown to.  Some research indicates that it is best to grow very large 

trees, so the maximum levels should be set large and the minimum node size control 

would limit the size of the trees. 

 

Random Predictor Control 

When a tree is constructed in a decision tree forest, a random subset of the predictor 

variables are selected as candidate splitters for each node.  The controls in this group set 

how many candidate predictors are considered as splitters for each node. 

 

Square root of total predictors – If you select this option, DTREG will use the square 

root of the number of total predictor variables as the candidates for each node split.  Leo 

Breiman recommends this as a default setting. 

 

Search using trial forests – If you select this option, DTREG will built a set of trial 

decision tree forests using a different numbers of predictors and determine the optimal 

number of predictors to minimize the misclassification error.  When doing the search, 

DTREG starts with 2 predictors and checks each possible number of predictors in steps of 

2 up to but not including the total number of predictors.  Once the optimal number of 

predictors is determined from the trial runs, that number is used to build the final decision 

tree forest.  Clearly this method involves more computation than the other methods since 

multiple decision tree forests must be constructed.  To save time, you can specify in the 

box on the option line a smaller number of trees in the trial forest than in the final forest. 

 

Once the optimal number of predictors is determined, it is shown as the value with “Fixed 

number of predictors”, so you can select that option for subsequent runs without having 

to repeat the search. 

 

Fixed number of predictors – If you select this option, you can specify exactly how 

many predictors you want DTREG to use as candidates for each node split. 
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How to Handle Missing Values 

Surrogate splitters – If this option is selected, DTREG will compute the association 

between the primary splitter selected for a node and all other predictors including 

predictors not considered as candidates for the split.  If the value of the primary predictor 

variable is missing for a row, DTREG will use the best surrogate splitter whose value is 

known for the row.  Use the Missing Data property page (see page 133) to control 

whether DTREG always computes surrogate splitters or only computes them when there 

are missing values in a node.  See the chapter starting on page 357 for additional 

information about handling missing values. 

 

Use median value – If this option is selected, DTREG replaces missing values for 

predictor variables with the median value of the variable over all data rows.  While this 

option is less exact than using surrogate splitters, it is much faster than computing 

surrogates, and it often yields very good results if there aren’t a lot of missing values; so 

it is the recommended option when building exploratory models. 

 

How to Compute Variable Importance 

DTREG offers three methods for computing the importance of predictor variables: 

 

Use split information – DTREG calculates the importance of each variable by adding up 

the improvement in classification gained by each split that used the predictor.  This is the 

same method used to compute the importance for single-tree and TreeBoost models.  

Generally, this method produces good results, and it can be calculated quickly. 

 

Type 1 margins – DTREG first calculates the misclassification rate for the model using 

the actual data values for all predictors.  Then for each predictor, it randomly permutes 

(rearranges) the values of the predictor and computes the misclassification rate for the 

model using the permuted values.  The difference between the misclassification rate with 

the correctly ordered values and the misclassification rate for the permuted values is used 

as the measure of importance of the predictor.  This method of calculating variable 

importance often is more accurate than calculating the importance from split information, 

but it takes much longer to compute because of the time required to permute the rows for 

each predictor. 

 

Type 1 + 2 margins – DTREG first calculates the importance using type 1 margins as 

described above.  It then examines each data row and determines how many trees in the 

forest correctly voted for the row with the original data minus the number of trees that 

correctly voted for the row using the permuted data.  The two measures of importance are 

then averaged.  This is usually the most accurate measure of importance, but it is also the 

slowest to compute.  In the case of a regression tree forest (i.e., continuous target 

variable), this method is the same as the “Type 1 margins” method. 
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Multilayer Perceptron Neural Networks (MLP) Property Page 

 

A Multilayer Perceptron Neural Network (MLP) (also known as a Multilayer Feed-

Forward neural network) is a model developed to simulate the function of neurons in a 

nervous system. 

 

For additional information about multilayer perceptron networks, please see the chapter 

starting on page 253. 

 

When you select the Multilayer Perceptron property page, you will see a screen like this: 

 

 
 

Type of model to build:  Select the type of model you want DTREG to build.  If you 

select a model type other than multilayer perceptron neural network, all of the other 

controls on this screen will be disabled. 

 

Number of network layers:  Specify whether you want to create a neural network model 

with 3 total layers (one input, one hidden and one output) or with 4 layers (one input, two 

hidden and one output).  It is rare to find a problem that requires more than 3 layers, so a 

3 layer model is recommended. 
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Number of neurons 

 

One of the basic parameters of a neural network is the number of neurons in the hidden 

layer(s).  DTREG allows you to specify a fixed number of neurons, or you can allow 

allow it to search for the optimal number of neurons. 

 

Automatically optimize hidden layer 1:  One of the challenges in building multilayer 

perceptron neural networks is deciding how many neurons to use for the hidden layer(s).  

If you select too few neurons, the model may not be adequate to model complex data.  If 

you select too many neurons, it may over-fit the data and result in poor generalization to 

new data.  If you check this box, DTREG will try building multiple networks with 

different numbers of neurons in hidden layer 1 and evaluate how well they fit by using 

cross validation or a hold-out sample.  This automatic selection only applies to hidden 

layer 1.  If you elect to build a model with two hidden layers, you will have to manually 

select the number of neurons in hidden layer 2.  If you enable automatic neuron 

optimization, you can view the Model Size chart to see how the error varies with different 

numbers of neurons (see page 209). 

 

Minimum, Maximum and Step size for automatic search:  If you enable the automatic 

search for the optimal number of neurons, specify in these fields the minimum and 

maximum number of neurons to try.  Also specify how many neurons should be added 

for each trial. 

 

Max. steps without change:  When DTREG is performing the search for the optimal 

number of neurons, it builds models starting with the minimum specified number of 

neurons working up to the maximum.  It evaluates the error of each model before 

increasing the number of neurons.  If it builds the number of models specified by this 

value without seeing any improvement, it assumes it has passed the optimal size and 

stops the search. 

 

% rows to use for search:  You can tell DTREG to use only a random subset of the 

rows when performing the search for the optimal number of neurons.  If you have a lot of 

training data, this can speed up the search. 

 

Cross validate folds:  If you want DTREG to evaluate the quality of each model during 

the search by using cross validation, check this box and specify the number of cross 

validation folds to use. 

 

Hold-out sample %:  If you want DTREG to hold out a portion of the data records from 

each trial model and then use the held-out rows to evaluate the model, specify the percent 

of rows to hold out in this field. 

 

Use training data:  If you select this option, then DTREG will evaluate the fit of the 

neural network using the same data that is uses to build the network.  This is not a good 
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choice if you are trying to construct a network to be applied to new data that is not part of 

the training data.  However, there are cases where the training data covers the entire set of 

possible values, and this option is appropriate.  For example, if you are trying to build a 

neural network to model an exclusive OR (XOR) logic circuit, and the training data 

consists of all possible inputs and outputs, then it makes sense to look for the optimal 

network that models the training data. 

 

Number of neurons for hidden layers:  If you don’t enable the automatic search for the 

optimal number of neurons, you can manually specify the number of neurons for each 

hidden layer in these fields.  If you enable the automatic search, the optimal number of 

neurons found by the search will be shown in the Layer 1 field after the search is 

completed. 

 

Over fitting Detection and Prevention 

 

“Over fitting” occurs when the parameters of a model are tuned so tightly that the model 

fits the training data well but has poor accuracy on separate data not used for training.  

Multilayer perceptrons are subject to over fitting as are most other types of models. 

 

DTREG has two methods for dealing with over fitting: (1) by selecting the optimal 

number of neurons as described below, and (2) by evaluating the model as the parameters 

are being tuned and stopping the tuning when over fitting is detected.  This is known as 

“early stopping”. 

 

Use test data to detect over fitting:  If you enable this option, DTREG holds out a 

specified percentage of the training rows and uses them to check for over fitting as model 

tuning is performed.  The tuning process uses the training data to search for optimal 

parameter values.  But as this process is running, the model is evaluated on the hold-out 

test rows, and the error from that test is compared with the error computed using previous 

parameter values.  If the error on the test rows does not decrease after a specified number 

of iterations then DTREG stops the training and uses the parameters which produced the 

lowest error on the test data. 

 

Percent training rows to hold out:  Specify the percentage of the training rows that are 

held out and used to test for over fitting.  Note, since these rows are held out, they do not 

contribute to the parameter optimization process. 

 

Max. steps without change:  If the error computed using the test error does not decrease 

(or if it increases) for this many iterations, then the training process is stopped, and the 

best parameters found are used for the model. 
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Activation Functions 

 

Hidden layer activation function:  You can select whether you want DTREG to use a 

linear or logistic (sigmoid) activation function for the hidden layers.  A logistic function 

is recommended.  Here is a plot of a logistic activation function: 

 

 
 

Output layer activation function:  You can select what type of activation function you 

want DTREG to use for the output layer.  The choices are (1) a logistic (sigmoid) 

activation function, (2) a linear activation function or (3) a Softmax activation function.  

Softmax activation functions can be used only for classification analyses.  Softmax 

produces more accurate probability estimates than the other types of activation functions, 

but it is slower to compute. 

 

Model testing and validation 

 

Select how you want DTREG to evaluate the neural network model once it has been 

created.  You have five choices: (1) don’t do any validation of the model (fast, but not 

recommended), (2) hold out a random percent of the rows during the model build and 

then run them through the model to evaluate its error, (3) use a control variable specified 

on the Validation Property Page to select which rows are held out for model validation, 

(4) perform cross validation with a specified number of folds, (5) perform cross 

validation with one row left out of each model build. 

 

How to handle missing predictor variable values:  If a row contains missing values for 

any of the predictor variables you can specify whether you want DTREG to (1) exclude 

the row from the model building process, (2) replace the missing values with the median 

value of the predictor variable, or (3) use surrogate variables.  See page 358 for 

information about surrogate variables. 
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Compute importance of variables:  If this box is checked, DTREG will compute and 

display the relative importance of each predictor variable.  The calculation is performed 

using sensitivity analysis where the values of each variable are randomized and the effect 

on the quality of the model is measured. 

 

Write neuron weights to a file: If this box is checked and a file name is entered in the 

field below it, DTREG will create a comma separated value file containing the values of 

the weights for each neuron.  Here is an example of a weight file: 

 
Layer,Neuron,Input,Offset,Weight,Function 

1,N[1.1],"Time",5400.0000000,-0.0003555,Logistic 

1,N[1.1],"1.0",0.0,-3.5025324,Logistic 

2,N[2.1],"N[1.1]",0.0,4.6004631,Linear 

2,N[2.1],"1.0",0.0,0.0970731,Linear 

 

Conjugate gradient parameters 

 

DTREG uses the conjugate gradient method to find the optimal network weights.  For 

additional information about the conjugate gradient algorithm, see page 258.  

 

Number of convergence tries – Specify how many sets of random starting values 

DTREG should use when trying to find the optimal set of network parameters.  For each 

try, DTREG will create a set of random starting parameter values within the range 

specified by the Nguyen-Widrow algorithm and then use conjugate gradient to optimize 

them.  Since there is no guarantee that conjugate gradient will converge to the global 

minimum, it is useful to try multiple, different random starting values.  The network 

training time is directly proportional to the number of tries allowed. 

 

Convergence tolerance:  The conjugate gradient algorithm will iterate until the specified 

convergence tolerance is reached or it is stopped for another reason such as reaching the 

maximum allowed number of iterations.  The convergence tolerance value specifies the 

proportion of residual unexplained variance that is left.  That is, the convergence 

tolerance value specifies the remaining R
2
 variance.  For example, if a tolerance factor of 

0.001 is specified, then the algorithm iterates until residual, unexplained R
2
 reaches 0.001 

which means the explained R
2
 reaches 0.999 (99.9%). 

 

Maximum iterations:  Specify the maximum iterations you will allow DTREG to 

perform during the conjugate gradient optimization. 

 

Iterations without improvement:  After each iteration, DTREG measures the residual 

error of the model using the weight values calculated by the iteration.  If the error does 

not improve after this many consecutive iterations, DTREG assumes the weights have 

converged to the optimal values, and it stops the conjugate gradient process. 

 

Minimum improvement delta:  This is the amount of improvement in the residual 

model error required for DTREG to count an iteration as having improved the model.  If 
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the error is improved by less than this amount (or not at all), then no improvement is 

counted. 

 

Min. gradient:  If the largest weight gradient value is less than this parameter, DTREG 

assumes it has reached an optimal (flat) section of the error space and stops the conjugate 

gradient process.  A gradient value measures the change in the model error relative to a 

change in a weight value, so a small gradient indicates that little improvement can be 

made by changing the weight value. 

 

Max. minutes execution time:  If this value is non-zero, DTREG will stop the conjugate 

gradient process after the specified number of minutes of run time and use the resulting 

weights as the final ones for the model. 

 

Training method:  Specify whether you want DTREG to use the (1) scaled conjugate 

gradient or (2) traditional conjugate gradient algorithm.  Usually, scaled conjugate 

gradient is faster than traditional conjugate gradient and produces results as least as good.  

For additional information about the conjugate gradient algorithms, see page 258258. 

 

Write progress report to project log:  If this box is checked, DTREG will write a report 

showing the improvement in the model after each conjugate gradient iteration. 
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RBF Neural Networks Property Page 

A Radial Basis Function (RBF) neural network models data by fitting Gaussian functions 

to the training data.  For more information about RBF networks, see the chapter 

beginning on page 261. 

 

When you select the RBF Network property page, you will see a screen like this: 

 

 
 

 

Type of model to build:  Select the type of model you want DTREG to build.  If you 

select a model type other than RBF Network, all of the other controls on this screen will 

be disabled. 

 

Network Parameters 
 

Maximum neurons:  Specify the maximum number of neurons you allow to be used in 

the model.  The RBF training algorithm stops adding neurons when it detects that over 

fitting may occur, so usually models will have fewer than the maximum allowed number 

of neurons. 
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Absolute tolerance:  If the residual mean squared error (MSE) is reduced to this value, 

the training stops. 

 

Relative tolerance:  If the residual error is reduced by less than this amount by adding 

another neuron, the training stops. 

 

Minimum radius:  The minimum radius (spread) for neurons.  

 

Maximum radius:  The maximum radius (spread) for neurons.  This parameter provides 

guidance for the maximum radius, but it is not an absolute limit.  The training process 

may determine that a larger radius is required.  If the validation error is significantly 

worse than the training error, try increasing the value of the maximum radius.  If the 

training and validation errors are close but larger than you want, try decreasing the 

maximum radius. 

 

Minimum lambda:  This is the minimum value of the Lambda regularization parameter 

that will be used while computing weights as neurons are added to the network.  If over 

fitting is indicated by the validation error being much larger than the training error, try 

increasing the minimum lambda. 

 

Maximum lambda:  This is the maximum value of the Lambda regularization parameter 

that will be used wile computing weights are neurons are added to the network. 

 

Neuron Tuning Parameters 
 

Population size:  Part of the algorithm used by DTREG to build neural networks uses an 

evolutionary method called Repeating Weighted Boosting Search (RWBS).  During the 

first part of this search, a population of candidate neurons is created with random centers 

and spreads (limited by the minimum and maximum specified radius).  The population 

size parameter controls how many candidate neurons are created.  It is advisable to 

increase the population if there are many predictor variables.  A reasonable minimum 

population size is two times the number of predictor variables.  Increasing the population 

size also may help the algorithm avoid local minima and find the optimal global solution. 

 

Max. generations:  This parameter controls the maximum number of generations of 

candidate neurons to be created by the RWBS evolutionary algorithm.  Each generation 

uses a combination of the best neurons from the previous generation and new random 

neurons.  The evolutionary process stops when the maximum number of generations is 

reached or no improvements are gained. 

 

Max. gen. flat:  If the RWBS evolutionary algorithm advances through this many 

consecutive generations without improvement, it stops. 

 

Boosting tolerance:  During each RWBS generation, candidate neurons are “mated” and 

the improvement in estimated leave-one-out error is computed.  If the estimated error is 



71 

 

less than the boosting tolerance parameter, the boosting operation stops and the next 

generation begins. 

 

Model Testing and Validation Parameters 
 

No validation:  The mode is trained but no validation is performed.  This is fast, but it is 

not recommended because there is no way to measure how well the model is likely to 

generalize to new data. 

 

Random percent:  If this option is selected, a random percentage of the rows are held 

out during the validation training, then those held-out rows are run through the model and 

their error is reported as the validation error. 

 

Use variable to select validation rows – If you check this button, DTREG uses the hold-

out control variable specified on the Validation Property Page (see page 45) to control 

which variables are held-out during model training and used to test the model.  Rows 

with the specified category on the control variable are held out and used for testing; rows 

with any other category are used to train the model.  This option is enabled only if a hold-

out variable has been selected on the Validation Property Page. 

 

V-fold cross validation:  If this option is selected, V SVM models will be constructed 

with (V-1)/V proportion of the rows being used in each model.  The remaining rows are 

then used to measure the accuracy of the model.  The final model is built using all data 

rows.  This method has the advantage of using all data rows in the final model, but the 

validation is performed in separately constructed models so there is some possibility that 

the misclassification rate for the final model may be different than the validation models. 

 

Missing Value Parameters 
 

How to handle missing predictor values:  DTREG offers three choices for dealing with 

predictor variables that have missing values.  You can (1) exclude those rows from the 

analysis, (2) replace the missing values with the median or mode values for the variable, 

or (3) use surrogate variables.  See page 357 for additional information about handling 

missing values and the use of surrogate variables. 

 

Prior Probability Parameters 
 

Prior probabilities for target categories:  Select the assumed prior probability 

distribution for the target variable categories.  Traditionally (and in most benchmarks) the 

distribution in the training data set is used.  If you wish to specify a custom set of prior 

probabilities, select the option “Use priors on category weight page”, and set the values 

of the priors on the Category weight property page (see page 128). 
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Miscellaneous Options 
Compute importance of variables:  If this box is checked, DTREG will compute and 

display the relative importance of each predictor variable.  The calculation is performed 

using sensitivity analysis where the values of each variable are randomized and the effect 

on the quality of the model is measured. 

 

Write neuron information to an external file: If this box is checked and a file name is 

entered below it, then DTREG will write information about each RBF neuron to the 

specified file.  This information includes the center, width, and weight of each neuron. 

The generated file is a .csv Comma Separated Value file. 
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GMDH Polynomial Neural Networks Property Page 

A GMDH polynomial neural network models data by fitting a network of polynomial 

functions to the training data.  For more information about GMDH polynomial networks, 

see the chapter beginning on page 269. 

 

When you select the GMDH Network property page, you will see a screen like this: 

 

 
 

Type of model to build:  Select the type of model you want DTREG to build.  If you 

select a model type other than GMDH Polynomial Network, all of the other controls on 

this screen will be disabled. 

 

Network Parameters 
 

Maximum network layers:  Specify the maximum number of layers in the neural 

network that the model may contain.  The model may actually be created with fewer 

layers if the building process discovers that adding layers would harm or not improve the 

accuracy of the model. 

 

Maximum polynomial order:  Specify the highest power of a variable that a polynomial 

may contain.  If the GMDH network is built using quadratic polynomials, then the order 

of the polynomials doubles on each layer. 
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Convergence tolerance:  The training algorithm will add layers to the network until the 

specified convergence tolerance is reached or it is stopped for another reason such as 

reaching the maximum allowed number of layers or it detects that adding a layer will not 

improve the model.  The convergence tolerance value specifies the proportion of residual 

unexplained variance that is left.  That is, the convergence tolerance value specifies the 

remaining R
2
 variance.  For example, if a tolerance factor of 0.001 is specified, then the 

algorithm iterates until residual, unexplained R
2
 reaches 0.001 which means the 

explained R
2
 reaches 0.999 (99.9%). 

 

Number of neurons per layer:  This is the number of neurons that will be held in each 

layer of the network.  You can specify an exact number, or you can select the option to 

use the same number of neurons as exist in the input layer. 

 

Network layer connections:  This parameter controls how neurons in the network are 

connected together.  There are three choices: 

1. Connect only to previous layer – This option tells DTREG that the inputs to one 

layer may come only from outputs generated by the next lower layer. 

2. Previous layer and the input variables – This allows inputs to a layer to be 

connected to outputs from the previous layer and also to the original predictor 

variables. 

3. Any layer and original input variables – This option allows DTREG to connect 

inputs to neurons in one layer to outputs from any lower level layer and also the 

input variables.  Selecting this option usually results in slow training because the 

number of possible inputs increases as layers are added. 

 

Model Testing and Validation Parameters 
 

No validation:  The mode is trained but no validation is performed.  This is fast, but it is 

not recommended because there is no way to measure how well the model is likely to 

generalize to new data. 

 

Random percent:  If this option is selected, a random percentage of the rows are held 

out during the validation training, then those held-out rows are run through the model and 

their error is reported as the validation error. 

 

Use variable to select validation rows – If you check this button, DTREG uses the hold-

out control variable specified on the Validation Property Page (see page 45) to control 

which variables are held-out during model training and used to test the model.  Rows 

with the specified category on the control variable are held out and used for testing; rows 

with any other category are used to train the model.  This option is enabled only if a hold-

out variable has been selected on the Validation Property Page. 

 

V-fold cross validation:  If this option is selected, V SVM models will be constructed 

with (V-1)/V proportion of the rows being used in each model.  The remaining rows are 

then used to measure the accuracy of the model.  The final model is built using all data 
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rows.  This method has the advantage of using all data rows in the final model, but the 

validation is performed in separately constructed models so there is some possibility that 

the misclassification rate for the final model may be different than the validation models. 

 

Missing Value Parameters 
How to handle missing predictor values:  DTREG offers three choices for dealing with 

predictor variables that have missing values.  You can (1) exclude those rows from the 

analysis, (2) replace the missing values with the median or mode values for the variable, 

or (3) use surrogate variables.  See page 357 for additional information about handling 

missing values and the use of surrogate variables. 

 

Over fitting Protection Control 
Holdout sample percent:  Specify the percent of the training rows that are to be used as 

the control data to detect model over fitting.  See the description of the GMDH training 

algorithm on page 270 for information about how the control data is used. 

 

Miscellaneous Options 
Standardize Predictor Variable Values:  If this box is checked, DTREG standardizes 

the values of continuous predictor variables by subtracting the mean and dividing by the 

standard deviation.  The target variable values are not standardized. 

 

Compute importance of variables:  If this box is checked, DTREG will compute and 

display the relative importance of each predictor variable.  The calculation is performed 

using sensitivity analysis where the values of each variable are randomized and the effect 

on the quality of the model is measured. 

 

Functions to Use in the GMDH Network 
Check which functions you wish to enable DTREG to use in the network.  Traditional 

GMDH polynomial networks use only quadratic polynomials of two variables. 
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Cascade Correlation Neural Networks Property Page 

 A Cascade Correlation neural network is a type of self-organizing neural network.  That 

is, it grows and adds neurons to the architecture as necessary to accurately model the 

data.  For additional information about Cascade Correlation networks, please see the 

chapter beginning on page 273. 

 

When you select the Cascade Correlation property page, you will see a screen like this: 

 

 
 

Type of model to build:  Select the type of model you want DTREG to build.  If you 

select a model type other than Cascade Correlation, all of the other controls on this screen 

will be disabled. 

 

Hidden layer kernel functions:  Select the type of kernel functions that you want the 

model to be able to use in the hidden layer.  The choices are (1) Sigmoid only, (2) 

Gaussian only, and (3) both Sigmoid and Gaussian functions.  Generally it is best to 

allow the network to consider both sigmoid and Gaussian kernel functions and use 

whichever is best. 

 

Minimum and Maximum Neurons:  Specify the minimum and maximum number of 

neurons that may be used for the hidden layer.  It is recommended that the minimum 
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number of neurons be set to 0 (zero).  There are a surprising number of problems that can 

be solved best with just the output layer and no hidden neurons. 

 

Candidate neurons:  Specify how many candidate neurons are to be considered for each 

addition to the hidden layer.  During the training process, DTREG generates a set of 

candidate neurons for each step.  These candidate neurons have random weight values 

within the range specified by the Weight Range parameter.  The candidate neurons will 

have either sigmoid, Gaussian or a mixture of kernel functions.  Increasing the number of 

candidate neurons may reduce the number of neurons used in the hidden layer, but it will 

increase the training time. 

 

Candidate epochs:  This is the maximum number of iterative cycles that will be used to 

compute the weights for candidate neurons being considered for inclusion in the model. 

 

Output epochs:  This is the maximum number of iterative cycles that will be used to 

compute the weights for the output neurons. 

 

Weight range:  When candidate neurons are created, they are initially assigned weights 

whose values range from the negative of this value up to the positive of this value.  

Usually training is insensitive to the starting random values, so the range is no important. 

 

Maximum steps without improvement:  These two parameters specify how many 

neurons can be added without any reduction in the error.  Each time a candidate neuron is 

added to the hidden layer, the model is re-trained and the error is computed.  If the error 

is not reduced, a count is incremented.  When validation is performed to find the optimal 

size of the network, a separate no-improvement count is kept for it.  If the no-

improvement counts reach the specified values, then training is terminated.  Training also 

is terminated if the error on the training rows reaches zero. 

 

Model testing and validation:  Select how you want DTREG to evaluate the neural 

network model once it has been created.  You have four choices: (1) don’t do any 

validation of the model (fast, but not recommended), (2) hold out a random percent of the 

rows during the model build and then run them through the model to evaluate its error, 

(3) perform cross validation with a specified number of folds, (4) perform cross 

validation with one row left out of each model build. 

 

How to handle missing predictor variable values:  DTREG offers three choices for 

dealing with predictor variables that have missing values.  You can (1) exclude those 

rows from the analysis, (2) replace the missing values with the median or mode values for 

the variable, or (3) use surrogate variables.  See page 357 for additional information 

about handling missing values and the use of surrogate variables. 
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Over fitting Protection Control 
 

Because cascade correlation networks add hidden-layer neurons during the training 

process, there is a serious risk of the model becoming so complex that it fits the training 

data very well but does not generalize well to new, unseen data; this is called over fitting.  

To prevent over fitting, DTREG tests the accuracy of the model using validation data 

after each neuron is added.  It stops the building when over fitting is detected because the 

validation error reaches a minimum and starts to increase.  You can view the Model Size 

chart (see page 209) to view how the error changes as neurons are added.  The Model 

Size section of the analysis report also provides this information. 

 

Validate model as it grows:  Check this box to enable over fitting prevention.  If you 

don’t check this box, then the model will grow without restraint as it attempts to perfectly 

fit the training data. 

 

Hold out sample percent or Cross-validation folds:  Select whether you want the over 

fitting detection performed by using a hold-out set of rows or by using cross validation.  

Cross validation is recommended, but it slower than using a hold-out sample. 

 

Use variable to select validation rows – If you check this button, DTREG uses the hold-

out control variable specified on the Validation Property Page (see page 45) to control 

which variables are held-out during model training and used to test the model.  Rows 

with the specified category on the control variable are held out and used for testing; rows 

with any other category are used to train the model.  This option is enabled only if a hold-

out variable has been selected on the Validation Property Page. 

 

Prune model to optimal size:  If this box is checked, DTREG will prune the size of the 

model back to the number of neurons that generated the lowest error on the validation 

rows (i.e., the hold-out rows or the cross-validation error). 

 

Compute importance of variables:  If this box is checked, DTREG will compute and 

display the relative importance of each predictor variable.  The calculation is performed 

using sensitivity analysis where the values of each variable are randomized and the effect 

on the quality of the model is measured. 
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Advanced Cascade Correlation Parameters 
 

If you click the “Advanced Parameters” button, the following screen will be displayed: 

 

 
 

Usually it is not necessary to change the parameters on this screen.  The default values 

work well for most problems. 

 

There are two sets of parameters, “Candidate” and “Output”.  The first set is used 

during the training of the weights of candidate neurons for the hidden layer.  The second 

set is used when training the weights for the output layer neurons. 

 

Weight decay:  This is a regularization parameter that encourages weight values to 

remain close to zero.  The larger the weight decay, the more tightly the parameters are 

forced toward zero.  If you encounter a situation where weights seem to be going wild 

and the model error is getting worse rather than better, try using a weight decay value in 

the range of 0.001. 

 

Epsilon and mu:  These two parameters are used by the quickprop training algorithm.  

Here are suggestions for these parameters posted by Scott E. Fahlman, the co-inventor of 

Cascade Correlation: 

 

Epsilon:  “This is the tricky one.  It can vary over many orders of magnitude, depending 

on the problem (i.e. from 1000 to 0.01 or so).  I've tried a number of kinds of 

normalization to keep this in a single range for all problems, but haven't found the magic 

bullet yet.  Basically, you want to see steady improvement in the error measure or score. 

 You'll occasionally see an epoch or two in which the score retreats from the best 

obtained so far, but if the lost ground isn't made up in the next few epochs, you're 

probably in the chaotic region and need to reduce the epsilon that is relevant to the 

current learning phase.  If you see steady but weak convergence, especially near the end 

of the training phase, you want to turn it up.” 
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Mu:  “Set them at 2.0 and leave them there.  If the training seems determined to oscillate, 

turn it down to 1.75 or 1.5.  I think I've only gone higher than 2.0 for a few odd problems 

like XOR.” 

 

 

Probabilistic and General Regression Neural Networks Property Page 

 

Probabilistic and General Regression Neural Networks are another type of neural 

network.  For additional information about these networks, please see the chapter starting 

on page 279. 

 

When you select the PNN/GRNN property page, you will see a screen like this: 
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The same parameter screen is used for probabilistic and general regression neural 

networks.  If a classification analysis is being performed (with a categorical target 

variable), then a probabilistic neural network (PNN) is created.  If a regression analysis is 

being performed (with a continuous target variable), then a general regression neural 

network (GRNN) is created. 

 

Type of model to build:  Select the type of model you want DTREG to build.  If you 

select a model type other than PNN/GRNN, all of the other controls on this screen will be 

disabled. 

 

Sigma values for model:  The sigma values control the radius of influence of each point 

in the model.  DTREG provides three types of sigma values: 

1. Single sigma for whole model.  This is the simplest type of model; it uses a 

single sigma value for all points.  This type of model is faster to build than the 

other types but usually is less accurate. 

2. Sigma for each variable.  This calculates a separate sigma value for each 

predictor variable in the model.  This allows the influence of each variable on 

neighboring points to differ.  This is the default and recommended choice because 

it is a good compromise between having a single sigma and allowing a separate 

sigma for each target category. 

3. Sigma for each variable and class.  This creates a separate sigma value for each 

predictor variable and for each target category.  Usually there is little (if any) 

improvement over using a sigma for each variable, and in some cases the 

accuracy of the model suffers.  This option is only available if the target variable 

is categorical 

 

Report sigma values:  If this box is checked, DTREG will show the computed sigma 

values in the project report. 

 

Starting sigma search control:  These parameters control the range of sigma values 

used during the initial search.  Once the conjugate gradient method begins, the sigma 

values are allowed to move outside the range. 

 

Constrain minimum sigma values: If you check this box then the sigma values will be 

constrained so that they cannot go smaller than the “Min. Sigma” parameter.  Usually it is 

better to leave this box unchecked so that the optimization is free to select the best sigma 

values even if they are small.  However, very small sigma values can sometimes result in 

a model that is “brittle”: small changes in input predictor values cause large swings in the 

predicted target value. 

 

Model testing and validation:  Select how you want DTREG to evaluate the neural 

network model once it has been created.  You have five choices: (1) don’t do any 

validation of the model (fast, but not recommended), (2) hold out a random percent of the 

rows during the model build and then run them through the model to evaluate its error, 

(4) use a hold-out control variable specified on the Validation Property Page to select 
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which rows will be held out for testing, (4) perform cross validation with a specified 

number of folds, (5) perform cross validation with one row left out of each model build. 

 

How to handle missing predictor variable values:  DTREG offers three choices for 

dealing with predictor variables that have missing values.  You can (1) exclude those 

rows from the analysis, (2) replace the missing values with the median or mode values for 

the variable, or (3) use surrogate variables.  See page 357 for additional information 

about handling missing values and the use of surrogate variables. 

Type of kernel function:  The kernel function controls how the influence of a point 

declines as the radius from the point increases.  DTREG supports two types of kernel 

functions: 

1. Gaussian:  A Gaussian function causes the influence of a point to decline 

according to the value (height) of a Gaussian distribution centered on the point.  

Gaussian functions are almost always the best kernel.  The equation of the 

Gaussian function is: 
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2. Reciprocal:  The influence of the point decreases as a linear function of the 

distance from the point. 

 

Prior probabilities for target categories:  Select the assumed prior probability 

distribution for the target variable categories.  Traditionally (and in most benchmarks) the 

distribution in the training data set is used.  If you wish to specify a custom set of prior 

probabilities, select the option “Use priors on category weight page”, and set the values 

of the priors on the Category weight property page (see page 128). 

 

Compute importance of variables:  If this box is checked, DTREG will compute and 

display the relative importance of each predictor variable.  The calculation is performed 

using sensitivity analysis where the values of each variable are randomized and the effect 

on the quality of the model is measured. 

 

Remove unnecessary neurons:  If this box is checked, DTREG will optimize the 

PNN/GRNN model by removing neurons that are unnecessary.  If this box is not 

checked, then all of the training rows will be retained in the model. 

 

Removing unnecessary neurons has three benefits: 

1. The size of the stored model is reduced. 

2. The time required to apply the model during scoring is reduced. 

3. Removing neurons often improves the accuracy of the model. 

 

The process of removing unnecessary neurons is a slow, iterative process because the 

model must be evaluated with each remaining neuron to find the best one to remove.  For 

models with more than 1000 training rows, the neuron removal process may become 

impractically slow.  If you have a multi-CPU computer, you can speed up the process by 
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allowing DTREG to use multiple CPU’s for the process.  See page 16 for information 

about how to control CPU usage. 

 

When unnecessary neurons are removed, the “Model Size” section of the analysis report 

shows how the error changes with different numbers of neurons.  You can see a graphical 

chart of this by clicking Chart/Model size (see page 209). 

 

There are three criteria that can be selected to guide the removal of neurons: 

 

 Minimize error – If this option is selected, then DTREG removes neurons as 

long as the leave-one-out error remains constant or decreases.  It stops when it 

finds a neuron whose removal would cause the error to increase above the 

minimum found. 

 Minimize neurons – If this option is selected, DTREG removes neurons until the 

leave-one-out error would exceed the error for the model with all neurons. 

 # of neurons – If this option is selected, DTREG reduces the least significant 

neurons until only the specified number of neurons remain. 

 

Retrain after removing neurons:  If this box is checked, DTREG will retrain the 

network (i.e., compute new Sigma values) using only the neurons left after the 

unnecessary neurons are removed.  Sometimes this improves the quality of the model.  If 

retraining does not improve the quality, the original Sigma values are used; so there is no 

harm in trying to retrain other than the retraining time.  The Model Size report shows 

whether retraining improved the model. 

 

Advanced options:  Click this button to open the screen where you can set parameters 

for the conjugate gradient optimization process: 
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Maximum total iterations:  Specify the maximum iterations you will allow DTREG to 

perform during the conjugate gradient optimization. 

 

Iterations without improvement:  After each iteration, DTREG measures the residual 

error of the model using the weight values calculated by the iteration.  If the error does 

not improve after this many consecutive iterations, DTREG assumes the weights have 

converged to the optimal values, and it stops the conjugate gradient process. 

 

Minimum improvement delta:  This is the amount of improvement in the residual 

model error required for DTREG to count an iteration as having improved the model.  If 

the error is improved by less than this amount (or not at all), then no improvement is 

counted. 

 

Absolute convergence tolerance:  If the residual error of the model is less than this 

parameter, DTREG assumes it has converged and stops the conjugate process. 

 

Relative convergence tolerance:  If the error declines by less than this amount during an 

iteration, DTREG will assume it has reached the optimal point and stop the process. 

 

Max. minutes execution time:  If this value is non-zero, DTREG will stop the conjugate 

gradient process after the specified number of minutes of run time and use the resulting 

weights as the final ones for the model. 

 

Write progress report to project log:  If this box is checked, DTREG will write a report 

showing the improvement in the model after each conjugate gradient iteration. 
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Support Vector Machine (SVM) Property Page 

 

A Support Vector Machine (SVM) is a relatively new modeling method that has shown 

great promise at generating accurate models for a variety of problems.  SVM seems to be 

particularly good at pattern recognition, but it also applicable to all other types of 

modeling applications.  For more technical information about support vector machine 

models, please see the chapter starting on page 289. 

 

When you select the SVM property page, you will see a screen like this: 
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Type of model to build:  Select the type of model you want DTREG to build.  If you 

select a model type other than support vector machine, all of the other controls on this 

screen will be disabled. 

 

Type of SVM model – DTREG offers several types of SVM models.  For classification 

models with a categorical target variable, you can select either C-SVC or ν-SVC models.  

For regression models with a continuous target variable, you can select either ε-SVR or 

ν-SVR models.  For most applications, the results generated by the different models are 

quite similar.  There is no way to predict in advance which method will perform better for 

a particular problem, so it is best to try each one. 

 

Kernel function – SVM models are built around a kernel function that transforms the 

input data into an n-dimensional space where a hyperplane can be constructed to partition 

the data.  DTREG provides four kernel functions, Linear, Polynomial, Radial Basis 

Function (RBF) and Sigmoid (S-shaped).  There is no way in advance to know which 

kernel function will be best for an application, but the RBF function has been found to do 

best job in the majority of cases. 

 

Linear:  u’*v  
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Polynomial:  (gamma*u’*v + coef0)^degree  

See the following figure from Kecman, 2004. 
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Radial basis function:  exp(-gamma*|u-v|^2)  

A Radial Basis Function (RBF) is the default and recommended kernel function.  The 

RBF kernel non-linearly maps samples into a higher dimensional space, so it can handle 

nonlinear relationships between target categories and predictor attributes; a linear basis 

function cannot do this.  Furthermore, the linear kernel is a special case of the RBF.  A 

sigmoid kernel behaves the same as a RBF kernel for certain parameters.  The RBF 

function has fewer parameters to tune than a polynomial kernel, and the RBF kernel has 

less numerical difficulties.  The following chart fromYang, 2003 illustrates RBF 

mapping. 

 
 

   
 

An SVM model using a radial basis function kernel has the architecture of an RBF 

network.  However, the method for determining the number of nodes and their centers is 

different from standard RBF networks with the centers of the RBF notes on the support 

vectors (see the figure below from C. Campbell).  
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Sigmoid:  tanh(gamma*u’*v + coef0)  

 

 
 

Stopping criteria (Epsilon) – This is a tolerance factor that controls when DTREG stops 

the iterative optimization process.  The default value usually works well; you can reduce 

the tolerance to generate a more accurate model or increase the value to reduce the 

computation time.  This parameter is called the Epsilon value in some other 

implementations of SVM. 

 

Cache size – DTREG uses a cache to store truncated rows of the reordered kernel matrix.  

This cache avoids recomputing components of the kernel matrix and can speed up the 
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computation by a significant amount in some cases.  The cache size value is specified in 

units of mega-bytes (MB).  The default value is 256 (MB).  Research has shown that on 

machines with lots of memory increasing the cache size up to 512 (MB) or even 1000 (1 

GB) can improve performance. 

 

Use shrinking heuristics – A SVM model is formed by selecting a hyperplane that 

partitions the data with maximum margin between the feature vectors that define points 

near overlap.  Shrinking improves performance by allowing DTREG to ignore points that 

are far from overlapping and which are unlikely to influence the choice of the optimal 

separating hyperplane.  Essentially, shrinking eliminates outlying vectors from 

consideration.  Enabling shrinking heuristics can significantly speed up performance 

when the training data set is large; it is recommended that shrinking be enabled. 

 

Calculate importance of variables – If this option is selected, DTREG will analyze the 

generated SVM model and generate a report on the relative significance of predictor 

variables. 

 

Compute probability estimates – If this option is selected, DTREG generates an SVM 

model that is capable of estimating the probability for each target category rather than 

simply predicting the most likely category.  This option is especially useful for problems 

with only two target categories because you can use the probability threshold features in 

DTREG to adjust the proportion of cases assigned each category.  Note: when this option 

is selected, a different type of model is constructed, and the misclassification rate for the 

model may be different than for a model without probability calculations. 

 

Model testing and validation – DTREG offers two methods for validating an SVM 

model: 

 

Random percent holdback – If this option is selected, DTREG will select a random set 

of data rows and hold them out of the model building process.  These rows will then be 

run through the generated model and the misclassification error rate will be reported. 

 

Use variable to select validation rows – If you check this button, DTREG uses the hold-

out control variable specified on the Validation Property Page (see page 45) to control 

which variables are held-out during model training and used to test the model.  Rows 

with the specified category on the control variable are held out and used for testing; rows 

with any other category are used to train the model.  This option is enabled only if a hold-

out variable has been selected on the Validation Property Page. 

 

V-fold cross validation – If this option is selected, V SVM models will be constructed 

with (V-1)/V proportion of the rows being used in each model.  The remaining rows are 

then used to measure the accuracy of the model.  The final model is built using all data 

rows.  This method has the advantage of using all data rows in the final model, but the 

validation is performed in separately constructed models so there is some possibility that 

the misclassification rate for the final model may be different than the validation models. 
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How to handle missing predictor values – DTREG offers three choices for dealing with 

predictor variables that have missing values.  You can (1) exclude those rows from the 

analysis, (2) replace the missing values with the median or mode values for the variable, 

or (3) use surrogate variables.  See page 357 for additional information about handling 

missing values and the use of surrogate variables. 

 

Parameter optimization search control – The accuracy of an SVM model is largely 

dependent on the selection of the model parameters such as C, Gamma, P, etc.  DTREG 

provides two methods for finding optimal parameter values, a grid search and a pattern 

search.  A grid search tries values of each parameter across the specified search range 

using geometric steps.  A pattern search (also known as a “compass search” or a “line 

search”) starts at the center of the search range and makes trial steps in each direction for 

each parameter.  If the fit of the model improves, the search center moves to the new 

point and the process is repeated.  If no improvement is found, the step size is reduced 

and the search is tried again.  The pattern search stops when the search step size is 

reduced to a specified tolerance. 

 

Grid searches are computationally expensive because the model must be evaluated at 

many points within the grid for each parameter.  For example, if a grid search is used 

with 10 search intervals and an RBF kernel function is used with two parameters (C and 

Gamma), then the model must be evaluated at 10*10 = 100 grid points.  An Epsilon-SVR 

analysis has three parameters (C, Gamma and P) so a grid search with 10 intervals would 

require 10*10*10 = 1000 model evaluations.  If cross-validation is used for each model 

evaluation, the number of actual SVM calculations would be further multiplied by the 

number of cross-validation folds (typically 4 to 10).  For large models, this approach may 

be computationally infeasible. 

 

A pattern search generally requires far fewer evaluations of the model than a grid search.  

Beginning at the geometric center of the search range, a pattern search makes trial steps 

with positive and negative step values for each parameter.  If a step is found that 

improves the model, the center of the search is moved to that point.  If no step improves 

the model, the step size is reduced and the process is repeated.  The search terminates 

when the step size is reduced to a specified tolerance.  The weakness of a pattern search 

is that it may find a local rather than global optimal point for the parameters.  If the value 

of the model within the parameter space has ridges rather than being purely convex, the 

pattern search may get trapped in a local valley and miss the globally optimal point. 

 

DTREG allows you to use both a grid search and a pattern search.  When you check both 

boxes the grid search is performed first.  Once the grid search finishes, a pattern search is 

performed over a narrow search range surrounding the best point found by the grid 

search.  Hopefully, the grid search will find a region near the global optimum point and 

the pattern search will then find the global optimum by starting in the right region. 

 

Do grid search for optimal parameters – If this option is selected, DTREG will 

perform a grid search to try to determine the optimal parameter values.  For each relevant 

parameter, you can specify the lower and upper range to be searched.  DTREG will try 
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values in the range using geometric steps and use cross validation to measure how well 

the model fits the data.  SVM models are among the most accurate, but their performance 

is highly dependent on the parameters you specify, so a grid search is recommended.  

Generally, the search gets slower as the value of the C parameter gets larger, so it is best 

to restrict it to a reasonable range.  For classification problems, the optimal value of C 

typically is in the range of 1 to 100.  For regression problems, the optimal value of C may 

be much larger – a million or more. 

 

The grid search Intervals value specifies how many values will be tried between the low 

and high values (including those values).  The value specified in the field to the right of 

intervals is the refinement iteration value.  Once DTREG has identified the best set of 

parameter values using the initial grid search, it will then perform smaller grid searches in 

the vicinity of the optimal point to further refine the optimal values.  A refinement value 

of 1 (the default) does only the primary grid search. A value of 2 would do the grid 

search and then one finer-level search.  You can specify large refinement values to 

increase the number of searches.  Caution: the time required to do a grid search is 

proportional to the number of parameters times the number of intervals times the number 

of refinement steps; this can add up to a lot of time. 

 

Do pattern search for optimal parameters – If this option is selected, DTREG will 

perform a pattern search to try to determine the optimal parameter values. 

 

The pattern search Intervals value controls the starting step size.  The first step will be 

set so that the number of steps required to cross the entire search range equals the 

specified number of intervals.  The pattern search Tolerance value controls when the 

pattern search terminates.  The search stops when the value of all parameters divided by 

the step size is less than the tolerance value. 

 

Percent rows to use for search specifies what percent of the training rows are to be used 

for the search operation.  Since a search operation is a very computationally expensive 

procedure, you can select a subset of the full training rows to use for the search. 

 

Cross validate; folds Specifies if V-fold cross-validation is to be used by the search to 

calculate the optimal parameter values.  If this option is selected, DTREG will perform 

cross validation when it is performing the search to determine the optimal parameters.  If 

this option is not selected, DTREG searches for the optimal parameters using the error 

computed for the training data.  For the most accurate parameter calculations it is best to 

use cross validation, but this will increase the time required to do the search. 

 

Search optimization criterion – When performing a search for optimal parameters, you 

can select which criterion is to be used to determine the optimum function value: 

 

 Minimize total error – The total misclassification error (or mean square error for 

regression) is minimized.  This is the only available option for regression 

analyses. 
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 Minimize weighted error – The misclassification errors are weighted by 

multiplying errors by a factor to compensate for differences in the frequencies of 

the target categories.  Misclassifications of categories with low frequencies 

receive more weight to help balance them compared to categories with higher 

frequencies. 

 Maximize AUC – The parameter search finds the point that maximizes the area 

under the ROC curve (AUC).  This option is only available for classification 

analyses where the target variable has two categories.  Maximizing the AUC 

tends to balance the misclassifications between the classes and improves the 

discrimination.  Note, AUC is also known as the “C-statistic”. 

 Maximize sensitivity & specificity – The parameters are optimized to produce 

the maximum geometric mean of sensitivity and specificity.  This option is 

available only for classification analyses where the target variable has two 

categories. 

 

Model parameters – There are a number of parameters such as C, Nu, Gamma that 

apply to the SVM model and the selected kernel function.  Selecting the optimal values 

can significantly impact the accuracy of the model.  DTREG will enable the appropriate 

parameter value boxes depending on the type of SVM model and kernel function that is 

selected.  If a grid or pattern search is enabled, then additional boxes will be enabled 

where you can specify the lower and upper range of the search interval. 

 

Write Support Vectors to a File – Click this button to open a dialog box where you can 

specify a file where the support vectors for the generated model should be written.  This 

button is enabled only if a model has been built and support vectors have been found. 
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Gene Expression Programming (GEP) Property Pages 

 

Gene Expression Programming is an algorithm for performing Symbolic Regression to 

try to a mathematical function that fits a set of data.  Unlike traditional linear and non-

linear regression, symbolic regression does not require the form of the function to be 

specified in advance.  Using a genetic, evolution algorithm, symbolic regression finds a 

function to fit the data.  For more detailed information about gene expression 

programming models, please see the chapter starting on page305. 

 

Because of the number of parameters associated with gene expression programming, 

there are five property pages for GEP: General, Functions, Evolution, Linking and 

Constants. 
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GEP General Property Page 

 

When you select the GEP General property page, you will see a screen like this: 

 

 
 

Model Building Parameters 

 

 

Type of model to build:  Select the type of model you want DTREG to build.  If you 

select a model type other than gene expression programming, all of the other controls on 

this screen will be disabled. 

 

Population size:  This is the number of chromosomes in the population being evolved.  

Usually a population size in the range of 30 to 80 chromosomes works well. 
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Maximum tries for initial population:  The first step in the GEP model building 

process is to create an initial population with a random set of functions and terminals.  If 

the initial population contains no viable members, then a new population is tried with a 

different set of functions and terminals.  This process is repeated until a population is 

found that has at least one viable member or the number of attempts specified by this 

parameter is reached. 

 

Genes per chromosome:  A chromosome is composed of one or more genes joined by a 

linking function.  Usually one to ten genes per chromosome works well.  More complex 

functions require more genes. 

 

Gene head length:  This specifies the number of symbols (variables, constants and 

functions) in the head section of each gene.  Typically a head length in the range of two 

to sixteen works well.  More complex functions require longer heads to allow for more 

variables and functions. 

 

Maximum generations:  This is the maximum number of generations that will be 

produced during the evolution process.  There is no way to know how many generations 

will be required other than experimentation. 

 

Generations without improvement:  During the evolution process, DTREG notes when 

the model is improved because a new chromosome is found that is better than any 

previous one.  If the number of generations specified by this parameter elapse without 

finding any improvement, the evolution process stops. 

 

Stop if fitness reaches:  If the fitness score of the best chromosome equals or exceeds 

the value of this parameter, the evolution process is stopped.  The maximum possible 

fitness is 1.0. 

 

Maximum minutes for training:  Specify the maximum number of minutes of execution 

time you will allow DTREG spend on the training process.  If the time limit is reached, 

the evolution process stops.  If this field is left blank then no time limit is imposed. 
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Fitness Function Parameters 

 

Fitness function:  Select which function you want to be used to compute the fitness 

score.  All fitness functions compute fitness scores that range from 0.0 to 1.0.  A fitness 

of 0.0 means the model fits very poorly – it is worthless or not viable.  A fitness score of 

1.0 means the model fits the data perfectly. 

 

Mean squared error (MSE) [classification and regression] – This is the mean value of 

the squared difference between the actual target value and the predicted target value. The 

formula is: 
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Where Pi is the predicted value for row i and Ti is the actual target value; N is the number 

of rows in the training data set. 

 

Explained variance R^2 [regression] – This is the proportion of the initial variance in 

the training data that is explained by the GEP model. 

 
                        

               
 

 

Where initialvariance is the variance for the training data set using the mean value of the 

target variable as the predicted value for all rows: 
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Variance is computed as shown in the previous section. 

 

Root relative squared error [regression] – This is based on the square root of the 

residual variance of the fitted model divided by the initial variance.  This is the 

recommended fitness function for regression problems. 
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Number of hits and Number of hits with precision [classification and regression] – 

This is the proportion of training rows whose predicted values fall within a specified 
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tolerance of the actual target value.  For regression problems, Number of hits and 

Number of hits with precision are calculated the same way: 

 

        (
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Where precision is the “Precision (hit tolerance)” parameter on the property page. 

 

For classification problems with a categorical target variable, the Number of hits fitness 

function is the proportion of the cases that have the correct predicted target value after 

rounding from the predicted numeric value to the closest category.  Number of hits with 

precision is computed the same for classification as for regression. 

 

Number of hits with penalty [classification] – This fitness function measures the 

number of correct classifications and penalizes the situation where there are no correct 

classifications for some target categories.  Experiments have shown this fitness function 

to be highly effective; it is recommended for classification problems. 

 

This fitness function it is based on the true positive (TP), true negative (TN), false 

positive (FP) and false negative (FN) counts.  If a predicted value is 1 (true) and the 

actual class is also 1, then a TP prediction is counted. Similarly true negative (TN) 

predictions occur when both classes are 0.  False positive and false negative predictions 

occur as shown in the following table: 

 

 

Actual class Predicted class 

 True False 

True TP FN 

False FP TN 

 

 

With TP, TN, FP and FN being the sum of the counts for the training data, the fitness is 

calculated as: 

 

           (            )           
     

 
 

 

Where N is the total number of training cases and is equal to TP+TN+FP+FN.  So if 

there are some correctly classified positive and negative cases the fitness is the proportion 

of correctly classified cases, but if there are no correct classifications for either the 

positive or negative cases, then the fitness is zero (i.e., the expression is unviable). 

 

Sensitivity and specificity [classification] – In a medical context, an ideal diagnostic test 

would identify all patients with a suspected disease, and it would not falsely identify 

anyone who did not have the disease.  Thus there are two types of errors: (1) failing to 
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identify someone with the disease and (2) incorrectly identifying someone who does not 

have the disease.  The sensitivity of a test is the proportion of the people with the disease 

who are identified by the test.  The specificity of the test is the proportion of the people 

who do not have the disease who are correctly identified as being disease-free by the test.  

Ideally, sensitivity and specificity would both be 1.0. 

 

The Sensitivity and Specificity fitness function computes the fitness by multiplying the 

sensitivity and specificity values.  This fitness function is a good choice for data with 

highly unbalanced distributions of target categories.  Using the definitions of TP, TN, FP 

and FN given above, this fitness function is calculated as: 

 

            
  

     
 

 

            
  

     
 

 

                                
 

Absolute selection range [classification and regression] – This is computed by: 
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Where precision is the “Precision (hit tolerance)” parameter on the property page, and R 

is the “Selection range” parameter. 

 

Relative selection range [classification and regression] – This is computed by: 
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Precision and Selection Range:  These two parameters are used for the fitness functions 

Number of Hits with Precision and Absolute Selection Range. 
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Expression Simplification Parameters 

 

Do algebraic simplification:  If this box is checked, DTREG will perform automatic 

simplification of the final expression.  See page 319 for additional information about 

algebraic simplification. 

 

Parsimony pressure:  This parameter gives a preference to simpler expressions over 

more complex expressions during the evolutionary process.  While simpler expressions 

are desirable, using parsimony pressure sometimes hinders the evolution process so that 

the best possible expression is not found.  If you use this feature, it is best to also create a 

model with parsimony pressure turned off and then compare the overall quality of the fit. 

When parsimony pressure is used, the fitness value computed for a function is modified 

so that the complexity of the expression affects the fitness as follows: 

 

              (                 )    
 

                  
 

                 
     (               )

         
 

 

Where fitness’ is the modified fitness score, fitness is the original fitness score, PP is the 

parsimony pressure value, NumGenes is the number of genes in the chromosome, 

HeadLen and TailLen are the length of the head and tail sections of genes, and complexity 

is a count of the number of symbols in the function.  See page 318 for additional 

information about parsimony pressure. 

 

Try to simplify after training:  If you check this box, DTREG will perform additional 

evolution steps after the primary training in an attempt to find a simpler function that fits 

the data as well or better than the function found during the primary training.  During the 

simplification process, a simpler function will be selected over a more complex one that 

has the same fitness.  However, quality of fit still takes priority, so if DTREG discovers a 

function that provides higher fitness than the function used during the primary training it 

will adopt that function even if it is more complex than the original function.  It is 

recommended that this option be used, because it never results in a loss of accuracy, and 

it may discover a more accurate and simpler function. 

 

Simplification generations:  This is the maximum number of generations that will be 

evolved during the simplification process. 

 

Generations without improvement:  If the specified number of generations are evolved 

with no improvement in the fitness or simplicity of the function, the simplification 

process will stop. 
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Maximum minutes simplifying:  Specify the maximum number of minutes of execution 

time that you will allow DTREG to spend on the simplification process.  If this field is 

left blank then no time limit is imposed. 

 

Model Testing and Validation Parameters 

 

No validation:  The mode is trained but no validation is performed.  This is fast, but it is 

not recommended because there is no way to measure how well the model is likely to 

generalize to new data. 

 

Random percent:  If this option is selected, a random percentage of the rows are held 

out during the validation training, then those held-out rows are run through the model and 

their error is reported as the validation error. 

 

Use variable to select validation rows – If you check this button, DTREG uses the hold-

out control variable specified on the Validation Property Page (see page 45) to control 

which variables are held-out during model training and used to test the model.  Rows 

with the specified category on the control variable are held out and used for testing; rows 

with any other category are used to train the model.  This option is enabled only if a hold-

out variable has been selected on the Validation Property Page. 

 

V-fold cross validation:  If this option is selected, V GEP models will be constructed 

with (V-1)/V proportion of the rows being used in each model.  The remaining rows are 

then used to measure the accuracy of the model.  The final model is built using all data 

rows.  This method has the advantage of using all data rows in the final model, but the 

validation is performed in separately constructed models so there is some possibility that 

the misclassification rate for the final model may be different than the validation models. 

 

Leave-one-out validation:  This option is like the V-fold cross validation option except 

that N models are built where N is the number of rows in the training data set.  (N-1) rows 

are used to build each model and the N
th

 remaining row is used to test the model.  

Because so many models are built, this option is appropriate only for small training sets. 

 

Missing Value Parameters 

 

How to handle missing predictor values:  DTREG offers three choices for dealing with 

predictor variables that have missing values.  You can (1) exclude those rows from the 

analysis, (2) replace the missing values with the median or mode values for the variable, 

or (3) use surrogate variables.  See page 357 for additional information about handling 

missing values and the use of surrogate variables. 
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Miscellaneous Options 

 

Compute importance of variables:  If this box is checked, DTREG will compute and 

display the relative importance of each predictor variable.  The calculation is performed 

using sensitivity analysis where the values of each variable are randomized and the effect 

on the quality of the model is measured. 

 

Expression Simplifier 

 

If you click the “Expression simplifier” button, DTREG will display a screen where you 

can experiment with its automatic algebraic simplification. 

 

 
 

Enter an algebraic expression in the upper window, and click the Simplify button to see 

how DTREG can simplify the expression.  In this screen you can use any variable name 

that begins with a letter; it is not necessary for the variable to be in the data set for the 

model.  Note that if you check the option box “Do algebraic simplification” DTREG will 

perform automatic simplification of the functions it generates, so it is not necessary to 

manually simplify them. 
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GEP Functions Property Page 

 

 
 

The Functions property page is used to select which functions will be tried in the model 

during the evolution process.  Check boxes next to the functions you want to include.  

Note that DTREG provides both mathematical functions (+,-,*,/, sqrt, sin, etc.) and 

logical functions (AND, OR, NOT, etc.). 
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GEP Evolution Property Page 

 

The Evolution property page contains parameters that control evolution operations such 

as mutation and recombination. 

 

 
 

 

Mutation and inversion rates 

 

Mutation rate – This is the probability that a symbol (variable, function or constant) in a 

gene will be mutated during each generation.  Symbols in the head of a gene can be 

replaced by variables, functions and constants (if constants are used); symbols in the tail 

of the gene can be replaced only by variables and constants. 

 

Inversion rate – This is the probability that the inversion operation will be performed on 

a chromosome.  Inversion selects a random starting symbol in a gene and a random 

ending symbol.  All of the symbols between the starting and ending points are then 

reversed in order. 
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Transposition rates 

 

Transposition is the process of moving a sequence of symbols in a gene from one 

location to another.  Some types of transposition allow sequences of symbols to be 

moved from one gene to another gene in the same chromosome. 

 

IS transposition rate – This is probability that Insertion Sequence Transposition will be 

applied to a chromosome.  Source and destination genes are selected in the chromosome; 

the source gene may be the same as the destination.  Starting and ending symbol positions 

are selected in the source gene.  The starting point may be in the head or tail section of 

the gene, and the selected section may span the head and tail.  The destination, insertion 

point is selected in the head of the destination gene, but it is not allowed to be the first 

(root) symbol of the gene, and the selection length is restricted so that it will remain 

entirely in the head of the destination gene.  The selected sequence of symbols is then 

inserted into the destination gene, and any symbols following the insertion point that are 

in the head of the destination gene are moved right to make room of the insertion.  

Symbols shifted out of the head by the insertion are discarded. 

 

RIS transposition rate – This is probability that Root Insertion Sequence Transposition 

will be applied to a chromosome.  A random scan point is selected in the head of a gene 

beyond the first (root) symbol of the gene.  The process then scans forward looking for a 

function symbol.  If no function is found, RIS transposition does nothing.  If a function is 

found, a random ending point is selected beyond the starting point but in the head of the 

gene.  The symbols in the selected range are then inserted at the beginning (root) of the 

gene.  Symbols pushed out of the head by the insertion are discarded. 

 

Gene transposition rate – This is probability that Gene Transposition will be applied to 

a chromosome.  A random gene that is not the first gene of a chromosome is selected.  

This gene is then inserted as the first gene of the chromosome.  The gene being inserted is 

removed from its original location, and the genes preceding it are moved over to make 

room for the insertion at the head of the chromosome.  So the length of the chromosome 

is not changed. 

 

Recombination rates 

 

During Recombination, two chromosomes are randomly selected, and genetic material is 

exchanged between them to produce two new chromosomes.  It is analogous to the 

process that occurs when two individuals are bred, and the offspring share genetic 

material from both parents. 

 

One-point rate – This is probability that one-point recombination will be applied to a 

chromosome.  Two parent chromosomes are randomly selected and paired together.  A 

split point is selected anywhere in the chromosomes (any gene and any position in a gene 

– head or tail).  The symbols in the parents from the split point to the ends of the 
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chromosomes are then exchanged between the parents.  Note that all chromosomes have 

the same number of symbols, so no symbols are lost during the exchange. 

 

Two-point rate – This is probability that two-point recombination will be applied to a 

chromosome.  Two parent chromosomes are randomly selected and paired together.  Two 

recombination points are selected in the chromosomes.  The symbols between the starting 

and ending recombination points are then exchanged between the parent genes. 

 

Gene recombination rate – This is probability that gene recombination will be applied 

to a chromosome.  Two parent chromosomes are randomly selected and paired together.  

A random gene is selected and exchanged between the parent chromosomes. 

 

GEP Linking Property Page 

 

The Linking property page contains parameters that control how genes in a chromosome 

are linked together.  See page 312 for additional information about linking. 
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If a chromosome has more than one gene, the expressions described by the genes must be 

linked together to form the full function representing the chromosome.  This linking is 

done using a linking function (or operator) that has two or more arguments such as 

addition, logical AND and OR. 

 

DTREG allows you to use either a static linking function or homeotic genes which are 

genes with linking functions that evolve.  If homeotic genes are used, then different 

functions may be used to link different genes, and these functions are selected through 

evolution.  See page 312 for additional information about linking functions. 

 

How to link subexpression genes 

 

Use the same linking function for all genes – If this option is selected, then you must 

select which linking function is to be used, and that function will be used to link all 

genes.  The linking function is selected from the “Link function” dropdown list shown on 

the right of the screen.  That list will be enabled when this option is selected. 

 

Evolve the linking functions – If this option is selected, then a homeotic gene will be 

added to the chromosomes to represent the linking functions.  The homeotic gene (and 

the linking functions it represents) will evolve in a similar manner to other genes. 

 

Evolving (linking) homeotic genes 

 

These parameters are only enabled if you select evolving linking functions. 

 

Linking gene head length – This is the number of symbols in the head of the homeotic, 

linking gene. 

 

Mutation, inversion, transposition and crossover rates – These are the rates for 

mutation, inversion, transposition and crossover for the homeotic gene.  The operations 

are performed in the same manner as the primary genes for the chromosome.  See the 

descriptions above for the actions performed by each of these operations. 

 

Linking functions to use with evolution 

 

Check the boxes next to the functions that you want to allow to be considered as linking 

functions. 
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GEP Constants Property Page 

 

The Constants property page contains parameters that control whether constants are to be 

used in the GEP functions. 

 

 
 

The DTREG implementation of gene expression programming allows the creation of 

expressions with no explicit constants, with a fixed set of user-specified constants and 

with random constants that mutate during the evolutionary process. 

 

Note that even if explicit constants are not enabled, constants may be developed 

implicitly during the evolutionary process.  For example, a function may be evolved such 

as: 

 

       (     )   √  

 

Which, of course, simplifies to 
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Constants per gene – This parameter specifies how many random constant values are to 

be included in each gene.  Note that the inclusion of the constant values in a gene does 

not necessarily mean that they will actually be used in the coding region of a gene where 

they would be part of the expression.  Just as with variables and functions, constants are 

moved into the functional (coding) part of a gene through mutation and selection. 

 

Minimum value – This is the minimum value for randomly generated constants. 

 

Maximum value – This is the maximum value for randomly generated constants. 

 

Type of random constants – Select whether you want to generate integer or real random 

constants. 

 

Mutate random constants – Check this box and specify a mutation rate if you want the 

values of the random constants to mutate during the evolutionary process. 

 

Use nonlinear regression to refine the values of random constants – If this option is 

enabled, DTREG uses a sophisticated nonlinear regression algorithm to refine the values 

of the random constants.  This optimization is performed after evolution has developed 

the functional form and linking and simplification have been performed.  DTREG uses a 

model/trust-region technique along with an adaptive choice of the model Hessian.  The 

algorithm is essentially a combination of Gauss-Newton and Levenberg-Marquardt 

methods; however, the adaptive algorithm often works much better than either of these 

methods alone. 

 

Maximum iterations – This parameter controls the maximum iterations that will be 

performed by the nonlinear regression algorithm as it refines the constants. 

 

Convergence tolerance – This parameter specifies an accuracy goal used by the 

nonlinear regression algorithm as it refines the constants. 

 

Use fixed constants – If you wish to specify a fixed, non-evolving set of constants to be 

considered in the functions, check this box and list the constants in the screen below.  

Separate the constants by spaces or put them on separate lines. 
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K-Means Clustering Property page 

 

Developed between 1975 and 1977 by J. A. Hartigan and M. A. Wong (Hartigan and 

Wong, 1979), K-Means clustering is one of the oldest predictive modeling methods.  K-

Means Clustering is a relatively fast modeling method, but it is also among the least 

accurate models that DTREG offers. 

 

For additional information about K-Means clustering, please see the chapter starting on 

page 321. 

 

When you select the K-Means clustering property page, you will see a screen like this: 
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Type of model to build:  Select the type of model you want DTREG to build.  If you 

select a model type other than K-Means Clustering, all of the other controls on this screen 

will be disabled. 

 

Search for optimal number of clusters:  Check this box to cause DTREG to try 

building models with a varying number of clusters.  If you don’t check this box, then 

specify a fixed number of clusters in the “Number of clusters” field below. 

 

Min, Max, Step:  Specify the minimum number of clusters to try, the maximum and the 

number of clusters to add between each step. 

 

Maximum steps without change:  As DTREG builds models with progressively larger 

numbers of clusters it checks the validated accuracy of each model.  If it tries the number 

of models specified by this parameter without improving the accuracy, the search stops. 

 

% rows to use for search:  If you wish, you can restrict the number of data rows used 

during the search process.  Once the optimal size is found, the final model will be built 

using all data rows. 

 

Cross validate folds, Hold out sample %, Use training data:  These parameters control 

the method used to evaluate the accuracy of the model for each step.  You can use cross-

validation and specify the number of validation folds, you can hold out a certain 

percentage of the data and use the validation, or you can simply just the same data to train 

and test the model.  It is highly recommended that you use either cross-validation or a 

hold-out sample. 

 

Fixed number of clusters:  If you do not check the box “Search for the optimal number 

of clusters”, then specify the number of clusters to use for the model here. 

 

Standardize predictor values:  If this box is checked, the values of continuous predictor 

variables are standardized by subtracting the mean and dividing by the standard 

deviation.  Selecting this option often reduces the quality of the model, so always try 

building a model with this option turned off. 

 

Compute importance of variables:  If this option is selected, DTREG will provide an 

estimate of the relative importance of each predictor variable.  This is usually a fairly fast 

procedure unless there are a very large number of predictor variables and a lot of data. 

 

Include position of cluster centers in analysis report:  Check this option to cause 

DTREG to report the position of cluster centers in the analysis report. 

 

Write positions of cluster centers to a disk file:  Check this option to cause DTREG to 

write information about the positions of cluster centers to the specified disk file. 

 

Testing and validation parameters – Select the type of validation you want DTREG to 

use to test the model.  V-fold cross-validation is recommended. 
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Missing value controls – DTREG offers three choices for dealing with predictor 

variables that have missing values.  You can (1) exclude those rows from the analysis, (2) 

replace the missing values with the median or mode values for the variable, or (3) use 

surrogate variables.  See page 357 for additional information about handling missing 

values and the use of surrogate variables. 
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Discriminant Analysis Property page 

 

Discriminant analysis is a classical method of classification that usually is able to build 

models that rival the more sophisticated models for accuracy. 

 

For additional information about discriminant analysis, please see the chapter starting on 

page 305. 

 

When you select the discriminant analysis property page, you will see a screen like this: 

 

 
 

Type of model to build:  Select the type of model you want DTREG to build.  If you 

select a model type other than discriminant analysis, all of the other controls on this 

screen will be disabled. 

 

Prior probabilities for target categories:  Select the assumed prior probability 

distribution for the target variable categories.  Traditionally (and in most benchmarks) the 

distribution in the training data set is used.  If you wish to specify a custom set of prior 

probabilities, select the option “Use priors on category weight page”, and set the values 

of the priors on the Category weight property page (see page 128). 

 

Compute importance of variables:  If this option is selected, DTREG will provide an 

estimate of the relative importance of each predictor variable.  This is usually a fairly fast 

procedure unless there are a very large number of predictor variables and a lot of data. 

 

Model testing and validation:  Select which procedure (if any) is to be used to validate 

the model.  The recommended method is 10-fold cross validation which builds 10 models 

using 90% of the data for each model and 10% for validation. 

 

How to handle missing predictor variable values:  DTREG offers three choices for 

dealing with predictor variables that have missing values.  You can (1) exclude those 
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rows from the analysis, (2) replace the missing values with the median or mode values for 

the variable, or (3) use surrogate variables.  See page 357 for additional information 

about handling missing values and the use of surrogate variables.  
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Linear Regression Property Page 

 

Linear regression is one of the most widely used modeling methods.  For more technical 

information about linear regression, please see the chapter starting on page 331. 

 

When you select the linear regression property page, you will see a screen like this: 

 

 
 

Type of model to build:  Select the type of model you want DTREG to build.  If you 

select a model type other than linear regression, all of the other controls on this screen 

will be disabled. 

 

Testing and validation parameters – Select the type of validation you want DTREG to 

use to test the model.  V-fold cross-validation is recommended. 

 

Missing value controls – DTREG offers three choices for dealing with predictor 

variables that have missing values.  You can (1) exclude those rows from the analysis, (2) 

replace the missing values with the median or mode values for the variable, or (3) use 

surrogate variables.  See page 357 for additional information about handling missing 

values and the use of surrogate variables. 
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Include constant (intercept) term – If you select this option, DTREG includes a 

constant value (β0) in the model.  If you don’t select this option, then there is no constant, 

and the model consists of just computed coefficients multiplied by the predictor 

variables. 

 

Compute importance of variables – If you select this option, DTREG will compute the 

relative importance of each predictor variable and display it in the analysis report. 

 

Confidence interval percent – In addition to computing the maximum likelihood values 

of the parameters, confidence intervals also are calculated.  You can specify the percent 

confidence to be computed.  For example, specifying a value of 95 for this parameter will 

cause the confidence intervals to span a range that is 95% likely to cover the true values. 
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Logistic Regression Property Page 

 

Logistic regression is a popular method for modeling data that has a categorical target 

variable with two categories. 

 

For more technical information about logistic regression, please see the chapter starting 

on page 337. 

 

When you select the logistic regression property page, you will see a screen like this: 

 

 
 

Type of model to build:  Select the type of model you want DTREG to build.  If you 

select a model type other than logistic regression, all of the other controls on this screen 

will be disabled. 

 

Convergence criteria – An iterative (Newton-Raphson) algorithm is used to compute the 

maximum likelihood values of the logistic regression parameters.  Two parameters are 

available to control the algorithm.  The tolerance factor is used to decide when the 

parameter values have converged to acceptable tolerance.  If the absolute value of the 

maximum change of any parameter during the last iteration is less than the convergence 
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tolerance, then convergence is achieved.  The maximum iteration parameter specifies a 

safety stop for the algorithm if convergence is not reached. 

 

Confidence interval percent – In addition to computing the maximum likelihood values 

of the parameters, confidence intervals also are calculated.  You can specify the percent 

confidence to be computed.  For example, specifying a value of 95 for this parameter will 

cause the confidence intervals to span a range that is 95% likely to cover the true values. 

 

Testing and validation parameters – Select the type of validation you want DTREG to 

use to test the model.  V-fold cross-validation is recommended. 

 

Missing value controls – DTREG offers three choices for dealing with predictor 

variables that have missing values.  You can (1) exclude those rows from the analysis, (2) 

replace the missing values with the median or mode values for the variable, or (3) use 

surrogate variables.  See page 357 for additional information about handling missing 

values and the use of surrogate variables. 

 

Include constant (intercept) term – Check this box to include a constant term in the 

logistic regression equation.  Generally, this box should be checked because regression 

models that contain a constant term are more accurate than those that don’t. 

 

Use Firth’s procedure – Check this box to cause “Firth’s procedure” to be used in the 

calculation of the maximum likelihood parameter values.  Enabling Firth’s procedure has 

three effects: (1) it may make it possible to converge to a solution when convergence 

cannot be achieved otherwise; (2) it reduces the bias of the computed parameters; (3) it 

significantly increases the computation time.  Since the bias-correct parameter values 

computed using Firth’s procedure may be different than those computed without Firth’s 

procedure, be careful about comparing the parameter values with those computed by 

another program not using Firth’s procedure.  Generally, it is recommended that you do 

not enable Firth’s procedure unless parameter convergence cannot be achieved without it. 

 

Compute likelihood ratio significance tests – Check this box to request that likelihood 

ratio significance tests be computed for the parameters.  Likelihood ratio significance 

tests are a more accurate method of accessing which parameters are significant in the 

model than the usual Wald significance tests.  The likelihood ratio significance test for an 

individual parameter is computed by comparing the deviance of the model including the 

parameter with the deviance excluding the parameter.  Since the model must be 

recomputed with each parameter excluded, the computation time increases in direct 

proportion to the number of predictor variables.  In the case of a predictor variable with 

multiple categories, the likelihood ratio is computed with the predictor included and 

removed rather than testing each possible category of the predictor. 

 

Compute importance of variables – If you select this option, DTREG will compute the 

relative importance of each predictor variable and display it in the analysis report. 
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Correlation, Factor Analysis, and Principal Components Property Page 

 

Correlation, Factor Analysis and Principal Components Analysis are exploratory analysis 

procedures that provide useful information about the relationship between variables.  For 

more technical information about these procedures, please see the chapter starting on 

page 345. 

 

When you select the Correlation/Factor Analysis property page, you will see a screen like 

this: 

 

 
 

Type of analysis to perform – Select Correlation, PCA & Factor Analysis to enable the 

features on this screen. 
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Method for continuous variables – Two correlation methods are provided for 

continuous variables: (1) Pearson product moment, and (2) Spearman rank-order.  

Usually when the term “correlation” is used without qualification, it is referring to 

Pearson product moment correlation.  Spearman rank-order replaces the values of the 

variables by their rank (sorted position order) and performs the correlation using the rank 

order values.  This has the advantage of allowing Spearman correlation to work better 

with nonlinear correlations.  See page 345 for more information about the types of 

correlation. 

 

Method for categorical variables – Most correlation programs provide procedures only 

for computing correlation between continuous variables.  Because DTREG allows both 

continuous and categorical variables, correlation becomes more complex.  See page 

345345 for information about the various type of correlation DTREG performs when the 

variables are categorical. 

 

Include target variable – If this box is checked, the target variable is included in the 

analysis.  If the box is not checked, only predictor variables are included. 

 

Decompose categorical variables into dichotomous variables – Specifies that multi-

category categorical variables should be decomposed into individual dichotomous 

variables.  For example, a multi-category variable such as MaritalStatus with categorical 

values 0 for Single, 1 for Married, and 2 for Divorced would be converted to three 

dichotomous variables: MaritalStatus{0}, MaritalStatus{1}, and MaritalStatus{2}.  The 

value of MaritalStatus{0} is 1 if the value of MaritalStatus is 0, and its value is 0 if 

MaritalStatus is 1 or 2.  Similarly, MaritalStatus{1} is 1 if MaritalStatus is 1, and its 

value is 0 if MaritalStatus is 0 or 2. 

 

Print correlation matrix in the analysis report – Check this box to cause the 

correlation matrix to be printed.  If you have many variables so the matrix would be large 

and you are only interested in the Factor Analysis results, you can uncheck this box. 

 

Sort the variable names in the correlation matrix – Check this box to cause DTREG 

to sort the names of the variables alphabetically in the correlation matrix.  If the box is 

not checked, the variables are listed in the order in which they occur in the data file. 

 

Input data is a correlation matrix – Check this box if the input data file contains a 

correlation matrix rather than raw data to be correlated.  The correlation matrix can be 

provided as a full matrix, for example:  

 
 V1    V2    V3 

1.00  0.56  0.39 

0.56  1.00  0.67 

0.39  0.67  1.00 

 

Or as a lower-triangular matrix like this: 
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 V1    V2    V3 

1.00 

0.56  1.00 

0.39  0.67  1.00 

 

Basis for calculations – Select whether you want principal components or factors to be 

based on a correlation matrix of the variables or a covariance matrix.  Since the values in 

a covariance matrix are depending on variable units of measure (scale), it is 

recommended that use a correlation matrix as the basis. 

 

Perform factor or principal components analysis – Check this box if you want to 

perform either factor or principal components analysis.  Leave the box unchecked if you 

only want to compute correlations. 

 

Factor extraction method – Select which method you want to use to extract the factors: 

1. Principal factor analysis – Use this method to perform factor analysis where the 

assumption is that the correlations between variables can be explained by a set of 

common factors smaller in number than the number of variables.  DTREG uses 

iterated common factor analysis to estimate the communalities. 

2. Principal components analysis – Use this method when you want to transform a 

correlation matrix into a factor matrix with as many factors as variables that 

explain all of the variance. 

 

Matrix rotation method – After extracting factors, you optionally can allow DTREG to 

rotate the factor matrix so that the factor loadings are more clearly delineated by the 

factors.  DTREG provides two rotation methods: 

1. Varimax – This is the most popular rotation method.  It performs an orthogonal 

rotation of the factor matrix.  

2. Promax – This rotation method performs oblique (non-orthogonal) rotations 

which allow the resulting factor axes to be correlated.  

 

Initial communalities – When performing factor analysis, a set of initial communalities 

must be placed on the diagonal of the correlation matrix.  The iterative factor analysis 

procedure will then refine these estimates.  DTREG provides four ways of setting the 

initial communality estimates:  

1. Squared multiple correlation – This is the squared value of the multiple 

correlation of each variable with all other variables.  This is the default and 

recommended method.  

2. Maximum correlation – The initial communality is set to the maximum 

correlation between the variable and any other variable. 

3. Average (SMC,MC) – DTREG uses the average of the squared multiple 

correlation and the maximum correlation. 

4. 1.00 – DTREG sets all initial communality values to 1.00.  Note: when 

performing principal component analysis, communalities are always set to 1.00. 
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Maximum iterations – This is the maximum allowed number of iterations that the factor 

analysis procedure may make while refining the estimates of the communalities.  It will 

stop before this limit if the communality values converge. 

 

How to limit number of retained factors – Three methods are provided for determining 

how many significant factors will be retained.  You can check some or all of the boxes.  

Whichever limit has the smallest value is used: 

1. Maximum factors – Use this option if you want to explicitly specify the 

maximum number of factors to retain. 

2. Explained variance % -- If this option is selected, enough factors will be 

included so that the cumulative variance explained by them matches or exceeds 

the specified value. 

3. Minimum eigenvalue – If this option is selected, a factor will be included only if 

its eigenvalue is at least as large as the specified value. 

 

Print factor matrix in analysis report – Check this box if you want the factor loading 

matrix printed in the analysis report. 

 

Print un-rotated factor matrix – If you request that the factor matrix be rotated 

(Varimax/Promax), you can check this box to have both the un-rotated and the rotated 

factor matrix printed in the analysis report.  If the box is not checked, only the rotated 

factor matrix is printed. 

 

Print most important variables for each factor – If you check this option, then 

DTREG will display a table showing the most important variables (i.e., variables with 

largest loading) for each factor.  Only variables whose loadings equal or exceed the value 

of the parameter “Flag factors greater than equal to” (see below) are listed. 

 

Print eigenvector matrix – If this option is selected, DTREG will include the matrix of 

eigenvectors in the analysis report. 

 

Multiply factor loadings by 100 and display as integers – If you check this box, 

DTREG will multiply factor loadings by 100 and display them as whole integer values.  

So, for example, a factor loading of 0.68 would be displayed as 68.  This option makes it 

easier to pick out significant loadings in a long list of factor loadings. 

 

Flag factors greater than or equal to – If you check this option, then DTREG will place 

an asterisk to the right of any factor loading whose absolute value is equal to or greater 

than the specified value.  This makes it easy to identify significant factor loadings. 

 

Compute PCA transformation function – If you check this option, DTREG will 

compute the function to convert data values into PCA transformed scores, and it will 

store it with the project file so that PCA transformations can be used in input data for 

future models.  See page 352 for additional information about using PCA 

transformations. 
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Compute surrogate variables for PCA transformation – If you check this option, 

DTREG will compute surrogate variable functions (see page 358) to impute the values of 

missing data values.  The surrogate variable functions will be stored with the PCA 

transformation function so that they can be used for future transformations of data values 

into PCA transformed scores. 

 

Write correlation matrix to file – Use this option if you want DTREG to write the 

correlation matrix to an external file.  The file is created as a comma-separated value file. 

 

Write factor matrix to file – Use this option if you want DTREG to write the factor 

loading matrix to an external file.  The file is created as a comma-separated value file. 

 

PCA Projected Data – Enable this option if you want DTREG to transform the input 

data values into PCA scores.  See page 352 for additional information about using PCA 

transformations.  This feature is available only in the Enterprise Version of DTREG.  

 

PCA Transform Function – Enable this option if you want DTREG to write the 

coefficients of the PCA transform functions to a data file.  See page 352 for additional 

information about PCA transformations.  This option is available only in the Enterprise 

Version of DTREG.  
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Class Labels Property Page 

The Labels property page is used to specify display labels for categorical variables. 

Optionally, you can designate a “Focus Category” of the target variable. 

 

 
 

The name of each categorical variable will be shown.  If you wish to set display labels for 

the categories of a variable, select the variable and then click the “Set labels” button.  A 

screen similar to this will be shown: 
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The first column displays values found in the data file for the categories of the variable.  

In this example, the values 1 and 2 occurred in the data file for the variable “Liver 

condition”. 

 

In the second column, enter text strings that you want displayed in the generated tree 

nodes and in the report, instead of the corresponding actual value.  In this example, when 

the value of Liver condition is 1, the string “Normal” will be displayed, and when the 

value is 2, “Abnormal” will be displayed. 

 

You can assign text labels to categorical variables that have textual values in the data file 

as well as those that have numeric values.  For example, the values of sex might be coded 

as ‘M’ and ‘F’ in the data file, but by assigning labels, you could have the categories 

display as “Male” and “Female”. 
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Assigned label strings are used for esthetic purposes only, and they have no effect on the 

generation of the model, and class labels are not written to the output file when data is 

scored. 

 

Designating a Focus Category 

 

In addition to setting labels for variable categories, you also can designate a “Focus 

Category” of the target variable.  If a focus category is designated, then DTREG will 

collect additional information about the designated category and display them in the 

report and charts. 

 

 

Initial Split Property Page 

The Initial Split property page is used to designate a predictor variable that is to be used 

for the initial split and predictor variables that are to be preferred for splits. 
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The name of each predictor variable will be shown in the list.  Next to the variable names 

are two columns: 

 

Initial split – If you check this box, the selected variable will be used for the initial split 

even if it is not the best splitting variable.  This is useful if you want to force a split so as 

to compare the trees generated by the categories of a particular variable.  For example, if 

sex is one of your predictor variables, you could force an initial split on it and then 

compare the trees generated under the male and female categories. 

 

Preferred – If you check this box, then the selected variable will be used in preference to 

a non-preferred variable if they generate equally good splits.  You may designate more 

than one variable as preferred. 
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Category Weights Property Page 

The Category Weights property page is used to specify the weights for the categories of 

the target variable when you are performing a classification analysis.  (Note, category 

weights are sometimes referred to as “priors” (a priori) probabilities for the categories of 

the target variable.) 

 

 
 

The property page for category weights is only available when performing a classification 

analysis (i.e., with a categorical target variable).  Category weights do not apply to 

regression analyses. 

 

The category weights determine how DTREG will attempt to balance the 

misclassifications across the categories.  The greater the weight given to a category, the 

fewer misclassifications it will have.  If equal (balanced) category weights are selected, 

then DTREG will attempt to build a model so that the proportion of misclassified rows is 

approximately equal across the categories.  If you tell DTREG to use the frequency 
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distribution in the data set, then categories with a higher frequency of cases will receive 

greater weight, and the misclassification proportions for those categories will be lower 

than for other, less common categories. 

 

When category weights are set equal, the category assigned to a node is determined by 

the proportion of cases having each category in the node compared to the proportion in 

the root node.  As a result, the assigned category may not be the same as the category 

with the most number of cases.  For example, if the data from a disease treatment had 

80% survival and 20% death (Live/Die target variable), then a node would be classified 

as death if the proportion of death cases represents more than 20% of the cases in the 

node – even if it is less than 50%.  One surprising consequence of this is that the nodes of 

a binary category tree may end up with more than 50% misclassified cases. 

 

TreeBoost and Decision Tree Forest models handle category weights by adjusting the 

weights of the data rows so that the sums of the weights for the rows with each target 

category match the proportions specified for the target category weights.  For example, if 

equal (balanced) category weights was specified and there are twice as many rows with 

the “Yes” category as “No”, then the weights for rows with the “No” category would be 

increased so that their combined weight matches the combined weight of the rows with 

the “Yes” category. 

 

Category Weight Options 

DTREG allows you to select several options for category weights: 

 

Equal (balanced) – If you select this option, DTREG will attempt to build a model with 

roughly equal misclassification proportions for the categories.  This is the default and 

recommended setting for category weights. 

 

Use frequency distribution in data set – If you select this option, DTREG will compute 

the distribution of the categories of the target variable in the training dataset and use 

those proportions as the category weights.  If the training sample was drawn at random 

from the whole population, and the category distributions are reflective of the whole 

population, then this is a good option to use. 

 

Mix (average data frequency and equal) – If you select this option, DTREG sets the 

category weights to an average of the equal proportions and the data frequency 

proportions. 

 

Use category weights specified below – If you select this option, a matrix will be 

displayed in the lower portion of the screen where you can enter custom category 

weights.  Each category of the target variable will be displayed in the first column.  You 

can enter weight values in the second column.  At the beginning of an analysis, DTREG 

scales the category weights so their sum is 1.0; hence, only the relative values specified 

for each category matter. 
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Misclassification Cost Property Page 

The Misclassification Cost property page is used to specify how much weight (cost) to 

give to misclassifications of categories of the target variable.  It is only available when 

generating classification trees with categorical target variables. 

 

 
 

In some cases, it may be more costly to misclassify some categories of the target variable 

than others.  For example, consider a decision tree that will be used to diagnose heart 

attacks in patients arriving at an emergency room.  Assume the target variable 

(Diagnosis) has several categories including heart attack, indigestion, pneumonia, bruised 

rib and several other possible causes of chest pain.  When creating the tree, the researcher 

might want to assign a higher misclassification cost value to the heart attack category 

than the other categories, because misclassifying a heart attack is much more serious than 

misclassifying indigestion. 
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Misclassification cost and probability threshold options 

You have several choices for assigning misclassification costs or selecting probability 

thresholds: 

 

Use equal (unitary) misclassification costs for all categories – If you select this option, 

DTREG will use the same misclassification costs (1.00) for all categories. 

 

Select threshold to minimize total (unweighted) errors – If this option is selected, 

DTREG will use a probability threshold that minimizes the total error rate for all cases.  

This may result in the error rates for each category being very different.  This option is 

only available when creating a model with two target categories. 

 

Select threshold to minimize weighted errors – If this option is selected, DTREG will 

use the probability threshold that minimizes the weighted misclassification errors.  The 

weighted misclassification error is computed by multiplying the misclassification rate for 

each target category by a factor that corrects for the relative frequency of cases with that 

category in the data.  Target categories that occur infrequently in the data receive a 

greater weight to prevent them from being overwhelmed by frequently occurring 

categories.  This option is only available when creating a model with two target 

categories. 

 

Select threshold to balance misclassification percents – If this option is selected, 

DTREG will use the probability threshold that approximately balances the 

misclassification error proportion for the target categories.   This option is only available 

when creating a model with two target categories. 

 

Use probability threshold to predict category – This option is enabled only if the target 

variable has two categories and you are creating a type of model that predicts probability 

scores.  If you select this option, then the probability threshold section of this screen will 

be enabled. 
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Select which category of the target variable you are trying to predict and specify a 

probability threshold value that must be reached for a case to get assigned that category.  

If the probability of a case is lower than the specified threshold, then it is assigned the 

other category.  For example, if the two target categories are Yes and No and the 

corresponding predicted probabilities are Pyes and Pno, then if you select Yes as the 

target category on this section and specify 0.60 as the threshold, a case will be assigned 

the Yes category if Pyes is greater than or equal to 0.60.  Otherwise it will be assigned 

the No category.  Note: Selecting Yes as the category and specifying a threshold of 0.60 

is exactly the same as selecting No as the category and specifying a threshold of 0.40 

 

The Probability Threshold Chart described on page 223 and the Probability Threshold 

Report described on page 197 can be used to determine how a probability threshold will 

affect the predictions. 

 

Positive Target Category – Some statistics such as Sensitivity and Specificity (see page 

192) use the concept of the “positive” category of the target variable.  The positive target 

category is specified in this field. 

 

Use the misclassification costs specified below – If you select this option, a matrix will 

be displayed in the lower portion of the screen (see the example screen on the previous 

page).  The categories of the target variable will be shown in the left column and in the 

top row.  An entry in a specified row/column position is the cost of misclassifying the 

category in the selected column as the category in the selected row.  The diagonal 

elements of the matrix are the cost of correctly classifying a category; their values are 

usually 0.00 since there is no misclassification cost for a correct classification. 

 

DTREG uses the altered priors method to convert the specified misclassification costs 

into values of category weights (prior probabilities) that perform the misclassification 

weighting.  See Breiman, Friedman, Olshen and Stone (1984) for information about the 

use of altered priors. 
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Missing Data Property Page 

The Missing Data property page tells DTREG how to handle missing data values. 

 

 
 

Missing values are an unfortunate but common occurrence in surveys and research 

projects: subjects refuse (or forget) to answer some questions, forms are redesigned 

adding or dropping questions, and subjects sometimes drop out of studies (or die) before 

all of the information can be collected. 

 

If the value of the target variable or the weight variable is missing, the entire row (case) is 

dropped.  Obviously, if all of the predictor variable values are missing, the row also must 

be dropped.  However, if the value of the target variable is known and some of the 

predictor variables are available, then it is desirable to use that data rather than dropping 

the entire row. 
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Missing Data Options 

DTREG offers two methods for salvaging rows with missing values on the predictor 

variable used for splitting a group.  You may check either or both of the boxes 

corresponding to the methods you want DTREG to use. 

 

DTREG attempts to use the methods in the following order.  Once a method is found that 

can classify the row, the process stops at that point.  If the row cannot be classified by 

any enabled method, the row is not assigned to either child group, and the last node the 

row ends up in becomes its terminal node. 

 

1. Use surrogate splits – If this option is selected, DTREG attempts to classify rows by 

using “surrogate” splitter variables. 

 

Surrogate splitters provide the most accurate classification of rows with missing values.  

This is the default and recommended method. 

 

Surrogate splitter variables are predictor variables that are not as good at splitting a group 

as the primary splitter but which yield similar splits.  DTREG compares which rows are 

sent to the left and right child groups by the primary splitter with the rows sent to the 

corresponding child groups by every other predictor variable.  The predictors whose 

splits most closely mimic the split by the primary splitter are the surrogate splitters. 

 

The association between the primary splitter and each alternate predictor is computed as 

a function of how closely the alternate predictor matches the primary splitter.  (This 

roughly corresponds to a count of how many rows each predictor sends left and right, but 

the actual calculation is more complex.)  The surrogate splitter variables are ranked in 

decreasing order of association. 

 

When a row is encountered that has a missing value on the primary splitter, DTREG 

searches the list of surrogate splitters and uses the one with the highest association to the 

primary splitter that has a non-missing value for the row. 

 

For additional information about surrogate splitters, please see page 364. 

 

2. Put rows in the most probable group – If the value of the splitting variable is 

missing, the row is put into whichever child group has the greatest likelihood of receiving 

an unknown, random case.  When this method of used, none of the predictor values for 

the row contribute to its classification; it is simply dumped into whichever child group 

has the larger probability of picking up random cases.  Usually, the “most probable” 

group is the group with the largest number of rows assigned to it.  However, the most 

probable group may not necessarily be the largest group if the distribution of categories is 

not uniform or if unequal category weight values are specified. 

 

Always compute surrogate predictors – If you check this box, DTREG always will 

compute the association between the primary splitter and all other potential surrogate 

splitters.  If you don’t check this box, DTREG will only determine surrogate splitters if 
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they are needed because rows in a group that is being split have missing values on the 

primary splitter variable. 

 

Leaving this box unchecked can significantly speed up the generation of the tree, but it 

has several disadvantages: 

 

1. If you later use the generated tree to “score” a dataset that has missing values, and 

surrogate splitters were not generated when the tree was built, they will not be available 

to guide scoring of rows with missing values on splitters.  If you do not plan to use the 

generated tree to score data, then this is not a factor. 

 

2. The association values assigned to surrogate predictors are used as a component in 

calculating the overall importance of variables.  So if surrogate splitters are not 

calculated, the overall importance scores will be less accurate. 

 

Check all predictor variables (for surrogates) – If you check this button, then DTREG 

will check every predictor variable to see how well it functions as a surrogate splitter for 

the primary splitter.  If there are many predictor variables, this is a time-consuming 

operation, but it guarantees that the best surrogate predictors will be found. 

 

Check only competitor splitters – If you check this button, DTREG will check only the 

five predictors that were the best “competitors” (runners up) to the primary splitter to see 

how well they function as surrogates.  In about 80% of the cases, predictors that are good 

surrogates for the primary splitter are also good competitors to the primary splitter.  

Selecting this operation can dramatically speed up many analyses with minimal loss of 

accuracy.  For example, if there are 100 predictor variables, selecting this operation 

would reduce the number of surrogate checks from 100 to 5.  However, in some cases, 

predictor variables may be good surrogates without being good competitors; so it is 

recommended that for the final, definitive tree build, you select the option to check all 

predictor variables as surrogates. 
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Variable Weights Property Page 

The Variable Weights property page allows you to assign weights to predictor variables 

so that the improvements derived by splitting on variables are not treated equally. 

 

 
 

The left column of this screen shows the names of all predictor variables.  The right 

column shows the weight values.  You can assign values between 0 and 100 for weights. 

 

If the weight values are not equal, then the improvement value computed by potentially 

splitting a group on a predictor is multiplied by the proportion of its weight before being 

compared with the possible improvements from splitting on other predictors.  By 

reducing the weighting for a variable, you can cause it to be used as a splitter only if its 

improvement is better than other predictors with higher weights.  Hence, DTREG is less 

likely to use the predictor for splitting. 

 

Reasons for Weighting Variables 

There are several reasons why you might want to use weighting to reduce the likelihood 

of splitting on a variable: 
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1. The variable may be difficult or expensive to obtain, so you don’t want to have it enter 

the model too early.  For example, the variable might correspond to the result of some 

unpleasant or expensive invasive medical test that you don’t want to use unless it is very 

significant. 

 

2. The variable may correlate with the target variable in such a way that its value tends to 

dominate over other predictors too much.  For example, if you are analyzing sales data, 

the quantity of an item sold to a customer might be the target variable, and predictor 

variables might include the size of the customer’s company, their type of business, the 

area of the country, etc.  Since large companies tend to buy more than small companies, 

the company size predictor may dominate.  However, it may be harder to sell to large 

companies than smaller ones; so, you may want to discount the value of the company size 

predictor so that other factors such as geographic region and company type play a more 

significant role in the model. 

 

Miscellaneous Property Page 

The Miscellaneous property page currently contains settings for random number seeds.  

 

 
 

Random Number Starting Seeds 

Random numbers are used for a number of stochastic processes in DTREG.  If you want 

to test whether the random number seeds (starting values) affect the generated model, you 

can specify the seed values on this screen. 

 

Model build – This is the primary random number generator used for model building.  

For example, it is used to select the rows and variables used for each tree in a decision 

tree forest. 

 

Subset rows – This random number generator is used to select rows when a subset of the 

rows is being used to train the model. 
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Validation – This random number generator is used to select the rows that go into cross 

validation folds.  It also controls which rows are held out of the model if holdout 

sampling is used. 

 

Variable importance – This random number generator is used when sensitivity analysis 

is being performed to estimate the relative importance of variables. 
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Time Series Modeling and Forecasting 
 

     “Predicting the future is hard, especially if it hasn’t happened yet.” 

      – Yogi Berra 
 

 
 

Introduction to time series analysis 

A time series is a chronological sequence of observations on a particular variable.  

Usually the observations are taken at regular intervals (days, months, years), but the 

sampling could be irregular.  Common examples of time series are the Dow Jones 

Industrial Average, Gross Domestic Product, unemployment rate, and airline passenger 

loads.  A time series analysis consists of two steps: (1) building a model that represents a 

time series, and (2) using the model to predict (forecast) future values. 

 

If a time series has a regular pattern, then a value of the series should be a function of 

previous values.  If Y is the target value that we are trying to model and predict, and Yt  is 

the value of Y at time t, then the goal is to create a model of the form: 

 

  Yt = f(Yt-1, Yt-2, Yt-3, …, Yt-n) + et 

 

Where Yt-1 is the value of Y for the previous observation, Yt-2 is the value two 

observations ago, etc., and et represents noise that does not follow a predictable pattern 

(this is called a random shock).  Values of variables occurring prior to the current 

observation are called lag values.  If a time series follows a repeating pattern, then the 

value of Yt is usually highly correlated with Yt-cycle where cycle is the number of 
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observations in the regular cycle.  For example, monthly observations with an annual 

cycle often can be modeled by Yt = f(Yt-12). 

 

The goal of building a time series model is the same as the goal for other types of 

predictive models which is to create a model such that the error between the predicted 

value of the target variable and the actual value is as small as possible.  The primary 

difference between time series models and other types of models is that lag values of the 

target variable are used as predictor variables, whereas traditional models use other 

variables as predictors, and the concept of a lag value doesn’t apply because the 

observations don’t represent a chronological sequence. 

 

ARMA and modern types of models 

Traditional time series analysis uses Box-Jenkins ARMA (Auto-Regressive Moving 

Average) models.  An ARMA model predicts the value of the target variable as a linear 

function of lag values (this is the auto-regressive part) plus an effect from recent random 

shock values (this is the moving average part).  While ARMA models are widely used, 

they are limited by the linear basis function. 

 

In contrast to ARMA models, DTREG can create models for time series using neural 

networks, gene expression programs, support vector machines and other types of 

functions that can model nonlinear relationships.  So, with a DTREG model, the function 

f(.) in 

 

  Yt = f(Yt-1, Yt-2, Yt-3, …, Yt-n) + et 

 

can be a neural network, gene expression program or other type of general model.  This 

makes it possible for DTREG to model time series that cannot be handled well by ARMA 

models. 

 

Setting up a time series analysis 

Input variables 

When building a normal (not time series) model, the input must consist of values for one 

target variable and one or more predictor variables.  When building a time series model, 

the input can consist of values for only a single variable – the target variable whose 

values are to be modeled and forecast.  Here is an example of an input data set: 

 
Passengers 

112. 

118. 

132. 

129. 

121. 
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The time between observations must be constant (a day, month, year, etc.).  If there are 

missing values, you must provide a row with a missing value indicator for the target 

variable like this: 

 
Passengers 

112. 

118. 

? 

129. 

121. 

 

For financial data like the DJIA where there are never any values for weekend days, it is 

not necessary to provide missing values for weekend days.  However, if there are odd 

missing days such as holidays, then those days must be specified as missing values.  It is 

also desirable to put in missing values for February 29 on non-leap years so that all years 

have 366 observations. 

 

Lag variables 

A lag variable has the value of some other variable as it occurred some number of 

periods earlier.  For example, here is a set of values for a variable Y, its first lag and its 

second lag: 

 
Y  Y_Lag_1  Y_Lag_2 

3     ?        ? 

5     3        ? 

8     5        3 

6     8        5 

 

Notice that lag values for observations before the beginning of the series are unknown. 

 

DTREG provides automatic generation of lag variables.  On the Time Series Property 

page (see page 47) you can select which variables are to have lag variables generated and 

how far back the lag values are to run.  You can also create variables for moving 

averages, linear trends and slopes of previous observations.  Here is an example of a 

Variables Property Page showing lag variables generated for Passengers: 
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On this screen, you can select which generated variables you want to use as predictors for 

the model.  While it is tempting to generate lots of variables and use all of them in the 

model, sometimes better models can be generated using only lag values that are multiples 

of the series’ cycle period.  The autocorrelation table (see page 147) provides information 

that helps to determine how many lag values are needed.  Moving average, trend and 

slope variables may detract from the model, so you should always try building a model 

using only lag variables. 

 

Intervention variables 

An exceptional event occurring during a time series is known as an intervention.  

Examples of interventions are a change in interest rates, a terrorist act or a labor strike.  

Such events perturb the time series in ways that cannot be explained by previous (lag) 

observations. 

 

DTREG allows you to specify additional predictor variables other than the target 

variable.  You could have a variable for the interest rate, the gross domestic product, 

inflation rate, etc.  You also could provide a variable with values of 0 for all rows up to 

the start of a labor strike, then 1 for rows during a strike, then decreasing values 

following the end of a strike.  These variables are called intervention variables; they are 

specified and used as ordinary predictor variables.  DTREG can generate lag values for 

intervention variables just as for the target variable. 
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Trend removal and stationary time series 

A time series is said to be stationary if both its mean (the value about which it is 

oscillating), and its variance (amplitude) remain constant through time.  Classical Box-

Jenkins ARMA models only work satisfactorily with stationary time series, so for those 

types of models it is essential to perform transformations on the series to make it 

stationary.  The models developed by DTREG are less sensitive to non-stationary time 

series than ARMA models, but they usually benefit by making the series stationary 

before building the model.  DTREG includes facilities for removing trends from time 

series and adjusting the amplitude. 

 

Consider this time series which has both increasing mean and variance: 

 

 
 

If the trend removal option is enabled on the Time Series property page (see page 47), 

then DTREG uses regression to fit either a linear or exponential function to the data.  In 

this example, an exponential function worked best, and it is shown as the blue line 

running through the middle of the data points.  Once the function has been fitted, DTREG 

subtracts it from the data values producing a new set of values that look like this: 
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The trend has been removed, but the variance (amplitude) is still increasing with time.  If 

the option is enabled to stabilize variance, then the variance is adjusted to produce this 

series: 

 

 
 

This transformed series is much closer to being stable.  The transformed values are then 

used to build the model.  A reverse transformation is applied by DTREG when making 

forecasts using the model. 

 

Important note: Trend removal is almost always beneficial.  However, experiments show 

that variance stabilization (amplitude adjustment) is beneficial about 20% of the time and 
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harmful about 80% of the time.  So you should try it both ways and use whichever is 

better. 

 

Selecting the type of model for a time series 

DTREG allows you to use the following types of models for time series: (1) Decision 

tree, (2) TreeBoost, (3) Multilayer perceptron neural network, (4) General regression 

neural network (GRNN), (5) RBF neural network, (6) Cascade correlation network, (7) 

Support vector machine (SVM), (8) Gene expression programming, (9) GMDH neural 

networks. 

 

Experiments have shown that decision trees usually do not work well because they do a 

poor job of predicting continuous values.  Gene expression programming (GEP) is an 

excellent method for time series because the functions generated are very general, and 

they can account for trends and variance changes.  General regression neural networks 

(GRNN) and GMDH neural networks also perform very well in tests.  Multilayer 

perceptrons sometimes work very well, but they are more temperamental to train.  So the 

best recommendation is to always try GEP and GRNN models, and then try other types of 

models if you have time.  If you use a GEP model, it is best to enable the feature to allow 

it to evolve numeric constants (see page 108). 

 

Evaluating the forecasting accuracy of a model 

Before you bet your life savings on the forecasts of a model, it is nice to do some tests to 

evaluate the predictive accuracy of the model.  DTREG includes a built-in validation 

system that builds a model using the first observations in the series and then evaluates 

(validates) the model by comparing its forecast to the remaining observations at the end 

of the series. 

 

Time series validation is enabled on the Time Series property page (see page 47). 

 

 
 

Specify the number of observations at the end of the series that you want to use for the 

validation.  DTREG will build a model using only the observations prior to these held-out 

observations.  It will then use that model to forecast values for the observations that were 

held out, and it will produce a report and chart showing the quality of the forecast.  Here 

is an example of a chart showing the actual values with black squares and the validation 

forecast values with open circles: 
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Validation also generates a table of actual and predicted values: 

 
 --- Validation Time Series Values --- 

 

 Row     Actual   Predicted     Error     Error % 

-----  ---------  ---------  ----------  -------- 

  133  417.00000  396.65452   20.345480     4.879 

  134  391.00000  377.05068   13.949323     3.568 

  135  419.00000  446.66871  -27.668706     6.604 

  136  461.00000  435.56485   25.435146     5.517 

  137  472.00000  462.14325    9.856747     2.088 

  138  535.00000  517.45376   17.546240     3.280 

  139  622.00000  599.82994   22.170064     3.564 

  140  606.00000  611.68442   -5.684423     0.938 

  141  508.00000  507.37890    0.621100     0.122 

  142  461.00000  447.01704   13.982962     3.033 

  143  390.00000  398.09507   -8.095074     2.076 

  144  432.00000  444.67910  -12.679105     2.935 

 

If you compare validation results from DTREG with other programs, you need to check 

how the other programs compute the predicted values.  Some programs use actual 

(known) lag values when generating the predictions; this gives an unrealistically accurate 

prediction.  DTREG uses the lag values for predicted values when forecasting: this makes 

validation operate like real forecasting where lag values must be based on predicted 

values rather than known values. 
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Time series model statistics report 

After a model is created, DTREG produces a section in the analysis report with statistics 

about the model. 

Hurst Exponent 

The Hurst Exponent is a measure of pattern (long term memory) in a time series.  In 

particular, it measures the relative tendency of a time series either to regress strongly to 

the mean or to cluster in a direction.  See the description of the Hurst Exponent at 

Wikipedia (http://en.wikipedia.org/wiki/Hurst_exponent). 

 

The value of the Hurst Exponent can vary from 0.0 to 1.0.  A value of 0.5 indicates the 

series has random values.  Values between 0.5 and 1.0 indicate positive autocorrelation – 

that is, increasing values tend to be followed by more increasing values.  A Hurst 

Exponent value between 0.0 and 0.5 indicates negative autocorrelation – that is, 

increasing values tend to be followed by decreasing values.  A value of 0.5 indicates that 

there is an equal probability of increasing or decreasing at any point.  The Hurst 

Exponent for the Dow Jones Industrial Average (DJIA) typically varies between 0.42 and 

0.68 over 4 year periods. [Qian & Rasheed, 2004].  Unfortunately, there’s no way to 

predict what it will be for the next four years. 

 

There are several methods for computing the Hurst Exponent; they usually produce 

similar values.  DTREG computes the Hurst Exponent using two methods: (1) the 

common Rescaled Range (R/S) method, and (2) the “Dispersional Analysis”  method 

suggested in a 2000 Ph.D. dissertation by Henrik J. Blok [Blok, 2000].  

Autocorrelation and partial autocorrelation 

The autocorrelation and partial autocorrelation tables provide important information 

about the significance of the lag variables. 

Autocorrelation table 

 
 -----------------------------  Autocorrelations  ------------------------------ 

 

Lag  Correlation  Std.Err.     t     -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

  1   0.70865407  0.083333    8.504  |                 .  |**************      | 

  2   0.23608974  0.117980    2.001  |               .    |*****               | 

  3  -0.16207088  0.121217    1.337  |               .  **|    .               | 

  4  -0.41181655  0.122712    3.356  |             *******|    .               | 

  5  -0.46768898  0.131961    3.544  |            ********|    .               | 

  6  -0.46501203  0.143009    3.252  |            ********|     .              | 

  7  -0.43595197  0.153150    2.847  |            ********|     .              | 

  8  -0.36759217  0.161538    2.276  |              ******|     .              | 

  9  -0.13341625  0.167246    0.798  |             .    **|      .             | 

 10   0.20091610  0.167984    1.196  |             .      |****  .             | 

 11   0.58898400  0.169644    3.472  |             .      |************        | 

 12   0.82252315  0.183296    4.487  |             .      |****************    | 

 13   0.58265202  0.207349    2.810  |            .       |************        | 

 14   0.17178261  0.218423    0.786  |           .        |***     .           | 

 15  -0.16852975  0.219360    0.768  |           .      **|        .           | 

 16  -0.36938903  0.220257    1.677  |           .  ******|        .           | 

 

http://en.wikipedia.org/wiki/Hurst_exponent


148 

 

An autocorrelation is the correlation between the target variable and lag values for the 

same variable.  Correlation values range from -1 to +1.  A value of +1 indicates that the 

two variables move together perfectly; a value of -1 indicates that they move in opposite 

directions.  When building a time series model, it is important to include lag values that 

have large, positive autocorrelation values.  Sometimes it is also useful to include those 

that have large negative autocorrelations.  Examining the autocorrelation table shown 

above, we see that the highest autocorrelation is +0.82523155 which occurs with a lag of 

12.  Hence we want to be sure to include lag values up to 12 when building the model.  It 

is best to experiment with including all lags from 1 to 12 and also ranges such as just 11 

through 13. 

 

DTREG computes autocorrelations for the maximum lag range specified on the Time 

Series property page, so you may want to set it to a large value initially to get the full 

autocorrelation table and then reduce it once you figure out the largest lag needed by the 

model. 

 

The second column of the autocorrelation table shows the standard error of the 

autocorrelation, this is followed by the t-statistic in the third column. 

 

The right side of the autocorrelation table is a bar chart with asterisks used to indicate 

positive or negative correlations right or left of the centerline.  The dots shown in the 

chart mark the points two standard deviations from zero.  If the autocorrelation bar is 

longer than the dot marker (that is, it covers it), then the autocorrelation should be 

considered significant.  In this example, significant autocorrelations occurred for lags 1, 

2, 11, 12 and 13. 

 

Partial autocorrelation table 

 
 -------------------------  Partial Autocorrelations  -------------------------- 

 

Lag  Correlation  Std.Err.     t     -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

  1   0.70865407  0.083333    8.504  |                 .  |**************      | 

  2  -0.53454362  0.083333    6.415  |          **********|  .                 | 

  3  -0.11250388  0.083333    1.350  |                 . *|  .                 | 

  4  -0.19447876  0.083333    2.334  |                 ***|  .                 | 

  5  -0.04801434  0.083333    0.576  |                 .  |  .                 | 

  6  -0.36000273  0.083333    4.320  |              ******|  .                 | 

  7  -0.23338000  0.083333    2.801  |                ****|  .                 | 

  8  -0.31680727  0.083333    3.802  |               *****|  .                 | 

  9   0.14973536  0.083333    1.797  |                 .  |***                 | 

 10  -0.03381760  0.083333    0.406  |                 .  |  .                 | 

 11   0.54592233  0.083333    6.551  |                 .  |***********         | 

 12   0.18345454  0.083333    2.201  |                 .  |****                | 

 13  -0.45227494  0.083333    5.427  |            ********|  .                 | 

 14   0.16036757  0.083333    1.924  |                 .  |***                 | 

 

The partial autocorrelation is the autocorrelation of time series observations separated by 

a lag of k time units with the effects of the intervening observations eliminated. 

 



149 

 

Autocorrelation and partial autocorrelation tables are also provided for the residuals 

(errors) between the actual and predicted values of the time series. 

 

Measures of fitting accuracy 

DTREG generates a report with several measures of the accuracy of the predicted value.  

The first section compares the predicted values with the actual values for the rows use the 

train the model.  If validation is enabled, a second table is generated showing how well 

the predicted validation rows match the actual rows. 

 
  ============  Time Series Statistics  ============ 

 

Exponential trend: Passengers = -239.952648 + 351.737895*exp(0.005155*row) 

Variance explained by trend = 86.166% 

 

 

 ---  Training Data  --- 

 

Mean target value for input data = 262.49242 

Mean target value for predicted values = 261.24983 

 

Variance in input data = 11282.932 

Residual (unexplained) variance after model fit = 254.51416 

Proportion of variance explained by model = 0.97744  (97.744%) 

 

Coefficient of variation (CV) = 0.060777 

Normalized mean square error (NMSE) = 0.022557 

Correlation between actual and predicted = 0.988944 

 

Maximum error = 41.131548 

MSE (Mean Squared Error) = 254.51416 

MAE (Mean Absolute Error) = 12.726286 

MAPE (Mean Absolute Percentage Error) = 5.5055268 

 

If DTREG removes a trend from the time series, the table shows the trend equation, and it 

shows how much of the total variance of the time series is explained by the trend. 

 

There are many useful numbers in this table, but two of them are especially important for 

evaluating time series predictions: 

 

Proportion of variance explained by model – this is the best single measure of how 

well the predicted values match the actual values.  If the predicted values exactly match 

the actual values, then the model would explain 100% of the variance. 

 

Correlation between actual and predicted – This is the Pearson correlation coefficient 

between the actual values and the predicted values; it measures whether the actual and 

predicted values move in the same direction.  The possible range of values is -1 to +1.  A 

positive correlation means that the actual and predicted values generally move in the 

same direction.  A correlation of +1 means that the actual and predicted values are 

synchronized; this is the ideal case.  A negative correlation means that the actual and 
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predicted values move in opposite directions.  A correlation near zero means that the 

predicted values are no better than random guesses. 

 

Forecasting future values 

Once a model has been created for a time series, DTREG can use it to forecast future 

values beyond the end of the series.  You enable forecasting on the Time Series property 

page (see page 47). 

 

 
 

The Time Series chart displays the actual values, validation values (if validation is 

requested) and the forecast values. 
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The analysis report also displays a table of forecast values: 

 
 --- Forecast Time Series Values --- 

 

 Row   Predicted 

-----  --------- 

  145  457.63942 

  146  429.32697 

  147  459.64579 

  148  506.19975 

  149  514.89035 

  150  584.91959 
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DTL:  Data Transformation Language 
 

 

The Data Transformation Language (DTL) can be used to transform variables, create new 

variables and select which data records should be included in the analysis. 

 

DTL Property Page 
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DTL is a full-featured programming language.  The full manual for DTL can be 

downloaded from http://www.dtreg.com/DTL.pdf  This chapter does not provide a full 

reference for DTL, instead it presents some typical uses of DTL with DTREG analyses. 

 

The main() function 

 

Every DTL program must have a main() function that is executed by DTREG for each 

data record.  The main() function must contain a return statement that signals DTREG 

whether the current record is to be used in the analysis or excluded.  If the return 

statement returns a value of 1, the record is used in the analysis.  If the return statement 

returns a value of 0 (zero), the record is excluded from the analysis. 

 

Here is a simple main program that accepts all records: 

 

int main() 

{ 

 return(1); 

} 

 

Here is an example that accepts records that have a value of “M” for Sex and rejects other 

records: 

 

int main() 

{ 

 if (Sex == “M”) { 

  return(1); 

 } else { 

  return(0); 

 } 

} 

 

Here is an example that accepts records that have a value of “M” for Sex variable and a 

value of 65 or greater for Age: 

 

int main() 

{ 

 if (Sex == “M” && Age >= 65) { 

  return(1); 

 } else { 

  return(0); 

 } 

} 
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Here is a main program that accepts about half of the records and rejects half: 

 

int main() 

{ 

 if (random() > 0.5) { 

  return(1); 

 } else { 

  return(0); 

 } 

} 

 

Global Variables 

 

A global variable is a variable defined outside the scope of any function; usually, global 

variables are defined at the top of the program.  Global variables can be accessed by any 

function in the DTL program.  Global variables may have any of the three data types, int, 

double or string.  Global variables you define are called explicit global variables.  

Global variables defined automatically by DTREG are called implicit global variables. 

 

Implicit Global Variables 

 

DTREG defines implicit global variables for each variable in the input data file.  This 

includes all data variables, even variables not designated as predictor, target or weight 

variables.  The implicit global variables are not visible in the DTL source program, but 

they can be used by the program. 

 

If a variable is specified as categorical in the DTREG model, the implicit definition has 

type string.  If the variable is specified as continuous, the implicit definition has type 

double.  For example, if a data file contains four continuous variables, Age, 

BloodPressure, Height, Weight and one categorical variable Sex, then the implicit 

definitions (which you will not see) would be: 

 

double Age; 

double BloodPressure; 

double Height; 

double Weight; 

string Sex; 

 

The main() function and any other functions in the DTL program can reference these 

implicit global variables. 
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In addition to generating a global variable for each variable in the data file, DTREG also 

generates several other global variables: 

 

int RECORDNUMBER;  /* The number of the current data record */ 

int DOINGSCORE;  /* 1 if scoring, 0 if analysis is being run */ 

double MISSINGVALUE; /* Value used to indicate missing value */ 

 

Any changes your program makes to the values of implicit global variables are not used 

in the analysis.  If you want to transform variables, you must define your own global 

variables as described below and store values into them. 

 

Explicit Global Variables 

 

You can define your own global variables by putting their definitions outside the scope of 

any function.  It is recommended that they be put at the top of the DTL program before 

main(). 

 

Any global variable you define in a DTL program that does not have the “static” 

declaration will be available as a variable in the DTREG analysis.  This is the way you 

generate transformed variables.  For example, the following program generates a new 

variable, Size, which is the product of two input data variables, Height and Weight: 

 

double Size; 

int main() 

{ 

 Size = Height * Weight; 

 Return(1); 

} 

 

With this DTL program defined, the Size variable will be available for use in the DTREG 

analysis.  The Height and Weight variables also are available. 
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Here is an example that creates a variable called Republican that is 1 if the value of 

PartyAffiliation is “R” and 0 if PartyAffiliation is anything else: 

 

double Republican; 

int main() 

{ 

 if (PartyAffiliation == “R”) { 

  Republican = 1; 

 } else { 

  Republican = 0; 

 } 

 return(1); 

} 

 

Here is an example that creates a LogAge variable that is the natural logarithm of the Age 

variable: 

 

double LogAge; 

int main() 

{ 

 LogAge = log(Age); 

 return(1); 

} 

 

Here is an example that creates a variable named ZIP3 that has the first three digits of a 

zip code whose five-digit code is stored in ZIP5.  The substring operator,  [start:length], 
is used to extract the first three characters. 

 

string ZIP3; 

int main() 

{ 

 ZIP3 = ZIP5[0:3]; 

 return(1); 

} 
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Here is an example that uses the lag() function to generate variables with values of 

StockPrice from 1, 2 and 12 prior periods. Note, the missing value code is returned by the 

lag() function when a request is made for a prior value that has not yet been stored. 

 

double StockPriceBack1; 

double StockPriceBack2; 

double StockPriceBack12; 

int main() 

{ 

 StockPriceBack1 = lag(StockPrice,1); 

 StockPriceBack2 = lag(StockPrice,2); 

 StockPriceBack12 = lag(StockPrice,12); 

 return(1); 

} 

 

Sometimes missing values for numeric variables are coded with values like “999”. 

DTREG uses a special value called “MissingValue” to indicate missing values.  Here is 

an example DTL program that converts input data values of “999” on an Age variable to 

the internal missing value.  The new variable with the transformed values is called 

NewAge. 

 

double NewAge; 

int main() 

{ 

 if (Age == 999) { 

  NewAge = MissingValue; 

 } else { 

  NewAge = Age; 

 } 

 return(1); 

} 

 



159 

 

Static Global Variables 

 

Static global variables are used to store information between calls of the main() function 

for each data record.  They also can be used to hold information that must be accessed by 

multiple functions.  Static global variables may not be used as variables in the DTREG 

analysis.  To declare a static global variable, put the word “static” in front of the 

declaration like this: 

 

static int FileNumber; 

static int Count; 

static double LastAge; 

static string LastName; 

 

Using the StoreData() function to generate data records 

 

The main() function is called for each record in the input data file, and it returns 1 to 

keep the record or 0 to reject the record.  DTL provides a StoreData() function that you 

can call to generate additional records.  Each time you call StoreData(), the current 

values of the global variables are used to generate a new data record which is included in 

the analysis.  This allows you to generate multiple records from a single input record. 

 

Consider a data set that is to be analyzed using logistic regression.  The data set measures 

the response of patients to varying dose levels of a drug.  There are three variables in the 

input data file, Dose (the amount of the drug), Positive (the number of patients with 

positive responses) and Negative (the number of patients that did not respond).  Hence 

the implicit global definitions generated by DTREG for the DTL program are: 

 

double Dose; 

double Positive; 

double Negative; 

 

The following DTL program defines a new variable, Response, that has the value 1 if 

the patient responds positively and 0 if the patient does not respond.  The DTL program 

uses the StoreData() function to generate a separate record for each patient.  After 

calling StoreData() the appropriate number of times, it uses the return(0) statement to 

reject the original record. 
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double Response; /* Generated variable with 1 or 0 response */ 

int main() 

{ 

 int count; 

 /* Generate the positive response records */ 

 Response = 1; 

 for (count=0; count<Positive; count++) { 

  StoreData(); 

 } 

 /* Generate the negative response records */ 

 Response = 0; 

 For (count=0; count<Negative; count++) { 

  StoreData(); 

 } 

 /* Reject the original record */ 

 return(0); 

} 

 

 

The StartRun() and EndRun() Functions 

 

The optional StartRun() and EndRun() functions can be used to perform initialization 

and cleanup in a DTL program. 

 

If your DTL program contains a StartRun() function, it is called once at the beginning of 

the run before the first data record is processed.  It can perform initialization. 

 

If your DTL program contains an EndRun() function, it is called once after the last data 

record has been read. 

 

In the following example, the DTL program opens an output file in the StartRun() 
function, writes information about each data record in the main() function and closes the 

file in the EndRun() function.  Note the use of a static global variable to store the file 

handle number between iterations. 
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static int FileHandle; 

 

void StartRun() 

{ 

 FileHandle = fopen(“Data.dat”,”wt”); 

 return; 

} 

 

int main() 

{ 

 fprintf(FileHandle,”%f %f\n”,x,y); 

 return(1); 

} 

 

void EndRun() 

{ 

 fclose(FileHandle); 

 return; 

} 
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Scoring Data Values 
 

“Scoring” runs a set of data rows through a generated predictive model and generates a 

new data file showing the predicted value of the target variable and other information for 

each row. 

 

Scoring Property Page 

To score data, select the Scoring property page for the model. 
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Input and output scoring files 

 

Input file whose data is to be scored – This is the name of the data file that is to be read 

and scored using the predictive model.  This could be the same data file that was used to 

generate the model, or (more commonly) it could be some other file for which you wish 

to use a model to predict values. 

 

The input data file must have the same format as an input file used to build the model: 

 The first row in the file must contain the names of the variables in the file. 

 Columns must be separated by the character specified by the “Character used to 

separate columns” parameter on the Data property page (see page 36). 

 Either a period or a comma may be used as the decimal point indicator.  Select 

which will be used on the Data property page using the parameter “Character used 

for a decimal point in the input data file” (see page 36). 

 Missing values must be indicated by empty fields, question marks or periods. 

 

The variables in the file being scored do not have to correspond to the variables in the 

data file that was used to build the tree.  DTREG uses the first row of the file to 

determine which variables are present and which rows they are in.  If a predictor variable 

is missing from the file being scored, then all of the values of that variable are treated as 

missing. 

 

The target variable may be omitted (and often is) since the purpose of scoring is to 

predict the target value for each row.  If target values are provided, they can be used to 

compute residual values for the prediction and misclassified rows. 

 

Output file where scored results are to be written – This is the name of the output file 

that will be created by DTREG as it scores the rows in the input file.  The generated 

output file will have the same format as the input file: the first row will have the names of 

the variables in the file. 

 

Variables written to the output scoring file 

 

Variables to be written to the output scoring file – There will be one entry in this table 

for each variable that was specified at the time that the tree was built.  Select which 

variables you want written to the output file.  If there are variables in the input scoring 

file that were not part of the input file used to construct the tree, they are written to the 

output file.  Variables can be used to classify rows even if they are not written to the 

output file. 

 

Variables DTREG should add to output records – Select which generated variables 

you want DTREG to add to the output file.  Check the box by each variable you want 

DTREG to add, and specify the name of the variable in the associated box. 
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 Predicted target value – This is the predicted value of the target variable for 

each data row in the scoring file.  The predicted target value is obtained by using 

the value of the predictor variables for the row to run the row through the tree 

until it reached a terminal node.  The value of the target variable in the terminal 

node is used as the predicted value of the target variable for the row. 

 Residual (Actual – Predicted) – If you are performing a regression analysis (i.e., 

the target variable is continuous), then this output variable is the “residual” value 

for the row which is the difference between the actual value of the target variable 

for the row and the predicted value.  In order to generate this variable, values for 

the target variable must be included in the input scoring file. 

 Misclassification indicator – If a classification analysis is being performed (i.e., 

the target variable is categorical), then this generated variable has the value 0 

(zero) if the predicted value of the target variable matches the actual value.  It has 

the value 1 (one) if the predicted value is different from the actual value (i.e., the 

row was misclassified).  Note, in order to generate this variable, values for the 

target variable must be included in the input scoring file. 

 Row number – If selected, this variable has the number of the row in the input 

scoring file.  The first row is numbered 1. 

 Terminal node number – If selected, this variable will have the number of the 

terminal node for the row.  That is, the last node the row ended up in after being 

run through the tree. 

 Probability scores for each category of the target – DTREG computes a 

posterior, likelihood probability value for each category of the target variable.  

The predicted category for a row is computed by selecting the most likely 

category adjusted by the misclassification costs (technically, the category is 

selected so as to minimize the misclassification cost).  If you select this option, 

DTREG will write to the output scoring file the computed probability values for 

each target category.  The names of the columns have the form Prob_category 

where ‘category’ is the value of the category.  For example, if the target variable 

is Sex, the probability columns might have names of Prob_Male and 

Prob_Female. 

 Write variable names to the first row of the scoring file – If this box is checked 

then DTREG will write the names of the variables in the score file to the first 

record of the score file.  This makes it possible to import the score file into 

programs like Excel that expect the variable names to be in the first row. 

 

Forecast rows for time series – If you are performing a time series analysis, you can 

generate forecasts by checking this box and specifying how many observations you want 

DTREG to forecast beyond the end of the training data.  The data set used as input for 

scoring must start with and include the same data that was in the training data; it may 

contain additional rows beyond the training data.  Note that there also is an option on the 

Time Series property page (see page 47) where you can specify that forecast values for 

the training data are to be written. 

 



166 

 

Start scoring the data 

 

Once you have specified the input and output files and selected the variables to be 

included in the output file, click “Score the data” button to begin the process. 

 

Using scoring for validation with a test dataset 

In addition to using scoring to generate predicted values for a dataset, you can use scoring 

to test a model against a dataset whose actual target values are known.  To do this, use the 

normal scoring procedure with a dataset that has the target variable along with the 

predictors.  When the scoring process finishes, DTREG displays a report showing the 

misclassification rate for the model applied to the dataset that was scored. 

 

For classification models, the report looks like this: 

 
Scoring was performed 23-Mar-2004 13:01:40 

 

Input file = C:\DTREG\Test\LiverDisorder.csv 

Output file = c:\DTREG\LiverDisorder2.csv 

 

Number of observations scored = 345 

 

             Actual   --Misclassified-- 

  Category    Count     Count   Percent 

  --------  --------  --------  ------- 

         1       145        24   16.552 

         2       200        53   26.500 

  --------  --------  --------  ------- 

     Total       345        77   22.319 

 
For regression models, the report looks like this: 

 
Scoring was performed 23-Mar-2004 13:27:44 

 

Input file = C:\DTREG\Test\Boston.csv 

Output file = C:\DTREG\TestScore.csv 

 

Number of observations scored = 506 

 

Mean target value for data being scored = 22.532806 

Mean target value for predicted target values = 22.532806 

 

Average absolute error after tree fitting = 2.126722 

 

Variance in scored data = 84.419556 

Residual (unexplained) variance after tree fitting = 7.806666 

Proportion of variance explained = 0.90753  (90.753%) 
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How missing values are handled during scoring 

If the value of a predictor variable used at a split is missing, DTREG attempts to use the 

surrogate predictors for the split.  It tries each surrogate splitter in the order of decreasing 

association values until it finds one that has a non-missing value on the row that is being 

scored.  If it is unable to find a surrogate splitter, then the last node that the row reached 

(i.e., the one for which no split could be found) becomes the terminal node for that row, 

and the predicted value for the group of rows in that node is used as the predicted value 

for the row being scored.  For additional information about surrogate splitters, please see 

page 364. 

 

If you anticipate scoring data that has missing values, you should select the option 

“Always create surrogate splitters” on the Missing Data property page when the tree is 

built. (See page 133.)  Surrogate splitters cannot be created when scoring is being done; 

they must be created at the time that the tree is constructed. 
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Translation:  Generating Code for Scoring 
 

“Translation” generates source code that can be compiled with an application program to 

perform scoring. 

 

DTREG is capable of generating source code for the C language (this code also can be 

used with C++ programs) and SAS
®
.  The Translate function can generate code for all 

types of models in the C language and for all types of models except for Support Vector 

Machine (SVM) in the SAS language.  You can use the DTREG.DLL COM library 

module to perform scoring for other types of applications.  See page 375 for information 

about the DTREG.DLL library module.  The primary advantage of generated source code 

is that it executes faster than using the DLL library. 

 

The Translate function is available only in the Enterprise Version of DTREG. 

 

Here is an overview of the process of generating and using scoring source code: 

  1.  Use DTREG to build a model. 

  2.  Use the Translate function to generate source code. 

  3.  Compile the source code with an application program you have written. 

  4.  Run the application to read data and call the scoring function generated by DTREG. 
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Translate Property Page 

To generate scoring source code, select the Translate property page for the model. 

 

 
 

Type of code to generate 

Check the button to select whether you want DTREG to generate a C or C++ or SAS
®
 

source file.  

 

Prefix for global function and variable names in generated code 

If you specify a string in this field, it will be added to the front of the names of all 

functions and global variables in the source code generated by DTREG.  This is useful 

when you want to call generated code for two different models from the same application 

program.  The specified string must be valid as the beginning of a variable and function 

name (it must begin with a letter, and it may not contain spaces). 

 

Output file where source code is to be written 

Specify the full name including device and directory where you want DTREG to write 

the generated source code.  If you omit the extension from the file name, DTREG will 

add it.  In addition to the .c file, DTREG also generates one or more .h header files using 

the same base file name.  In the case of SAS code generation, DTREG generates a file 

named “program.sas” and a header file named “program_header.sas”. 
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Split large files into multiple files 

If the predictive  model is very large, the generated source code may be too large to 

compile as a single unit.  This problem occurs most commonly with TreeBoost and 

Decision Tree Forest models composed of many trees.  If you turn on this option, 

DTREG will generate multiple source files that you can compile as separate modules and 

link together with the application.  When multiple source files are created, DTREG 

appends “_nnn” to the end of the file name, where nnn is a sequence number.  DTREG 

also generates a header file named “basename_Internal.h” that is used to transfer 

information between the generated modules; you should not include this header file in 

your application.  SAS source programs cannot be split. 

 

Maximum allowable file size 

If you turn on the option to generate multiple source files, DTREG uses the size you 

specify in this field to control when one source file ends and the next one begins.  The 

size is approximate since DTREG cannot split a function in the middle.  The size is 

specified in units of K bytes, so a value of 1000 corresponds to 1000 kb which is 1 MB.  

The maximum allowable source file size is dependent on the compiler you use.  The 

Microsoft Visual C++ compiler seems to be able to handle about 1.2 MB in each source 

file. 

 

Generate code to check for missing values 

If you turn on this option, DTREG will generate code to check for missing data values 

and take the appropriate action.  If you do not turn on this option, it is your responsibility 

to make sure that no missing values are passed to the generated scoring function. 

 

Generate code for surrogate splits 

If you turn on this option, DTREG will generate code to use surrogate splits to handle 

missing values.  In order to use this option, the model must have been created with 

surrogate split information, and you must turn on the option to tell DTREG to check for 

missing values.  See page 364 for additional about surrogate splits. 

 

Add #include “stdafx.h” header line 

If you check this box, DTREG will insert the following line in each generated source file: 

 

#include “stdafx.h” 
 

This is necessary when you are using Microsoft Developer’s Studio with the precompiled 

header option turned on. 

 

Generate placeholder definitions for unused variables 

If you check this box, DTREG will generate variable definitions for variables that are not 

used by the model.  This makes it possible to select which variables are used as predictors 

without having to modify the application program that sets up values for all variables. 
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How to call the scoring function – C and C++ programs 

The generated code will consist of one or more .c source files and a .h header file.   The 

header file will contain prototypes for the generated functions and for the global 

variables.  You must include the generated header file in the source modules of your 

application program that call the generated scoring function. 

 

Generated header file 

The values for predictor variables must be set in global variables prior to calling the 

function to perform scoring.  There will be one global predictor variable for each 

predictor variable specified in the model.  The generated .h header file contains external 

references to these variables.  Here is an example header file: 

 
#ifndef Iris_h 

#define Iris_h 

 

/*--------------------------------------------------------------- 

 *  Scoring header file generated by DTREG (http://www.dtreg.com) 

 *  This header file should be included in applications calling the 

 *  generated code. 

 *  DTREG version 3.5 

 *  Creation date: 21-Oct-2004 14:01:32 

 *  Project file: C:\DTREG\Test\Iris.dtr 

 *  Project title: Iris variety classification 

 */ 

 

/* 

 *  Type of model. 

 */ 

#define MODELTYPE_TREEBOOST 

/* 

 *  Values used to represent missing values. 

 */ 

extern double Missing_Continuous; /* Continuous variables */ 

extern char *Missing_Category;  /* Categorical variables */ 

extern long Missing_Index;  /* Category index */ 

/* 

 *  Predictor variables. 

 */ 

/* Continuous variables */ 

extern double Sepal_length; 

extern double Sepal_width; 

extern double Petal_length; 

extern double Petal_width; 
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/* 

 *  Variable that will receive predicted value of Species. 

 */ 

extern char PredictedValue[200]; /* Gets computed category /* 

 *  Variables that will receive probability values for the 

 *  categories of Species. 

 */ 

extern double Prob_Setosa; 

extern double Prob_Versicolor; 

extern double Prob_Virginica;/* 

*/ 

 *  Function prototypes. 

 */ 

void ScoreRecord(void); 

 

/* 

 *  End of header. 

 */ 

#endif 

 

Type of model 

The type of model will be defined by one of the following macros: 

MODELTYPE_SINGLETREE, MODELTYPE_TREEBOOST or MODELTYPE_FOREST.  

You can use #ifdef macros in your application program to determine which type of model 

was generated. 

 

Values used to represent missing values 

If you turn on the option to generate code to handle missing values, DTREG will generate 

references to Missing_Continuous and Missing_Cateogory.  These global variables have 

the values that you should use to represent missing values of predictor variables. 

 

Predictor variables 

There will be an external reference to each predictor variable.  If the predictor variables 

were specified with spaces in their names, the spaces will be converted to underscores in 

the generated code.  Continuous predictor variables are of type double, and categorical 

predictor variables are of type char[200].  Note that categorical variables must be 

specified as character string values even if all of the values are numeric.  If, for example, 

you had a predictor variable named sexcode that had values 1 and 2, you could use the 

sprintf function to format the value into the global variable: 

 
    sprintf(sex,”%d”,sexcode); 

 

Predicted target variable 

The predicted value computed by the scoring function will be returned in a global 

variable named PredictedValue.  If the target variable is continuous, then PredictedValue 

will be of type double.  If the target variable is categorical, then PredictedValue will be a 

char[200] variable.  If the target variable has numeric categorical values, you can use the 

atol() function to convert the returned string to a long integer value. 
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Predicted category probabilities 

DTREG will generate code to create variables that will have the probability for each 

category of the target variable.  These variables are named Prob_category where 

category is the name of the category of the target variable. 

 

Prototype for the scoring function 

The function called to compute the score is named ScoreRecord.  Its prototype is as 

follows: 

 
void ScoreRecord(void); 

 

Note that there are no arguments and no returned value because the predictor variable 

values are set in global variables before it is called, and the predicted target variable value 

is returned in a global variable. 

 

Here is an outline of the procedure you should use in your application program: 

 1.  Read values for the case you want to score. 

 2.  Set the values of the global predictor variables. 

 3.  Call the generated ScoreRecord() function. 

 4.  Get the predicted target value from the PredictedValue global variable. 

 

Generated Source File 

Usually, it will not be necessary for you to edit or be concerned with the contents of the 

generated .c source file.  You can simply compile it as a module of your application.  If 

you turn on the option to split the source into multiple files, then you must compile each 

generated source file as a separate source module. 

 

The top of a generated source file will be similar to this: 

 
/*--------------------------------------------------------------- 

 *  Scoring source file generated by DTREG (http://www.dtreg.com) 

 *  DTREG version 3.5 

 *  Creation date: 21-Oct-2004 14:44:09 

 *  Project file: C:\DTREG\Test\Iris.dtr 

 *  Project title: Iris variety classification 

 *  Model type: Single-tree 

 *  Depth of tree: 5 

 *  Number of terminal nodes: 5 

 *  Target variable: Species 

 *  Type of analysis: Classification with 3 target classes 

 */ 

 

#include <string.h> 

#include <math.h> 
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/* 

 *  Values used to represent missing values. 

 */ 

double Missing_Continuous = -1e+035; /* Continuous variables */ 

char *Missing_Category = "?";  /* Categorical variables */ 

long Missing_Index = -1;  /* Category index */ 

/* 

 *  Global definitions of predictor variables. 

 */ 

/* Continuous variables */ 

double Sepal_length = -1e+035; 

double Sepal_width = -1e+035; 

double Petal_length = -1e+035; 

double Petal_width = -1e+035; 

/* 

 *  Define variable that will receive predicted value of Species. 

 */ 

char PredictedValue[200] = {0}; /* Gets predicted category */ 

 

/*---------------------------------------------------------------- 

 *  Call this routine to compute the predicted value. 

 */ 

void ScoreRecord(void) 

{ 

 

 

How to call the scoring function – SAS
®
 programs 

SAS source code generated by DTREG consists of two parts, a header file named 

“program_header.sas” and the model evaluation code named “program.sas”.   These 

files should be included in the DATA proc of the program that is doing the scoring.  The 

best way to include the files is to use the SAS %INCLUDE facility to insert the header file 

at the top and the evaluation code a the end after a RETURN statement.  Here is the 

outline of a DATA proc doing this: 
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Data Titanic; 

/* Include the generated header file */ 

%INCLUDE 'Titanic_Header.sas'; 

 

/* your statements to set up values for scoring */ 

 

length classc $1 agec $1 sexc $1; 

classc = left(put(class,best12.)); 

agec = left(put(age,best12.)); 

sexc = left(put(sex,best12.)); 

 

/* 

 * Use LINK to call the scoring code. 

 * It will return to the statement after LINK. 

 * The predicted value will be in _PredictedValue_. 

 

LINK ScoreRecord; 

 

/* Your statements to process the predicted value. 

 * For example: 

 */ 

 

DidSurvive = _PredictedValue_; 

 

/* Output the values and return */ 

 

RETURN; 

 

/* Put the generated scoring code here */ 

 

%INCLUDE 'Titanic.sas'; 

 

Data types of variables 

 

SAS has two types of variables, numeric and character string.  If the “Character” 

attribute is set for a variable on the variable property page (see page 41) then DTREG 

generates SAS code to treat the variable as a character string.  Otherwise, the generated 

code treats the variable as a numeric value. 
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Generated header file 

Here is an example header file: 

 
/*--------------------------------------------------------------- 

 *  Scoring header file generated by DTREG (http://www.dtreg.com) 

 *  This header file should be included in applications calling 

 * the generated code. 

 *  DTREG version 4.5 

 *  Creation date: 10-Nov-2005 15:01:50 

 *  Project file: C:\DTREG\Test\iris.dtr 

 *  Project title: Iris variety classification 

 * 

 *  To score a record use the statement: LINK ScoreRecord; 

 * 

 *  On return, the predicted value for 'Species' will be 

 *  in '_PredictedValue_'. 

 *  The predicted value is returned as a character string. 

 *  The terminal nodel number is returned in '_Node_'. 

 */ 

 

/* 

 *  Declare variables. 

 */ 

    _ModelType_ = 1; /* Single tree */ 

    length _PredictedValue_ $10; 

    _PredictedValue_ = '?'; 

    _Node_ = 0; 

/* 

 *  ---  End of scoring header  --- 

 */ 

 

Type of model 

The _ModelType_ variable has a value indicating what type of model was built. 

 

Predicted target variable 

The predicted value computed by the scoring function will be returned in a variable 

named _PredictedValue_.  If the variable was declared to be of type character, then 

_PredictedValue_ will be declared as a character string; otherwise, it will be a numeric 

variable. 

 

Terminal node number 

For single-tree models, the terminal node in which a record ends is returned in the 

_Node_ variable.  This variable is not generated for other types of models. 

 

Predicted category probabilities 

If scoring code is generated for a categorical model, there will be variables that will have 

the probability for each category of the target variable.  These variables are named 

Prob_category where category is the name of the category of the target variable. 
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Generated Model Execution Source File 

Usually, it will not be necessary for you to edit or be concerned with the contents of the 

generated program.sas source file.  You can simply use a %INCLUDE statement to insert 

into the end of the DATA proc. 

 

To score a record, use this statement to call the scoring code: 

 
LINK ScoreRecord; 

 

The LINK statement jumps to the ScoreRecord label in the generated code much as a 

GOTO statement would do.  When the generated code finishes computing the predicted 

value, it uses a RETURN statement to return execution control to the line following the 

LINK statement.  You can then do whatever processing is appropriate for the predicted 

value and then use a RETURN statement to terminate the DATA proc execution and write 

the record to the output dataset. 

 

The predicted value computed by the scoring code is returned in a variable named 

_PredictedValue_.  It will be either a character string value or a numeric value depending 

on whether the target variable was declared to be character or numeric. 

 



179 

 

The Output Report Generated by DTREG 
 

Once you run an analysis, DTREG will display in the main right panel a report of the 

results. 

 

 
 

There are several major sections in the report.  You can use the scroll bar to move to 

sections, or you can click on of the section names shown under “Analysis report” in the 

left panel to scroll instantly to a section. 
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Project Parameters 

 
  ============  Project Parameters  ============ 

 

Project title: Iris variety classification 

Project file: C:\DTREG\Test\iris.dtr 

Target variable: Species 

Number of predictor variables: 4 

Type of tree: Single tree 

Maximum splitting levels: 10 

Type of analysis: Classification 

Splitting algorithm: Gini 

Category weights: Equal (Balanced) 

Misclassification costs: Equal (unitary) 

Variable weights: Equal 

Minimum size node to split: 10 

Max. categories for continuous predictors: 200 

Use surrogate splitters for missing values: Yes 

Always compute surrogate splitters: Yes 

Tree pruning and validation method: V-fold 

Number of folds: 10 

Tree pruning criterion: Minimum cost complexity (0.00 S.E.) 

 

The Project Parameters section of the report displays a summary of the options and 

parameters you selected on the various property pages for the model. 

 

Input Data 

 
  ============  Input Data  ============ 

 

Input data file: C:\DTREG\iris.csv 

Number of variables (data columns): 5 

Number of data rows: 150 

Total weight for all rows: 150 

Rows with missing target or weight values: 0 

Rows with missing predictor values: 0 

 

The Input Data section displays information about the input data file used to construct the 

tree.  The entry for “Rows with missing target or weight values” indicates the number of 

rows that were discarded because these variables had missing values. 
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Summary of Variables 

 
  ============  Summary of Variables  ============ 

 

  Variable      Class       Type      Missing rows  Categories 

------------  ---------  -----------  ------------  ---------- 

Species       Target     Categorical          0           3 

Sepal length  Predictor  Continuous           0          35 

Sepal width   Predictor  Continuous           0          23 

Petal length  Predictor  Continuous           0          43 

Petal width   Predictor  Continuous           0          22 

 

The Summary of Variables section displays information about each variable that was 

present in the input dataset.  The first column shows the name of the variable, the second 

column shows how the variable was used; the possibilities are Target, Predictor, Weight 

and Unused.  The third column shows whether the variable is categorical or continuous, 

the forth column shows how many data rows had missing values on the variable, and the 

fifth column shows how many categories (discrete values) the variable has.  In the case of 

continuous variables, the number of categories will be limited by the value specified for 

“Max. categories for predictor variables” on the model design property page. 

 

Summary of Categories 

  ============  Summary of Categories  ============ 

 

    ---  Predictors  ---     |  ---  Target Variable  --- 

 

Class                        |     No     |     Yes    | 

     885   40.21%  Crew      |  673   76% |  212   24% | 

     325   14.77%  First     |  122   38% |  203   62% | 

     285   12.95%  Second    |  167   59% |  118   41% | 

     706   32.08%  Third     |  528   75% |  178   25% | 

 

Age                          |     No     |     Yes    | 

    2092   95.05%  Adult     | 1438   69% |  654   31% | 

     109    4.95%  Child     |   52   48% |   57   52% | 

 

Sex                          |     No     |     Yes    | 

     470   21.35%  Female    |  126   27% |  344   73% | 

    1731   78.65%  Male      | 1364   79% |  367   21% | 

 

Survived                     |     No     |     Yes    | 

    1490   67.70%  No        | 1490  100% |    0    0% | 

     711   32.30%  Yes       |    0    0% |  711  100% | 

 

The Summary of Categories section displays information about the categories of 

predictor and target variables.  This section is only displayed if you select one or both of 

the options on the Variables property page requesting category information (see page 41). 

 

Several items of information are displayed for each category: 
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1. The number of rows in the dataset having the category for the variable. 

2. The percent of the rows having the category. 

3. The label of the category. 

4. If the target variable is categorical, a table showing the distribution of target 

categories for the predictor category. 

5. If the target variable is continuous, the mean value of the target for the predictor 

category. 

 

Surrogate Variable Report 

If surrogate variables are used to impute missing predictor values, then a section is 

included in the report for the surrogate variables.  See page 358 for information about 

surrogate variables.  Here is an example of a surrogate variable report:  

 
  ============  Surrogate Variables  ============ 

 

Predictor  #  Surrogate Association  Constant   Coeff. 1    Coeff. 2    Coeff. 3  

--------- --- --------- ----------- ----------- ----------- ----------- ----------- 

  Cat2{0}   1     C1{0}      84          0.0000      1.0000       .           .     

            2     C2{0}      82          1.0000     -1.0000       .           .     

            3        X1      45          0.4393      0.0256       .           .     

            4        X2      39          0.3525      0.0277      0.0002 -3.467e-005 

       X1   1        X2     100         -1.3338      0.6646       .           .     

            2     C1{0}      19         -3.3996      7.1541       .           .     

            3   Cat2{0}      17         -2.8827      6.7654       .           .     

            4     C2{0}      11          2.9238     -5.4648       .           .     

       X2   1        X1     100          2.0076      1.5017       .           .     

            2     C1{0}      17         -2.7628     10.3787       .           .     

            3   Cat2{0}      15         -1.6381      9.6841       .           .     

    C1{0}   1   Cat2{0}      84          0.0000      1.0000       .           .     

            2     C2{0}      66          1.0000     -1.0000       .           .     

            3        X1      51          0.4762      0.0499      0.0004     -0.0001 

            4        X2      49          0.4591      0.0169       .           .     

    C2{0}   1   Cat2{0}      82          1.0000     -1.0000       .           .     

            2     C1{0}      66          1.0000     -1.0000       .           .     

            3        X1      38          0.4966     -0.0205       .           .     

            4        X2      37          0.5398     -0.0232     -0.0002  2.903e-005 

 

These are the columns in the table: 

 

Predictor – This is the primary predictor for which surrogates are associated. 

 

# – This is a sequential number showing which surrogate this line is for.  The surrogate 

variables are listed in decreasing order of association with the primary variable. 

 

Surrogate – This is the name of the surrogate variable. 

 

Association – This is the association between the surrogate variable and the primary 

variable. 

 

Constant – This is the constant term in the function. 

 

Coeff 1, Coeff 2, Coeff 3 – These are the coefficients of the first, second, and third-order 

polynomial terms. 
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Tree Size and Validation Statistics 

 

This section of the report is composed of two sub-sections: Tree Size Summary Report 

and Validation Statistics Report. 

 
  ============  Tree Size Summary Report  ============ 

 

The full tree has 5 terminal (leaf) nodes. 

The minimal cross-validated relative error occurs with 3 nodes. 

The relative error value is 0.0700 with a standard error of 0.0257 

You allowed up to 1 standard error for tree size reduction. 

With 1.000 S.E. allowance, the optimal tree has 3 nodes. 

The tree will be pruned from 5 to 3 terminal nodes. 

 

The Tree Size Summary Report displays information about the maximum size tree that 

was built, and it shows summary information about the parameters that were used to 

prune the tree.   

 
  ============  Tree Size Summary Report  ============ 

 

The full tree has 5 terminal (leaf) nodes. 

The minimum validation relative error occurs with 5 nodes. 

The relative error value is 0.0700 with a standard error of 0.0280 

You allowed up to 1 standard error for tree size reduction. 

With 1 S.E. allowance, the optimal tree has 3 nodes. 

The tree will be pruned from 5 to 3 nodes. 

 

   ------  Validation Statistics  ------ 

 

Nodes  Val cost  Val std. err.  RS cost    Complexity   

-----  --------  -------------  -------  -------------- 

    5   0.0700        0.0280     0.0300      0.000000 <-- Min.error 

    4   0.0800        0.0297     0.0400      0.006667 

    3   0.0700        0.0257     0.0600      0.013333 <-- Pruned size 

    2   0.5000        0.0000     0.5000      0.293333 

    1   1.0000        0.0000     1.0000      0.333333 

 

In order to create a tree that can be generalized to predict data values other than those in 

the learning dataset, DTREG builds an overly-large tree and then prunes it to the optimal 

size.  For information about how pruning is done, please see page 366. 

 

The Validation Statistics section displays information about the size of the generated 

tree and statistics used to prune the tree.  There are five columns in the table: 

 

1. Nodes – This is the number of terminal nodes in a particular pruned version of the 

tree.  It will range from 1 up to the maximum nodes in the largest tree that was 

generated.  The maximum number of nodes will be limited by the maximum 
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depth of the tree and the minimum node size allowed to be split on the Design 

property page for the model. 

2. Val cost – This is the validation cost of the tree pruned to the reported number of 

nodes.  It is the error cost computed using either cross-validation or the random-

row-holdback data.  The displayed cost value is the cost relative to the cost for a 

tree with one node.  See page 369 for a detailed description of the cross-validation 

procedure.  The validation cost is the best measure of how well the tree will fit an 

independent dataset different from the learning dataset.  The pruned size with the 

minimum validation cost is marked with “Min. validation error” in the margin.  

Note, if you enable DTREG to smooth the minimum values by checking the box 

labeled “Smooth minimum spikes” on the Validation and Pruning property page 

(see page Error! Bookmark not defined.), then the minimum value selected may 

not be the absolute minimum. 

3. Val std. err. – This is the standard error of the validation cost value.  If you wish, 

you can allow DTREG to prune to a smaller tree with a larger validation cost 

value than the absolute minimum by using a multiple of the validation cost 

standard error.  See page 371 for information about controlling the pruning point.  

If you allow DTREG to prune the tree to a smaller size than the minimum 

validation cost size, the pruned size will be indicated by “Pruned size” in the 

report. 

4. RS cost – This is the resubstitution cost computed by running the learning dataset 

through the tree.  The displayed resubstitution cost is scaled relative to the cost for 

a tree with one node.  Since the tree is being evaluated by the same data that was 

used to build it, the resubstitution cost does not give an honest estimate of the 

predictive accuracy of the tree for other data. 

5. Complexity – This is a “Cost Complexity” measure that shows the relative 

tradeoff between the number of terminal nodes and the misclassification cost.  See 

Breiman, Friedman, Olshen and Stone (1984) for information about the 

calculation and use of the cost complexity measure. 
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Node Splits 

The node splits section provides information about each node in the tree and how it was 

split to produce its child nodes.  This section of the report is generated only if you check 

the box labeled “Generate report of tree splits” on the Single Tree property page (see 

page 51). 

 

There are five subsections: (1) the node summary, (2) the distribution of categories of the 

target variable in the group; (3) splitting information; (4) competitor splits; (5) surrogate 

splits. 

 

Node Summary 

 
 =======================   Group 1   ======================= 

Number of rows in group: 149 

Sum of weights for all rows: 149 

Rows with missing values on the splitting variable: 37 

Rows with missing values classified using surrogates: 37 

Rows with missing values classified using target values: 0 

Rows with missing values classified into most probable group: 0 

Rows with missing values that stop in this node: 0 

Improvement in misclassification from split: 0.251146 

Complexity: 0.161633 

Category of Species assigned to group: Versicolor 

Misclassified rows = 66.44% 

Misclassification cost = 0.6667 

 

This section provides information about the node: 

 

 Number of rows in group – This is the total number of rows that made it through 

the tree to this node. 

 Sum of weights for all rows – This is the sum of the weights for all rows that 

made it to this node.  If you did not specify a weight variable, all rows get a 

weight of 1.00, and the sum of the weights will equal the number of rows. 

 Rows with missing values on the splitting variable – This is a count of how 

many rows in this node had missing values on the variable that DTREG selected 

to split the node.  The counts that appear on the following lines show how these 

rows were classified. 

 Rows with missing values classified using surrogates – This is a count of the 

rows that had missing values on the primary splitting variable that DTREG was 

able to classify using surrogate splitting variables.  See the list of surrogate 

splitters that appears later in the node report. 

 Rows with missing values classified using target values – This is the number of 

rows that could not be classified using surrogate splitters but instead were forced 

into the appropriate child group based on the actual value of their target variable.  

When the target variable is categorical, this method of assignment is used only if 

the actual target category for the row matches the target category assigned to one 

of the child rows.  If the target variable is continuous (i.e., a regression tree is 
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being built), then the row is put in the child group whose mean value on the target 

variable is closest to the row’s target variable value. 

 Rows with missing values classified into the most probable group – This is the 

number of rows that could not be classified by either of the two methods listed 

above but rather were dumped into the child group that is the most probable group 

to receive a random row without consideration of any predictor variables.  

Usually, this is the child group with the most number of rows, but it could be the 

smaller group depending on category weight values and other factors. 

 Rows with missing values that stop in this node – This is the number of rows 

with missing values on the splitting variable that could not be classified by any 

means, so they stopped in this node as their terminal node. 

 

Target Category Distribution 

 
  -- Distribution of categories of target variable in group -- 

 

   Category    Num. Rows   Total Weight   Category Wt. 

  ----------   ---------   ------------   ------------ 

      Setosa *        50             50         0.3333 

  Versicolor          50             50         0.3333 

   Virginica          50             50         0.3333 

 

If the target variable is categorical, the next section of the node report is a table showing 

information about the categories of the target variable occurring in the node.  For each 

category, the table displays the category name, the number of rows with that category in 

the node, the total weight of the rows, and the weight that was assigned to the category.  

This table is not displayed if the target variable is continuous. 

 

Node Split Information 

 
--  Group 1 was split on Petal length  -- 

 

Left child group = 2.  Number of rows = 49 

  A case goes left if Petal length <= 2.35 

 

Right child group = 3.  Number of rows = 100 

  A case goes right if Petal length > 2.35 

 

This section displays information about how the node was split.  The first line gives the 

number of the node being split and the name of the predictor variable that was selected as 

the splitting variable. 

 

The next two parts of this section display information about the left and right child nodes 

generated by the split.  For each child node, the number of the node is displayed along 

with the number of rows that were assigned to that node.  In the example above, the 

parent node is number 1.  It is split into two child nodes; the left node is number 2 and the 

right node is number 3. 
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The condition that controls whether rows are sent to the left or right node is displayed.  In 

the example above, a row is sent to the left child node if its value on the “Petal length” 

predictor variable is less than or equal to 2.35.  The row is sent to the right node if the 

value of “Petal length” is greater than 2.35. 

 

If the predictor variable used for the split is categorical, the categories of the variable 

being sent to the left and right child nodes are listed.  Here is an example: 

 
Left child group = 2.  Number of rows = 17800 

  Categories of Relationship going left: {Not-in-family, 

                   Other-relative, Own-child, Unmarried} 

 

Right child group = 3.  Number of rows = 14761 

  Categories of Relationship going right: {Husband, Wife} 

 

In this example, the split is being made using the “Relationship” predictor variable.  

Rows with values of “Not-in-family”, “Other-relative”, “Own-child” and “Unmarried” 

are sent to the left child group.  Rows with values of “Husband” or “Wife” are sent to the 

right child group. 

 

Competitor Predictor Variables 

 
--  Competitor Splits  -- 

 

Order    Variable     Improvement   Left Categories 

-----  ------------  -------------  --------------- 

  1    Petal width           0.247  <= 0.8 

  2    Sepal length          0.227  <= 5.45 

  3    Sepal width           0.124  <= 3.35 

 

For each node being split, DTREG examines all predictor variables and performs the split 

using the one that provides the greatest improvement.  The competitor split table lists up 

to five predictor variables that were the runners-up splitters.  They are listed in decreasing 

order of improvement. 

 

Surrogate Splitters 

 
--  Surrogate Splits  -- 

 

Order    Variable    Assoc  Dir   Improvement   Left Categories 

-----  ------------  -----  ---  -------------  --------------- 

  1    Petal width   0.748   +           0.247  <= 0.8 

  2    Sepal length  0.665   +           0.227  <= 5.45 

  3    Sepal width   0.427   -           0.115  <= 3.25 

 

A surrogate splitter is a predictor variable that mimics the split performed by the primary 

splitter.  That is, it sends the same rows to the left and right child groups as the primary 
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splitter.  Surrogate splitters are used to classify rows when the value of the primary 

splitter is missing.  For detailed information about surrogate splitters, please see page 

364. 

 

The following information is shown for each surrogate splitter: 

 

 Order – This is the order of the surrogate splitters in decreasing order of 

association.  When attempting to classify a row that has a missing value for the 

primary splitter, DTREG will try the surrogate splitters in the order shown until it 

finds one that has a non-missing value for the row. 

 Variable – This is the name of the predictor variable that will be used for the 

surrogate split. 

 Association – This is a measure of how well the surrogate split mimics the 

primary split.  The largest possible association value is 1.0 which means the 

surrogate sends exactly the same set of rows to the left and right groups as the 

primary splitter.  An association value of 0.0 means that the surrogate does no 

better at assigning rows than simply putting them in the most probable group. 

 Direction – This indicates whether the split generated by the surrogate splitter 

assigns rows to the same or opposite child group as the primary splitter.  This is 

roughly equivalent to variables that have a negative correlation – you can predict 

the value of one by going in the opposite direction on the other. 

 Improvement – This is the improvement in misclassification that would be 

gained by using the surrogate split.  Note that surrogate splits are not ranked by 

improvement but rather by association with the primary splitter. 

 Left categories – This shows what values of the surrogate predictor send rows to 

the left child group.  The other values of the predictor send rows to the right child 

group. 

 

Note that if a predictor is listed as both a competitor and as a surrogate, the split 

categories and improvement values may be different.  The reason for this is that when 

evaluated as a competitor, the split point is chosen so as to maximize the improvement, 

just as is done for the primary splitter.  But when evaluated as a surrogate, the split point 

is chosen not to maximize the improvement, but rather to maximize the association 

between the surrogate and the primary splitter. 
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Analysis of Variance 

The analysis of variance summary table is displayed when the target variable is 

continuous and a regression tree is being constructed.  The variance explained by the 

generated tree is the best measure of how well the tree fits the data. 

 
  ============  Analysis of Variance  ============ 

 

Variance in initial data sample = 84.419556 

Residual (unexplained) variance after tree fitting = 7.806666 

Proportion of variance explained = 0.90753  (90.753%) 

Correlation between actual and predicted = 0.999610 

 

The following items are displayed in the summary: 

 

 Variance in initial data sample – This is the variance in the entire learning 

dataset before any splits have been made.  The following algorithm is used to 

compute variance:  (1) Compute the mean value of the target variable for all rows.  

(2) For each row, subtract the row’s target value from the mean target value, 

square the difference and sum the squared differences.  The difference between 

the target value of a row and the mean value of the target value is called the 

residual value for the row.  The sum of the squared residuals is the variance. 

 Residual (unexplained) variance after tree fitting – This is the remaining 

variance after the tree is applied to the data to predict the target values.  This is 

computed by (1) computing the mean value of the target variable for all rows in a 

terminal node; (2) use this mean to compute the residual for each row in the node; 

(3) add the residuals to compute the variance within the node; (4) add the variance 

for all nodes.  If the tree perfectly predicted the dataset, the residual variance 

would be 0.0. 

 Proportion of variance explained – This is the proportion of the initial, total 

variance explained by the fitted tree.  The larger the value, the better the tree fits 

and explains the data.  If the tree perfectly fitted the data and exactly predicted the 

target value for every row, the explained variance proportion would be 1.0 

(100%). 

 Correlation between actual and predicted – This is the Pearson correlation 

coefficient between the actual values and the predicted values; it measures 

whether the actual and predicted values move in the same direction.  The possible 

range of values is -1 to +1.  A positive correlation means that the actual and 

predicted values generally move in the same direction.  A correlation of +1 means 

that the actual and predicted values are synchronized; this is the ideal case.  A 

negative correlation means that the actual and predicted values move in opposite 

directions.  A correlation near zero means that the predicted values are no better 

than random guesses. 

 



190 

 

Misclassification Summary Table 

If the target variable is categorical and you are building a classification tree, then a 

misclassification summary table is displayed. 

 
  ============  Misclassification Tables  ============ 

 

 ---  Training Data  --- 

 

              --------Actual--------  -------------Misclassified------------- 

   Category     Count      Weight       Count      Weight     Percent   Cost 

  ----------  --------  ------------  --------  ------------  -------  ------ 

      Setosa        50            50         0             0    0.000   0.000 

  Versicolor        50            50         3             3    6.000   0.060 

   Virginica        50            50         0             0    0.000   0.000 

  ----------  --------  ------------  --------  ------------  -------  ------ 

       Total       150           150         3             3    2.000   0.020 

 

 ---  Validation Data  --- 

 

              --------Actual--------  -------------Misclassified------------- 

   Category     Count      Weight       Count      Weight     Percent   Cost 

  ----------  --------  ------------  --------  ------------  -------  ------ 

      Setosa        50            50         0             0    0.000   0.000 

  Versicolor        50            50         2             2    4.000   0.040 

   Virginica        50            50         5             5   10.000   0.100 

  ----------  --------  ------------  --------  ------------  -------  ------ 

       Total       150           150         7             7    4.667   0.047 

 

There are two sections to the table – one for the misclassifications for the training dataset 

and one for the misclassification for the validation data (either cross-validation or 

random-holdback rows).  See page 369 for information about how cross-validation is 

done. 

 

Each category of the target variable is listed along with the following items of 

information: 

 Category – The target category. 

 Actual count – The number of rows that have this target category. 

 Actual weight – The sum of the weights for the rows with this category. 

 Misclassified count – The number of rows with this category that were 

misclassified by the tree. 

 Misclassified weight – The sum of the weights for the rows with this category 

that were misclassified. 

 Misclassified percent – The percent of the rows with this category that were 

misclassified. 

 Cost – The misclassification cost for the rows with this category. 
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Confusion Matrix 

 

A “Confusion Matrix” provides detailed information about how data rows are classified 

by the model.  The matrix has a row and column for each category of the target variable.  

The categories shown in the first column are the actual categories of the target variable.  

The categories shown across the top of the table are the predicted categories.  The 

numbers in the cells are the weights of the data rows with the actual category of the row 

and the predicted category of the column.  Here is an example confusion matrix: 

 
  ============  Confusion Matrix  ============ 

 

   --------  Training Data  -------- 

 

  Actual  : -------Predicted Category------- 

 Category :   Setosa   Versicolor  Virginica 

----------: ---------- ---------- ---------- 

    Setosa:        50          0          0  

Versicolor:         0         47          3  

 Virginica:         0          0         50  

 
The numbers in the diagonal cells are the weights for the correctly classified cases where 

the actual category matches the predicted category.  The off-diagonal cells have 

misclassified row weights.  For example, the Versicolor category was misclassified as 

Virginica three times. 
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Sensitivity and Specificity Report 

 

The Sensitivity and Specificity report is generated only for classification problems 

(categorical target variable).  One category of the target variable is called the “positive” 

category, and the other is called the “negative” category.  It is up to you to decide which 

category is positive and which is negative.  You select the positive category on the 

Misclassification Property Page (see page 130).  For example, if you are creating a model 

to predict if a patient has a disease, you would probably want to select the Disease 

category as the positive category and the No-Disease category as the negative category. 

 

If the target variable has more than two categories, DTREG reports the sensitivity and 

specificity for each category.  The selected category is treated as the positive category, 

and all other categories are grouped as the negative category. 

 

In a medical context, an ideal diagnostic test would identify all patients with a suspected 

disease, and it would not falsely identify anyone who did not have the disease.  Thus 

there are two types of errors: (1) failing to identify someone with the disease and (2) 

incorrectly identifying someone who does not have the disease.  These errors are reported 

in the Confusion Matrix (see page 191) which shows the true positive (TP), true negative 

(TN), false positive (FP) and false negative (FN) counts.  If a predicted value is 1 (true) 

and the actual class is also 1, then a TP prediction is counted.  Similarly true negative 

(TN) predictions occur when both classes are 0.  False positive and false negative 

predictions occur as shown in the following table: 

 

 

Actual class Predicted class 

 True False 

True TP FN 

False FP TN 

 

 

 

The sensitivity of a test is the proportion of the people with the disease who are identified 

by the test.  The specificity of the test is the proportion of the people who do not have the 

disease who are correctly identified as being disease-free by the test.  Ideally, sensitivity 

and specificity would both be 1.0. 

 

Positive Predictive Value (PPV) is the proportion of patients with the disease who are 

correctly predicted to have the disease.  The PPV value for a perfect model would be 1.0. 

 

Negative Predictive Value (NPV)  is the proportion of patients who do not have the 

disease who are correctly predicted as not having the disease.  The NPV value for a 

perfect model would be 1.0. 

 

Precision and Recall – These terms are most commonly used in applications related to 

information lookup.  Precision is the proportion of cases selected by the model that have 
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the true value; precision is equal to PPV.  Recall is the proportion of the true cases that 

are identified by the model; recall is equal to sensitivity. 

 

F-Measure is the harmonic mean of precision and recall.  It combines precision and 

recall to give an overall measure of the quality of the prediction. 

 

Using the definitions of TP, TN, FP and FN given above, these statistics are calculated 

using these formulas: 

 

          
     

           
 

 

            
  

     
 

 

            
  

     
 

 

     
  

     
 

 

     
  

     
 

 

           
  

     
 

 

        
  

     
 

 

     
                

                
 

 

Area under ROC curve (AUC) – This is the area under the Receive Operating 

Characteristic (ROC) curve for the model.  This statistic is also called the “C-Statistic”.  

The closer the value of the area is to 1.0, the better the model is.  See page 215 for more 

information about ROC curves. 

 

Here is an example of a sensitivity and specificity report: 

 



194 

 

  ============  Sensitivity & Specificity  ============ 
 
  Positive: Survived = 1  (Yes) 
  Negative: Survived = 0  (No) 
 
--------  Training Data  -------- 
 
  Accuracy = 78.33% 
  Sensitivity = 50.63% 
  Specificity = 91.54% 
  Geometric mean of sensitivity and specificity = 68.08% 
  Positive Predictive Value (PPV) = 74.07% 
  Negative Predictive Value (NPV) = 79.53% 
  Geometric mean of PPV and NPV = 76.76% 
  Precision = 74.07% 
  Recall = 50.63% 
  F-Measure = 0.6015 
  Area under ROC curve (AUC) = 0.768330 
 
--------  Validation Data  -------- 
 
  Accuracy = 76.06% 
  Sensitivity = 54.43% 
  Specificity = 86.38% 
  Geometric mean of sensitivity and specificity = 68.57% 
  Positive Predictive Value (PPV) = 65.59% 
  Negative Predictive Value (NPV) = 79.89% 
  Geometric mean of PPV and NPV = 72.39% 
  Precision = 65.59% 
  Recall = 54.43% 
  F-Measure = 0.5949 
  Area under ROC curve (AUC) = 0.758716 

 

Note that the first section of the report shows which target category DTREG is using as 

the “positive” category and which for the “negative” category.  If it selects the wrong 

category, you can specify the positive category on the Misclassification Property page 

(see page 130). 

 

The probability threshold used to classify predicted targets as positive or negative is 

shown next.  The probability threshold can be specified on the Misclassification Property 

page (see page 130).  The Sensitivity and Specificity Chart (see page 217) shows how 

sensitivity and specificity are changed as the probability threshold is shifted. 
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Probability Calibration Report 

 

The Probability Calibration Report shows how the predicted probability of a target 

category is distributed and provides a means for gauging the accuracy of predicted 

probabilities.  The probability calibration report is generated only when a classification 

analysis is performed and there are two target categories.  Here is an example of a 

probability calibration report: 

 
 -----   Probability calibration for Has diabetes = 1   ----- 

 

 Predicted  -------- Training Data ---------  -------- Validation Data -------- 

 Prob Range  # Rows  % Rows Predicted Actual   # Rows   % Rows Predicted Actual 

----------- -------- ------ --------- ------  -------- ------ ---------- ------ 

0.00 - 0.10      186  24.22   0.0415  0.0054       172  22.40    0.0439  0.0581 

0.10 - 0.20      165  21.48   0.1481  0.0788       144  18.75    0.1490  0.1250 

0.20 - 0.30       86  11.20   0.2448  0.1860       109  14.19    0.2476  0.2569 

0.30 - 0.40       63   8.20   0.3458  0.3333        69   8.98    0.3518  0.4058 

0.40 - 0.50       58   7.55   0.4460  0.4483        78  10.16    0.4541  0.4872 

0.50 - 0.60       46   5.99   0.5451  0.7391        54   7.03    0.5440  0.5556 

0.60 - 0.70       30   3.91   0.6460  0.8667        39   5.08    0.6463  0.8462 

0.70 - 0.80       51   6.64   0.7516  0.9412        48   6.25    0.7442  0.7708 

0.80 - 0.90       36   4.69   0.8552  1.0000        36   4.69    0.8468  0.8333 

0.90 - 1.00       47   6.12   0.9543  1.0000        19   2.47    0.9533  0.8421 

 

  Average weighted probability error for training data = 0.073822 

  Average weighted squared probability error for training data = 0.096968 

  Average weighted probability error for validation data = 0.033229 

  Average weighted squared probability error for validation data = 0.054171 

 

There is one probability report table for each category of the target variable.  The table 

shown above is for the prediction that “Diabetes = Yes”. 

 

The table has one line for each 0.1 range of predicted probability scores (0.00 to 0.10, 

0.10 to 0.20, etc.).  Each case in the training or validation data set is assigned to a range 

based on the predicted probability that the target category of the case matches the 

category of the table (Diabetes = Yes for this example). 

 

Here are the columns in the table: 

 

Predicted Probability Range – This describes a range of calculated probability values.  

A data case is assigned to a band based on the predicted probability that the case has the 

category of the table (Diabetes=Yes in this example). 

 

# Rows – This is the number of rows in this probability range.  If a row weight variable is 

used, the “count” is actually the sum of the row weights. 

 

% Rows – This is the percent of the total rows that had computed probabilities in this 

range. 
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Predicted – This is the average predicted probability for all of the data rows that had 

predicted probabilities in the range.  Usually the average predicted probability will be 

about the midpoint of the range. 

 

Actual – This is the actual proportion of the rows that had the target category for the 

table. 

 

If the model is accurate, the predicted probability of an event occurring should match the 

actual proportion of times that the event occurs.  The Probability Calibration Report 

provides a breakdown that allows you to make that comparison.  For example, look at the 

second line in the table above for cases that had predicted probability scores in the range 

0.10 to 0.20.  There were 165 such rows which correspond to 21.48% of the total data 

rows.  The average predicted probability for those rows is 0.1481 which is about the 

midpoint of the range.  If the model is perfect, we would expect the actual proportion of 

these cases to be 0.1481.  However, from the “Actual” column we see that the actual 

proportion is 0.0788.  From this we conclude that the predicted probability for this range 

tends to overestimate the frequency of actual occurrence.  Using this information, it is 

possible to develop a probability calibration correction function that maps predicted 

probabilities to more accurate estimates of actual probabilities. 

 

Average weighted probability error for training data – This is the average error 

between the predicted probability and the actual occurrence rate weighted by the number 

of rows that fall in each bin.  For example, for the second line of the table above 

describing the 0.10 to 0.2 probability range, the error was (0.1481-0.0788), and since 

there were 21.48% of the total rows in that range, that error contributes 21.48% of the 

total average error. 

 

Average weighted squared probability error for training data – This is computed in 

the same way as the average error described above, except that the error is squared before 

being multiplied by the weight and added into the sum.  After the total squared error is 

added up, the square root is computed, and that is the result reported for this statistic. 

 

For problems where probability estimates are important – rather than just overall 

classification accuracy – the average and squared average error values are excellent 

overall indicators of the quality of the model. 

 

A graphical representation of probability calibration is presented in the Probability 

Calibration Chart which is described on page 227. 
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Probability Threshold Report 

 

The probability threshold report provides information about how different probability 

thresholds would affect target category assignments.  The threshold report provides a 

convenient way to see the tradeoff between impurity and loss as the probability threshold 

is varied.  The probability threshold report is generated only when a classification 

analysis is performed and there are two target categories.  A graphical depiction of the 

probability threshold response is available in the Probability Threshold Chart described 

on page 223. 

 

All classification models not only predict a specific category for each case but also 

generate  posterior probability scores that indicate the relative likelihood for each 

possible category.  Support Vector Machine (SVM) models can generate probability 

estimates if you enable the appropriate option on the SVM property page. 

 

Usually the category with the highest probability is selected as the predicted category.  In 

other words, the probability threshold is set at 0.5.  You can specify a probability 

threshold to control classifications on the Misclassification Cost Property Page described 

on page 130. 

 

Here is an example of a probability threshold report: 
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 -----   Threshold analysis for Liver condition = 2   ----- 

 

Probability  Proportion  Error   Impurity   Loss 

-----------  ----------  ------  --------  ------ 

    0.00       1.0000    0.4203   0.4203   0.0000 

    0.05       0.9985    0.4188   0.4194   0.0000 

    0.10       0.9961    0.4164   0.4180   0.0000 

    0.15       0.9571    0.3773   0.3943   0.0000 

    0.20       0.8790    0.2993   0.3405   0.0000 

    0.25       0.7872    0.2075   0.2636   0.0000 

    0.30       0.7431    0.1634   0.2198   0.0000 

    0.35       0.6972    0.1232   0.1726   0.0050 

    0.40       0.6696    0.0957   0.1386   0.0050 

    0.45       0.6177    0.0670   0.0850   0.0250 

    0.50       0.5856    0.0581   0.0547   0.0450 

    0.55       0.5503    0.0749   0.0413   0.0900 

    0.60       0.5161    0.0810   0.0168   0.1247 

    0.65       0.4629    0.1168   0.0000   0.2015 

    0.70       0.3924    0.1873   0.0000   0.3231 

    0.75       0.2817    0.2980   0.0000   0.5140 

    0.80       0.1709    0.4088   0.0000   0.7052 

    0.85       0.0626    0.5171   0.0000   0.8920 

    0.90       0.0062    0.5735   0.0000   0.9892 

    0.95       0.0000    0.5797   0.0000   1.0000 

    1.00       0.0000    0.5797   0.0000   1.0000 

 

  Area under ROC curve (AUC) for training data = 0.987897 

  Threshold to minimize misclassification for training data = 0.517651 

  Threshold to minimize weighted misclassification for training data = 0.517651 

  Threshold to balance misclassifications for training data = 0.514761 

 

For each probability threshold, several items of information are reported: 

 

Proportion of cases – This column shows the proportion of cases that will be assigned 

the target category given a probability threshold.  In other words, if the probability that a 

case has the target category exceeds the threshold, then it is assigned the category.  For 

example, in the table shown above if the probability threshold is set to 0.20, then about 

0.8790 (87.9%) of the cases will be assigned the selected target category (Liver 

Condition = 2 in this example).  If the probability threshold is increased to 0.80, then 

fewer cases quality and only 0.1709 (17%) of the cases would be assigned the target 

category; all other cases would be assigned the other target category.  Note in this 

example that if the default threshold of 0.50 is used, about 0.5856 (58.56%) of the cases 

will be assigned the target category.  If the threshold is set to 0.0, all cases are assigned 

the target category and the proportion is 1.0.  If the threshold is set to 1.0, no cases 

qualify. 

 

Error – This is the proportion of cases that would be misclassified if a specified 

threshold is selected. 

 

Impurity – The “impurity” is the proportion of cases whose actual (true) category is 

different than the selected category but which are misclassified as having the target 

category.  In other words, it is the proportion of cases that are given the selected target 
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category that actually belong in the other category group.  In the example table shown 

above, if the probability threshold is set to 0.10 then about 0.4180 (41.8%) of the cases 

classified as Liver Condition = 2 will actually have a different category.  As the 

probability threshold is increased, the impurity decreases.  In the example above, when 

the threshold is 0.50 the impurity is only 0.0547 (5%).  When the probability threshold is 

set to 0.0 all cases are assigned to the target category, so the impurity is equal to the 

proportion of all cases that do not have the selected target category. 

 

Loss – The “loss” is the proportion of cases whose actual (true) category matches the 

selected target category but which are assigned a different category.  In the example table 

shown above we see that if rows are required to have a probability of 0.80 to be classified 

as Liver Condition = 2, then about 0.7052 (70.52%) of the cases with that actual 

classification will be misclassified.  If the threshold is set to 0.0 then all cases are 

assigned the target category and the loss is 0.0.  If the threshold is set to 1.0, then no 

cases qualify and the loss is 1.0. 

 

Area under ROC curve – This is the area under the Receive Operating Characteristic 

(ROC) curve for the model.  This statistic is known as Area Under Curve, “AUC”; it is 

also called the “C-statistic”.  The closer the value of the area is to 1.0, the better the 

model is. 

 

Threshold to minimize misclassification for training data – This is the probability 

threshold that would minimize the total misclassification error for all data. 

 

Threshold to minimize weighted misclassification for training data – This is the 

probability threshold that would minimize the weighted misclassification error.  The 

weighted misclassification error is computed by multiplying the misclassification rate for 

each target category by a factor that corrects for the relative frequency of cases with that 

category in the data.  Target categories that occur infrequently in the data receive a 

greater weight to prevent them from being overwhelmed by frequently occurring 

categories. 

 

Threshold to balance misclassifications for training data – This is the probability 

threshold that would approximately equalize the number proportion of cases misclassified 

for each target category. 

 

Focus Category Report 

 

The Focus Category Report provides information about the “focus category” of the target 

variable.  This section of the report is generated only if you designate a focus category on 

the Class Labels property page for the model (see page 124).  Designating a focus 

category does not affect the model that DTREG generates; all it does is tell DTREG to 

generate additional statistics about the focus category. 

 

Two statistics are reported for the focus category: 
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The Impurity of the focus category is the percentage of the rows predicted to be the 

focus category which are actually some other category.  In other words, it is the percent 

of the misclassified cases predicted to be the focus category.  If every case that is 

predicted to be the focus category is actually the focus category, then the impurity is 0.0. 

 

The Loss of the focus category is the percentage of actual focus category cases which are 

misclassified as some other category.  If every case of the focus category is correctly 

predicted to be the focus category, then the loss is 0.0. 

 

Here is an example of the focus category model size report: 

 
  ============  Focus Category Report  ============ 

 

The target variable is Species 

Focus Category = Versicolor 

The full tree has 5 nodes. 

The minimum impurity occurs with 4 nodes. 

The minimum loss occurs with 2 nodes. 

 

   ------  Focus Category Vs. Model Size  ------ 

 

       ---- Training ----   --- Validation --- 

Nodes  Impurity %  Loss %   Impurity %  Loss % 

-----  ----------  ------   ----------  ------ 

    4      2.08      6.00       7.00      4.00 <-- Minimum impurity 

    3      9.26      2.00       8.67      4.00 

    2     50.00      0.00      50.00      0.00 <-- Minimum loss 

 

This report shows how the impurity and loss for the focus category change with varying 

model sizes.  For single-tree models, the model size is the number of terminal nodes in 

the tree.  For TreeBoost and Decision Tree Forest models, the model size is the number 

of trees in the model.  DTREG also generates charts showing the impurity and loss as a 

function of model size (see pages 210 and 211). 

 

The second table in the Focus Category Report shows which categories contributed to the 

impurity and loss. 

 
   ------  Focus Impurity and Loss Table  ------ 

 

           --- Training ---   -- Validation -- 

 Category  Impurity %  Loss %   Impurity %  Loss % 

---------  ----------  ------   ----------  ------ 

   Setosa      0.00      0.00       0.00      0.00 

Virginica      0.00      6.00       4.17      8.00 

 

In this example, the focus category is Versicolor, so all of the categories other than 

Versicolor are listed.  This table shows that the validation data for the model had 4.17% 

impurity due to Virginica cases that were misclassified as Versicolor.  The focus category 

had an 8% loss due to Versicolor cases being misclassified as Virginica. 
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Lift and Gain Table 

The lift and gain table is a useful tool for measuring the value of a predictive model.  Lift 

and gain values are especially useful when a model is being used to target (prioritize) 

marketing efforts.  Here is an example of a Lift and Gain table: 

 
Lift/Gain for Survived = Yes 

 

 Bin      Cutoff    Class %     Cum %      Cum %    Cum       % of       % of 

Index  Probability  of bin   Population  of class   Gain   Population   Class   Lift    

-----  -----------  -------  ----------  --------  ------  ----------  ------  ------ 

   1     0.73191      72.40     10.04      22.50     2.24     10.04     22.50    2.24 

   2     0.73191      73.76     20.08      45.43     2.26     10.04     22.93    2.28 

   3     0.21202      18.10     30.12      51.05     1.69     10.04      5.63    0.56 

   4     0.21202      28.51     40.16      59.92     1.49     10.04      8.86    0.88 

   5     0.21202      17.65     50.20      65.40     1.30     10.04      5.49    0.55 

   6     0.21202      34.84     60.25      76.23     1.27     10.04     10.83    1.08 

   7     0.21202      58.82     70.29      94.51     1.34     10.04     18.28    1.82 

   8     0.21202       2.26     80.33      95.22     1.19     10.04      0.70    0.07 

   9     0.21202       3.17     90.37      96.20     1.06     10.04      0.98    0.10 

  10     0.00000      12.74    100.00     100.00     1.00      9.63      3.80    0.39 

 

   Average gain = 1.485 

   Percent of cases with Survived = Yes:  32.30% 

 

The lift and gain tables for a single-tree model have an entry for each terminal node.  The 

lift and gain charts for other types of models have a fixed number of bins – usually 10, 

but you can change the number of bins on the Design Property Page (see page 33). 

 

The basic idea of lift and gain is to sort the predicted target values in decreasing order of 

purity on some target category (probability of Survived=Yes in the example above) and 

then compare the proportion of cases with the category in each bin with the overall 

proportion.  In the case of a model with a continuous target variable, the predicted target 

values are sorted in decreasing target value order and then compared with the mean target 

value.  The lift and gain values show how much improvement the model provides in 

picking out the best 10%, 20%, etc. of the cases. 

 

Most of the numbers in the table are relative to the overall percentage of cases with the 

selected target category.  This value is shown below the table (for example, “Percent of 

cases with Survived = Yes: 32.30%”).  Note that this percentage is calculated from the 

data rows used to build the table, so the percentage for the training and validation data 

may differ slightly. 

 

Bin index – Bins are numbered from 1 up to the maximum number specified on the 

Design Property Page.  The first bin represents the data rows that have the highest 

predicted probability for the specified target category (Survived=Yes for this example). 

 

Cutoff Probability – This is the smallest predicted probability of data rows falling in this 

bin or earlier bins. 

 

Class % of bin – This is the percentage of the cases in the bin that have the specified 

category of the target variable.  In the example above, the target variable is “Survived” 

and this lift/gain table is for category “Yes” of Survived. 
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Cumulative % population – This is the cumulative percentage of the total cases (with 

any category) falling in bins up to and including the current one. 

 

Cumulative % of class – This is the cumulative percentage of the rows with the 

specified category (Survived=Yes in this example) falling in bins up to and including the 

current one.  In the example above, the first two bins have 48.38% of all of the 

Survived=Yes cases. 

 

Cumulative gain – This is the ratio of the cumulative percent of class divided by the 

cumulative percent of the population.  In the example above, the cumulative gain for bin 

2 is 2.26 which is calculated by dividing 45.43 by 20.08. 

 

% of population – This is the percentage of the total cases falling in the bin.  This will 

be approximately 100/number-of-bins. 

 

% of class – This is percent of the cases with the specified category (Survived=Yes in 

this example) that were placed in this bin.  In this example, 22.50% of all the cases with 

category Yes ended up in the first bin. 

 

The Lift value (last column) is calculated by dividing the percent of rows in a bin with 

the specified target category (% of Class) by the total percent of cases in the bin (% of 

Population).  In the table above, the lift for the first row is calculated as 2.24 = 

22.50/10.04. 

 

To understand lift and gain, consider the example of a company that wants to do a mail 

marketing campaign.  The company has a database of 100,000 potential customers, and 

they calculate that each mailed advertisement will cost $1.00.  Prior experience has 

shown that the average response rate is 10%.  So if they send the advertisement to all of 

the prospects, they will incur an expense of $100,000 and they will likely receive 

approximately 10,000 sales. 

 

Hoping to improve their return on investment (ROI), the company uses DTREG to build 

a predictive model using data from previous campaigns with Sale/No-sale as the target 

variable and various demographic variables as predictors.  The predictive model is used 

to prioritize the prospects so that they can be sorted in decreasing order of expected sales 

(i.e., the best sales candidates are sorted to the front of the list). 

 

Using the “Cum % Population”, “Cum % of class”, “Cum Gain” and “Lift” columns from 

the Lift/Gain chart, the marketing director of the company prepares the following table: 
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Ads Mailed Cum. % Class Expected Sales Cum. Gain Lift 

 10000  30  3000 3.00 3.00 

 20000  50  5000 2.50 2.00 

 30000  65  6500 2.17 1.50 

 40000  72  7200 1.80 0.70 

 50000  80  8000 1.60 0.80 

 60000  85  8500 1.42 0.50 

 70000  90  9000 1.29 0.50 

 80000  95  9500 1.19 0.50 

 90000  98  9800 1.09 0.30 

100000 100 10000 1.00 0.20 

 

The table divides the total prospect set into 10 bins with the best 10% of the prospects (as 

predicted by DTREG) in the first bin, the second-best 10% in the second bin, and so 

forth.  The table has five columns: 

 

Ads mailed – This is the cumulative number of ads mailed starting with the best 

prospects and advancing to less well qualified prospects. 

 

Cum. % class – This is the cumulative percentage of the sales expected from ads sent to 

prospects in the bins up to and including the one with the percentage.  For example, we 

expect to receive 50% of total sales from ads sent to the prospects in the two highest-

priority bins. 

 

Expected sales – This is the total number of sales that can be expected from the 

cumulative number of ads mailed to customers in bins up to and including the current 

one.  In this example, it is believed that of the total population (100,000) about 10% will 

respond resulting in sales of 10,000 units if all customers are targeted.  So the expected 

cumulative sales for a bin are calculated by multiplying the expected total sales (10,000) 

by the cumulative percentage of the class up to and including the bin (“Cum. % class”).  

For example, if ads are mailed to customers falling in bins 1 and 2, then about 50% of the 

10,000 expected sales will be achieved resulting in cumulative expected sales of 5,000 

units. 

 

Cum. Gain – This is the ratio of the expected sales using the model to prioritize the 

prospects divided by the expected sales if a random mailing was done.  In this example 

we see that by targeting the customers in bins 1 and 2, we will get about 2.50 times as 

many sales as if we mailed the same number of ads to a random set of customers.  Thus 

our return on investment (ROI) is increased by 2.5 if we target this group.  Note that if we 

increase the number of ads mailed to include less qualified customers in higher bins, the 

gain decreases because we are now mailing to people who are less likely to respond.  If 

we send ads to all 100,000 potential customers then the gain is 1.00 because are not doing 

any selective targeting. 

 

Lift – This is the ratio of the expected sales for the prospects in a bin (“% of class”) 

divided by the percent of the population in the bin (“% of population”).  As you send ads 



204 

 

to less well qualified customers the number of proportion of sales decreases; this is 

reflected by the lift decreasing in higher bins. 

 

What we learn from the table is that by targeting the campaign at the best 20% of the 

prospects (i.e., the prospects falling in the first two bins), we can expect 5000 sales which 

constitute 50% of the total expected sales.  By targeting the best 50000 prospects, we can 

expect 8000 sales which constitute 80% of the total.  The mailings done to the 10,000 

prospects in the last (worst) bin are likely to yield only 200 sales for a return of 2%. 

 

How Lift and Gain Values are calculated 

 

Using the predictive model generated by DTREG, predicted target values are calculated 

for each row.  A one-dimensional array (i.e., a “vector”) is allocated with an entry for 

each row, and predicted target values are stored for each row.  In the case of a 

classification problem (categorical target variable), the value is set to 1 if the predicted 

target category for a row matches the target value selected for the table (a separate 

Lift/Gain table is generated for each target category).  A value of 0 is stored for rows 

where the predicted category is different from the target value selected for the table.  For 

a regression analysis (target variable is continuous), the predicted value for each row is 

stored in the vector. 

 

The vector of row values is then sorted in decreasing order.  In the case of a classification 

problem, the rows that were assigned 1 because their predicted category matches the 

category of the table get sorted to the front of the list.  In the case of a regression 

problem, the rows with the largest predicted target values get sorted the front of the list.  

The sort is done in a manner so that the row numbers that correspond to the sorted values 

are also rearranged; so we know which row has the largest value, which row has the 

smallest value, etc. 

 

Another one-dimensional array is allocated with an entry for each bin in the lift/gain 

table.  Usually there are 10 bins.  The sorted row index numbers computed in the 

previous step are divided into n partitions, where n is the number of bins (it is actually a 

little more complex than this because row weights are factored into the partitioning).  So 

the first bin has the set of rows whose predicted values are the ones that best match the 

target category for classification models or the largest numerical values for regression 

models. 

 

Values are then calculated for each bin using the rows that were partitioned into the bin. 

 

For classification trees, the Lift for the bin is the ratio of the weight of rows whose 

predicted target categories match the category of the table divided by the weight of the 

rows in the bin whose actual target category matches the category for the Lift/Gain table.  

For regression trees, the Lift for the bin is the ratio of the sum of predicted target values 

in the bin divided by the sum of the actual target values for the bin. 
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Since the row values were sorted in decreasing value, the first bins are likely to have the 

best predicted values, so their lift values will usually be greater than 1.00.  Bins at the 

bottom of the table have rows that were not predicted well (or which had small predicted 

values), and their lift will usually be less than 1.00.  If the model simply generated 

random predictions, the lift values for all bins would be approximately 1.00. 

 

The Cumulative Gain for each bin is the ratio of the proportion of all rows with 

predicted categories matching the table category up to and including the bin divided by 

the proportion of rows with the actual target category of the table up through the current 

bin.  Or, for regression trees, it is the proportion of the total predicted values for all rows 

up to the bin divided by the proportion of the actual target values up through the bin.  The 

Cumulative Gain for the final bin will always be 1.00 because the proportion of the 

predicted values for the entire set of rows is 1.00 as is the proportion of the actual values. 

 

Here is a summary of how lift/gain values are calculated: 

 

Let: 

 

ActualTarget = The actual value of the target variable for each row. 

 

PredictedTarget = The predicted value of the target variable for each row as predicted 

by the model. 

 

NumBins = Number of bins that will be in the lift/gain chart (specified on the Design 

Property page). 

 

1. Sort the data rows in descending order of PredictedTarget. 

 

2. Divide the sorted rows into NumBins bins with approximately the same number 

of rows in each bin.  For a single-tree model, the bins contain the rows in each 

terminal node. 

 

3. Calculate and report the following values: 

 

Mean Target = For a regression model, this is the weighted mean of ActualTarget 

values in the bin.  The bins are sorted in decreasing order on this column. 

 

Class % of bin = For a classification model, this is the percentage of the rows in the bin 

that have the selected category.  For example, if “Purchased-Product” is the selected 

category, then the value shown in this column is the number of rows representing people 

who purchased the product.  The bins are sorted in decreasing order on this column, so 

the top row in the table has the purest set of rows for the category. 

 

Cum. % Population = This is the cumulative percentage of the rows in all bins up to and 

including the current bin. 
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Cum % Target = For a regression model, this is the cumulative percent of the sum of 

the weighted target values (ActualTarget) occurring in the bins up to and including the 

current bin.  (The percentage is relative to the total weighted sum of ActualTarget values 

in all rows.) 

 

Cum % Class = For a classification model, this is the cumulative percent of the total 

rows having the selected category (ActualTarget) that fall in bins up to and including the 

bin. 

 

Cum Gain = Cum % Target divided by Cum % Population.  The gain shows how 

much of an improvement is provided by the model by using the high priority bins up to 

the one with the value. 

 

% of Population = Percent of the total rows that are included in the bin. 

 

% of Target = For a regression model, this is the sum of the ActualTarget values in the 

bin divided by the total sum of ActualTarget values for the population times 100. 

 

% of Class = For a classification model, this is the number of rows having the designated 

category in the bin divided by the total number of rows having the designated category 

times 100. 

 

Lift = % of Target (or % of Class) divided by % of Population times 100. 

 

See page 212 for information about generating lift and gain charts. 

Terminal Node Table 

The terminal node table displays summary statistics about each terminal node in a single 

decision tree model.  This section of the report is generated only if you check the box 

labeled “Generate report of tree splits” on the Single Tree property page (see page 51). 

 
  ============  Terminal Nodes  ============ 

 

Terminal (leaf) tree nodes sorted by target category 

 

Category   Node   Misclassification  Num. Rows     Weight 

--------  ------  -----------------  ---------  ------------ 

1              5        25.00%              80            80 

1              7        31.25%              16            16 

1             58        33.33%              27            27 

1              8        33.33%               6             6 

1             77        34.29%              35            35 

1             78        40.00%              10            10 

2              9        10.53%              38            38 

2             42        11.48%              61            61 

2             57        14.71%              34            34 

2             79        16.67%              24            24 

2             59        21.43%              14            14 
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The terminal nodes are ordered by the categories of the target variable.  For each 

category, the table shows each terminal node that predicts that category and the 

misclassification rate.  Within a category, the nodes are ordered by increasing 

misclassification rate:  so, the first terminal node listed for a category is the node that has 

the lowest misclassification rate for the category (i.e., it is the purest node for the 

category). 

 

If the target variable is continuous, then the target node table has this format: 

 
Terminal (leaf) tree nodes sorted by Sales value 

 

 Node   Target mean   Target std.dev.  Num. rows     Weight 

 ----  -------------  ---------------  ---------  ------------ 

   93        9.91364         2.485375         44            44 

   92       13.92222         2.044384         18            18 

   65       14.04167         2.803854         24            24 

  119       14.40000         3.050683          3             3 

   86       16.63333         4.313416         12            12 

 

In this case, the node number is shown in the first column, the mean value of the target 

variable for rows in the node is shown next followed by the standard deviation of the 

target mean then the number of rows and their weight.  The nodes are ordered by 

increasing value of the target variable means. 

 

The terminal node table is very useful for identifying focus groups.  For example, if the 

target variable is customer sales and you are trying to identify the type of customers who 

are most likely to buy a product, then you would focus your attention on the terminal 

nodes that have the highest mean value on the customer sales target variable. 
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Variable Importance Table 

The variable importance table gives a ranking of the overall importance of the predictor 

variables. 

 
  ============  Overall Importance of Variables  ============ 

 

     Variable          Importance 

-------------------    ---------- 

Lower status              100.000 

Num. rooms                 88.439 

Distance                   28.388 

Pupil-teacher ratio        24.965 

Nitric oxides              24.739 

Industrial                 22.049 

Tax rate                   19.691 

Old houses                 15.584 

Crime rate                 12.341 

Large lots                 11.772 

Radial highways             4.867 

Black                       1.648 

Charles River               0.509 

 

Importance scores are computed by using information about how variables were used as 

primary splitters and also as surrogate splitters.  Obviously, a variable that is selected as a 

primary splitter early in the tree is important.  What is less obvious is that surrogate 

splitters that closely mimic the primary splitter are also important because they may be 

nearly as good as the primary splitter in producing the tree.  If a primary splitter is 

slightly better than a surrogate, then the primary splitter may “mask” the significance of 

the other variable.  By considering surrogate splits, the importance measure calculated by 

DTREG gives a more accurate measure of the actual and potential value of a predictor. 

 

To get the most accurate measure of importance, you should select the option “Always 

compute surrogate predictors” on the Missing Data property page (see page 133). 

 

The importance score for the most important predictor is scaled to a value of 100.00.  

Other predictors will have lower scores.  Only predictors with scores greater than zero are 

shown in the table. 

 

See page 228 for information about displaying a chart of variable importance. 



209 

 

Charts and Graphs 
 

DTREG generates a number of charts and graphs to show statistics for models.  To view 

a chart, click “Charts” on the main menu, and select the desired chart from the drop-

down menu. 

 

 
 

Each of the charts is described below. 

 

Model Size Chart 

 

 
 

The Model Size chart shows how the error rate (residual or misclassifications) change 

with the size of the model.  For a single-tree model, the model size is the number of 

terminal nodes in the tree.  For a TreeBoost model, the model size is the number of trees 

in the TreeBoost model series.  For a Decision Tree Forest mode, the model size is the 

number of trees in the forest.  For multilayer perceptron neural networks where DTREG 

has automatically found the optimal number of neurons, the model size chart shows the 
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model error as a function of the number of neurons in the hidden layer.  For PNN/GRNN 

neural networks, the chart shows the error as a function of the number of neurons. 

 

The blue line on the chart represents the error rate for the training data.  The red line 

shows the error rate for the validation (test) data.  A blue vertical line shows the size with 

the minimum error on the training data line; a red vertical line shows the size with the 

minimum error for the validation data.  A green vertical line shows the size to which the 

tree is pruned. 

 

Focus Category Impurity Chart 

 

 

 
 

The Focus Category Impurity Chart shows the impurity of the designated focus category 

of the target variable as a function of the size of the model.  For a single-tree model, the 

model size is the number of terminal nodes in the tree.  For a TreeBoost model, the model 

size is the number of trees in the TreeBoost model series.  For a Decision Tree Forest 

mode, the model size is the number of trees in the forest. 

 

The blue line on the chart represents the impurity percentage for the training data.  The 

red line shows the impurity for the validation (test) data.  A blue vertical line shows the 

size with the minimum impurity on the training data line; a red vertical line shows the 



211 

 

size with the minimum impurity for the validation data.  A green vertical line shows the 

size to which the tree is pruned. 

 

The Impurity of the focus category is the percentage of the rows predicted to be the 

focus category which are actually some other category.  In other words, it is the percent 

of the misclassified cases predicted to be the focus category.  If every case that is 

predicted to be the focus category is actually the focus category, then the impurity is 0.0. 

 

A Focus Category Impurity chart is generated only if you designate a focus category on 

the Class Table property page (see page 124). 

 

Focus Category Loss Chart 

 

 

 
 

The Focus Category Loss Chart shows the loss of the designated focus category of the 

target variable as a function of the size of the model.  For a single-tree model, the model 

size is the number of terminal nodes in the tree.  For a TreeBoost model, the model size is 

the number of trees in the TreeBoost model series.  For a Decision Tree Forest mode, the 

model size is the number of trees in the forest. 

 

The blue line on the chart represents the loss for the training data.  The red line shows the 

loss for the validation (test) data.  A blue vertical line shows the size with the minimum 
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loss on the training data line; a red vertical line shows the size with the minimum loss for 

the validation data.  A green vertical line shows the size to which the tree is pruned. 

 

The Loss of the focus category is the percentage of actual focus category cases which are 

misclassified as some other category.  If every case of the focus category is correctly 

predicted to be the focus category, then the loss is 0.0. 

 

A Focus Category Loss chart is generated only if you designate a focus category on the 

Class Table property page (see page 124). 

 

Lift and Gain Chart 

 

When you select the “Lift & Gain” chart item, DTREG displays a screen with options 

related to these charts.  See page 204 for information about how Lift and Gain values are 

calculated. 

 

 
 

Select the type of chart you want to view (Gain, Lift or Cumulative lift) and the data to be 

used for the chart (Training or Test).  You also can select the number of bins to divide the 
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data into.  For classification models, select which category of the target variable the 

lift/gain is to be calculated for.  See page 201 for information about how lift and gain 

values are computed and used. 

 

Gain Chart 

 

A gain chart displays cumulative percent of the target value on the vertical axis and 

cumulative percent of population on the horizontal axis.  The straight, diagonal line 

shows the expected return if no model is used for the population.  The curved line shows 

the expected return using the model.  The shaded area between the lines shows the 

improvement (gain) from the model. 
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Lift Chart 

 

A lift chart displays the lift for each bin on the vertical axis and the cumulative 

population on the horizontal axis. 

 

 
 

Cumulative Lift Chart 

 

A cumulative lift chart displays gain on the vertical axis and percent of population on the 

horizontal axis. 
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ROC Chart 

 

A Receiver Operating Characteristic (ROC) chart is available when a classification 

analysis has been and the target variable has two categories.  ROC charts are not 

available for regression or for classification models where there are more than two target 

categories. 

 

 
 

Classification models not only predict a specific category for each case but also generate 

posterior probability scores that indicate the relative likelihood for each possible 

category.  Usually the category with the highest probability is selected as the predicted 

category. 

 

A Receiver Operating Characteristic (ROC) chart displays the True Positive Rate (TPR) 

for predictions of a specific category on the vertical (Y) axis and the False Positive Rate 

(FPR) on the horizontal (X) axis.  An ROC chart shows the trade-off between missed 

classifications (low TPR) and false classifications (high FPR) as different probability 

thresholds are considered.  See also the description of the TPR/FPR chart that displays 

TPR and FPR curves relative to probability thresholds. 
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The (0,1) point in the upper left corner represents perfect classification – the true 

classification rate is 1.0 and the false classification rate is 0.0.  The closer the ROC curve 

gets to the upper left corner of the chart, the better it is.  The (0,0) point is reached when 

the probability threshold is set so high that that no cases are assigned the category, and no 

other categories are misclassified as the designated category.  The (1,1) point is reached 

when the probability threshold is set so low that all cases receive the category 

classification even if their actual category is something else.  The diagonal line from (0,0) 

to (1,1) represents the response that would be expected from randomly assigning the 

category.  The yellow area between the diagonal line and the ROC line is the benefit 

gained by the model.  The larger the yellow area, the better job the model is doing. 
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Sensitivity and Specificity Chart 

 

A Sensitivity and Specificity Chart is available when a classification analysis has been 

run with two target categories and probabilities calculated.  This chart shows how 

sensitivity and specificity can be adjusted by shifting the probability threshold for 

classifying cases as positive or negative.  The probability threshold is specified on the 

Misclassification Cost property page (see page 130). 
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True Positive/False Positive Rate (TPR/FPR) Chart 

 

This chart shows how True Positive Rate (TPR) and False Positive Rate (FPR) can be 

adjusted by shifting the probability threshold for classifying cases as positive or negative.  

The probability threshold is specified on the Misclassification Cost property page (see 

page 130).  It is desirable that TPR be as large as possible and FPR be as small as 

possible.  This chart is similar to the ROC chart described on page 215 in that they both 

display TPR and FPR values.  However, this chart shows how the TPR and FPR vary as 

the probability threshold is adjusted. 
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True Negative/False Negative Rate (TNR/FNR) Chart 

 

This chart shows how True Negative Rate (TNR) and False Negative Rate (FNR) can be 

adjusted by shifting the probability threshold for classifying cases as positive or negative.  

The probability threshold is specified on the Misclassification Cost property page (see 

page 130).  It is desirable that TNR be as large as possible and FNR be as small as 

possible. 
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True Positive/True Negative Rate (TPR/TNR) Chart 

 

This chart shows how True Positive Rate (TPR) and True Negative Rate (TNR) can be 

adjusted by shifting the probability threshold for classifying cases as positive or negative.  

The probability threshold is specified on the Misclassification Cost property page (see 

page 130).  It is desirable that TPR and TNR be as large as possible.  The geometric mean 

value of TPR and TNR is shown as the blue line. 
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Positive and Negative Predictive Value Chart 

 

A Positive and Negative Predictive Value Chart is available when a classification 

analysis has been run with two target categories and probabilities calculated.  This chart 

shows how PPV and NPV can be adjusted by shifting the probability threshold for 

classifying cases as positive or negative.  The probability threshold is specified on the 

Misclassification Cost property page (see page 130). 
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Probability Threshold Chart 

 

A Probability Threshold Chart is available when a classification analysis has been run 

and the target variable has two categories.  Threshold charts are not available for 

regression or for models where the target variable has more than two categories.  A table 

showing the probability threshold response is generated in the analysis report.  See page 

197 for a description of the Probability Threshold Report. 

 

 
 

Classification methods such as TreeBoost, SVM, Discriminant Analysis and Logistic 

Regression not only predict a specific category for each case but also generate probability 

scores that indicate the relative likelihood for each possible category.  Usually the 

category with the highest probability is selected as the predicted category.  In other 

words, the probability threshold is set at 0.5. 

 

A Probability Threshold Chart shows how varying probability threshold values would 

affect the proportion of cases assigned the selected target category.  The horizontal (X) 
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axis of the threshold chart has probability threshold values varying from 0.0 to 1.0.  The 

vertical (Y) axis shows a proportion value.  Three colored lines are shown on the chart: 

 

Blue line, proportion of cases – The blue line shows the proportion of cases that will be 

assigned the target category given a probability threshold.  In other words, if the 

probability that a case has the target category exceeds the threshold, then it is assigned 

the category.  For example, in the chart shown above if the probability threshold is set to 

0.2, then about 0.88 (88%) of the cases will be assigned the selected target category 

(Liver Condition = 2 in this example).  If the probability threshold is increased to 0.8, 

then fewer cases quality and only 0.17 (17%) of the cases would be assigned the target 

category; all other cases would be assigned the other target category.  Note in this 

example that if the default threshold of 0.5 is used, about 0.59 (59%) of the cases will be 

assigned the target category.  If the threshold is set to 0.0, all cases are assigned the target 

category and the proportion is 1.0.  If the threshold is set to 1.0, no cases qualify. 

 

Green line, impurity – The “impurity” is the proportion of cases whose actual (true) 

category is different than the selected category but which are misclassified as having the 

target category.  In other words, it is the proportion of cases that are given the selected 

target category that actually belong in the other category group.  In the example chart 

shown above, if the probability threshold is set to 0.1 then about 0.42 (42%) of the cases 

classified as Liver Condition = 2 will actually have a different category.  As the 

probability threshold is increased, the impurity decreases.  In the example above, when 

the threshold is 0.5 the impurity is only 0.05 (5%).  When the probability threshold is set 

to 0.0 all cases are assigned to the target category, so the impurity is equal to the 

proportion of all cases that do not have the selected target category. 

 

Yellow line, loss – The “loss” is the proportion of cases whose actual (true) category 

matches the selected target category but which are assigned a different category.  In the 

example chart shown above we see that if rows are required to have a probability of 0.8 

to be classified as Liver Condition = 2, then about 0.71 (71%) of the cases with that 

actual classification will be misclassified.  If the threshold is set to 0.0 then all cases are 

assigned the target category and the loss is 0.0.  If the threshold is set to 1.0, then no 

cases qualify and the loss is 1.0. 

 

The probability threshold chart provides a convenient way to see the tradeoff between 

impurity and loss as the probability threshold is varied.  You can specify the probability 

threshold to use for classifications on the Misclassification Cost Property Page described 

on page 130. 
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Threshold Balance Chart 

 

The Threshold Balance Chart shows how the misclassification error rate for each 

category is affected by varying probability thresholds.  A Threshold Balance Chart is 

available when a classification analysis has been and the target variable has two 

categories.  Threshold balance charts are not available for regression analyses or for 

models with more than two categories of the target variable.  A table showing the 

probability threshold response is generated in the analysis report.  See page 197 for a 

description of the Probability Threshold Report. 

 

 
 

A Threshold Balance Chart shows how varying probability threshold values would affect 

the misclassification proportion for cases with each target category.  The horizontal (X) 

axis of the threshold chart has probability threshold values varying from 0.0 to 1.0.  The 

vertical (Y) axis shows a misclassification proportion value.  Three colored lines are 

shown on the chart: 
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Green line – Proportion of cases misclassified for one of the target categories. 

 

Blue line – Proportion of cases misclassified for the other target category. 

 

Red line – Weighted misclassification rate.  The weighted misclassification error is 

computed by multiplying the misclassification rate for each target category by a factor 

that corrects for the relative frequency of cases with that category in the data.  Target 

categories that occur infrequently in the data receive a greater weight to prevent them 

from being overwhelmed by frequently occurring categories. 
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Probability Calibration Chart 

 

The Probability Calibration Chart shows how the predicted probability for a target 

category is distributed and provides a means for gauging the accuracy of predicted 

probabilities.  The probability calibration chart is generated only when a classification 

analysis is performed and there are two target categories.  Here is an example of a 

probability calibration chart: 

 

 
 

The horizontal axis has the predicted probability for the observations.  The vertical axis 

has the actual probability based on the frequency of occurrence.  For example, in the 

chart above the average predicted probability for cases between 0.6 and 0.7 was about 

0.65; the actual probability based on the rate of occurrence for those cases was about 

0.87.  If the predicted probabilities match the actual probabilities, the points fall on the 

diagonal line.  The red shaded area shows the error which is the difference between the 

predicted and actual probabilities.  For additional information, see the description of the 

Probability Calibration Report on page 195. 
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Variable Importance Chart 

 

The Variable Importance chart is a bar chart showing the relative importance for the 10 

most important variables. 
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X-Y Data Plot 

The X-Y Data Plot chart displays the values of two continuous variables on a Cartesian 

plot.  When you select this type of chart, DTREG will display a screen where you select 

which variables you want to plot.  Here is an example: 

 

 
 

In the top field, select the variable to be displayed on the vertical Y axis (ordinate); in the 

lower field, select the variable to be displayed on the horizontal X axis (abscissa).  Only 

continuous variables may be selected. 

 

If you have created a model, the target variable is continuous, and you select the target 

variable to be displayed on the Y axis, then the “Plot line showing predicted target 

values” option will be enabled.  Check this box to display the predicted values of the 

target variable on the plot.  Here is an example of an X-Y data plot showing both the 

actual data points and the fitted function: 
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Residual (Actual versus Predicted) Chart 

 

The Actual versus Predicted chart is available only after building a model where the 

target variable is continuous.  It displays a point for each data row.  The X coordinate of a 

point is the actual target value.  The Y coordinate of the point is the corresponding 

predicted target value.  This type of chart is sometimes called a Residual Chart.  With a 

perfect model, the predicted values would equal the actual values, the X and Y 

coordinates for each point would be equal, and all points would be located on the 

diagonal line where X=Y.  When the predicted value differs from the actual value, the 

points are offset from the diagonal line, and the vertical distance from the line to the point 

corresponds to the error (residual).  The error is denoted by red vertical lines. 
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Time Series Chart 

 

The Time Series chart displays up to four lines: 

 Black square – Actual values of the time series 

 Green square – Predicted values for points corresponding to training points 

 Open blue circle – Predicted values for validation rows not used for training 

 Open red circle – Forecast values beyond the end of the time series 
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Time Series Residuals Chart 

 

The Time Series Residual chart shows the residuals (errors) of the predicted values minus 

the actual values. 

 

 
 

Time Series Trend Chart 

 

The Time Series Trend chart shows the actual values and a trend line fitted to the series. 
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Time Series Transformed Chart 

 

The Time Series Transformed chart shows the time series after DTREG has removed the 

trend and stabilized the variance (if requested). 
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Decision Trees 
 

A decision tree is a logical model represented as a binary (two-way split) tree that shows 

how the value of a target variable can be predicted by using the values of a set of 

predictor variables.  An example of a decision tree is shown below: 

 

 
Decision Tree Nodes 

The rectangular boxes shown in the tree are called “nodes”.  Each node represents a set of 

records (rows) from the original dataset.  Nodes that have child nodes (nodes 1 and 3 in 

the tree above) are called “interior” nodes.  Nodes that do not have child nodes (nodes 2, 

4 and 5 in the tree above) are called “terminal” or “leaf” nodes.  The topmost node (node 

1 in the example) is called the “root” node.  (Unlike a real tree, decision trees are drawn 

with their root at the top).  The root node represents all the rows in the dataset. 

 

In the top of the node box is the node number.  Use the node number to find information 

about the node in the reports generated by DTREG.  The “N = nn” line shows how many 

rows (cases) fall in the node.  The “W = nn” line shows the sum of the weights of the 

rows in the node.  For details on the information presented in each node, see “What’s in a 

node” on page 241. 

 

Splitting Nodes 

A decision tree is constructed by a binary split that divides the rows in a node into two 

groups (child nodes).  The same procedure is then used to split the child groups.  This 

process is called “recursive partitioning”.  The split is selected to construct a tree that can 

be used to predict the value of the target variable. 
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For each split, two decisions are made by DTREG: (1) which predictor variable to use for 

the split (this is called the “splitting variable”), and (2) which set of values of the 

predictor variable go into the left child node and which set go into the right child node; 

this is called the “split point”.  The same predictor variable can be used to split many 

nodes.  For a more detailed explanation of how trees are built, please see page 361. 

 

The name of the predictor variable used to construct a node is shown in the node box 

below the node number.  For example, in the tree shown on page 235, nodes 2 and 3 were 

formed by splitting node 1 on the predictor variable “Petal length”.  The split point is 

2.45.  If the splitting variable is continuous (numeric) as in this split, the values going 

into the left and right child nodes will be shown as values less than or greater than some 

split point (2.45 in this example).  Node 2 consists of all rows with the value of “Petal 

length” less than or equal to 2.45, whereas node 3 consists of all rows with Petal length 

greater than 2.45.  If the splitting variable is categorical, the categories of the splitting 

variable going into each node will be listed. 

 

Building and Using a Decision Tree Model 

There are two steps to making productive use of decision trees (1) building a decision 

tree model, and (2) using the decision tree to draw inferences and make predictions.  The 

following sections provide an overview of how decision trees are built and used. 

 

Overview of the Tree Building Process 

The first step in building a decision tree is to collect a set of data values that DTREG can 

analyze.  This data is called the learning or training dataset because it is used by DTREG 

to learn how the value of a target variable is related to the values of predictor variables.  

This dataset must have instances for which you know the actual value of the target 

variable and the associated predictor variables.  You might have to perform a study or 

survey to collect this data, or you might be able to obtain it from previously-collected 

historical records. 

 

Each entry in the learning dataset provides values for the target and predictor variables 

for a specific customer, patient, company, etc.  Each entry is known as a “case,” “row,” 

“record,” “observation” or “vector”.  See page 36 for information about the format of 

datasets. 

 

The question “How much data is required for the learning dataset?” is answered by 

addressing the level of precision you desire in the resulting tree.  In general, DTREG will 

not split a node with fewer than 10 rows.  So, a tree with three levels and four terminal 

nodes must have an absolute minimum of 20 records, but the predictive accuracy would 

be greatly improved by having four or more times that many records.  DTREG is 

designed to handle tens of thousands of records. 
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Once you obtain enough data for the learning dataset, this data is fed into DTREG which 

performs a complex analysis on it and builds a decision tree that models the data.  See 

page 361 for additional information about the tree building process. 

 

Overview of Using Decision Trees 

Once DTREG has created a decision tree, you can use it in the following ways: 

 

 You can use the tree to make inferences that help you understand the “big picture” 

of the model.  One of the great advantages of decision trees is that they are easy to 

interpret even by non-technical people.  For example, if the decision tree models 

product sales, a quick glance might tell you that men in the South buy more of 

your product than women in the North.  If you are developing a model of health 

risks for insurance policies, a quick glance might tell you that smoking and age 

are important predictors of health. 

 

 You can use the decision tree to identify target groups.  For example, if you are 

looking for the best potential customers for a product, you can identify the 

terminal nodes in the tree that have the highest percentage of sales, and then focus 

your sales effort on individuals described by those nodes. 

 

 You can predict the target value for specific cases where you know only the 

predictor variable values.  This is known as “scoring”.  Scoring is described in the 

following section and, in more detail, on page 163. 
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Using a Decision Tree to Predict Target Variable Values (Scoring) 

A decision tree can be used to predict the values of the target variable based on values of 

the predictor variables. 

 
To determine the predicted value of a row, begin with the root node (node 1 above).  

Then decide whether to go into the left or right child node based on the value of the 

splitting variable.  Continue this process using the splitting variable for successive child 

nodes until you reach a terminal, leaf node.  The value of the target variable shown in the 

leaf node is the predicted value of the target variable. 

 

For example, let’s use the decision tree shown above to classify a case that has the 

following predictor values: 

 

     Petal length = 3.5 

     Petal width = 2.1 

 

Begin the analysis by starting in the root node, node 1.  The first split is made using the 

Petal length predictor.  Since the value of Petal length in our case is 3.5, which is greater 

than the split point of 2.45, we move from node 1 into node 3.  If we stopped at that 

point, the best estimate of Species would be Versicolor.  Node 3 is split on a different 

predictor variable, Petal width.  Our value of Petal width is 2.1, which is greater than the 

split point of 1.75, so we move into node 5.  This is a terminal node, so we classify the 

species as Virginica, which is the category assigned to the terminal node. 

 

In the case of regression trees where the target variable is continuous, the mean value of 

the target variable for the rows falling in a leaf node is used as the predicted value of the 

target variable. 
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Regression and Classification Models 

DTREG will generate a regression model or a classification model depending on whether 

the target variable is continuous or categorical. 

 

Regression Models -- If the target variable is continuous, a regression model is 

generated.  When using a regression tree to predict the value of the target variable, the 

mean value of the target variable of the rows falling in a terminal (leaf) node of the tree is 

the predicted value. 

 

An example of a regression tree is shown below.  In this example, the target variable is 

“Median value”.  From the tree we see that if the value of the predictor variable “Num. 

rooms” is greater than 6.941, then the estimated (average) value of the target variable is 

37.238; whereas, if the number of rooms is less than or equal to 6.941, then the average 

value of the target variable is 19.934. 
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Classification Models -- If the target variable is categorical, then a classification model 

is generated.  To predict the value (category) of the target variable using a classification 

tree, use the values of the predictor variables to move through the tree until you reach a 

terminal (leaf) node, then predict the category shown for that node.  An example of a 

classification tree is shown below.  The target variable is “Species”, the species of Iris.  

We can see from the tree that if the value of the predictor variable “Petal length” is less 

than or equal to 2.45 the species is Setosa.  If the petal length is greater than 2.45, then 

additional splits are required to classify the species. 
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Viewing a Decision Tree 

 

I think that I shall never see a poem lovely as a tree. 

 – Joyce Kilmer 

 

Once an analysis has been completed, you can view the generated decision tree by 

clicking the  toolbar icon or by clicking “View-tree” on the main menu. 

 

 
 

What’s in a node – Classification tree 

The information displayed in each node depends on whether it is part of a classification 

tree (categorical target variable) or a regression tree (continuous target variable).  Here is 

an example of a node from a classification tree: 
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Five lines of information are presented in this node: 

 

1. Node number – The top line displays the number of the node.  This number 

allows you to match the node to the textual report for the analysis. 

2. Predictor variable used for split – The second line displays the name of the 

predictor variable that was used to generate the split from the parent node (i.e., the 

split that generated this node).  In this example, the parent node was split on 

“Petal length”.  Following the name of the predictor variable is either a “<=” or 

“>” sign indicating if values less than or equal or greater than the split point go 

into this node.  In this example, it shows that records with values of Petal length 

less than or equal to 2.45 were placed in this node.  The sibling node received 

records with Petal length greater than 2.45.  If the predictor variable is categorical, 

the categories of the variable that were placed in this node are shown after the 

variable name. 

3. Record and weight counts – The “N=nn” and “W=nn” values show how many 

rows (N) were placed in this node and the sum of the row weights (W).  If no 

weight variable was specified, or all weights are 1.0, and the sum of the weights 

will equal the number of rows. 

4. Target variable category – This line displays the name of the target variable 

(“Species”) and the category of it that was assigned to this node (“Setosa”).  See 

page 364 for information about how target categories are assigned to nodes. 

5. Misclassification percent – This is the percentage of the rows in this node that 

had target variable categories different from the category that was assigned to the 

node.  In other words, it is the percentage of rows that were misclassified. 

 

What’s in a node – Regression tree 

The information shown in a node for a regression tree is illustrated below: 

 
 

In his example, this node was produced by splitting its parent node on the predictor 

variable “Number of rooms”.  There were 430 rows with values of “Number of rooms” 

less than or equal to 6.941 that were assigned to this node. 

 

The bottom two lines are different for regression trees than classification trees.  The next-

to-bottom line displays the name of the target variable (“House value”) and the mean 

value of the target variable for all rows in this node.  So, in this example, the mean value 

of “House value” is 19.934, and this would be the best predicted value for the target 

variable for rows falling in this node. 

 

The bottom line displays the standard deviation for the mean target value. 
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The History of Decision Tree Analysis 

The first widely-used program for generating decision trees was “AID” (Automatic 

Interaction Detection) developed in 1963 by J. N. Morgan and J. A. Sonquist
1
.  Written in 

FORTRAN and limited by the hardware of the time, AID was suitable only for small to 

medium size data sets, and it could generate only regression trees.  None the less, this 

pioneering program was well received and widely used during the 1960’s and 70’s. 

 

AID was followed by many other decision tree generators including THAID by Morgan 

and Messenger in 1973
2
, and ID3 and, later, C4.5 by J. Ross Quinlan

3
. 

 

The theoretical underpinning of decision tree analysis was greatly enhanced by the 

research done by Leo Breiman, Jerome Friedman, Richard Olshen and Charles Stone that 

was published in their book Classification And Regression Trees
4
.  Much of their 

research was embedded in a program they developed called “CART”
5
. 

 

Recent advancements in decision tree analyses include the TreeBoost method developed 

by Jerome Friedman (Friedman, 1999b) and Decision Tree Forests developed by Leo 

Breiman (Breiman, 2001).  Both of these methods use ensembles of trees to increase the 

predictive accuracy over a single-tree model.  DTREG can generate single-tree, 

TreeBoost and Decision Tree Forest models. 

                                                 
1
 Morgan & Sonquist (1963) "Problems in the analysis of survey data and a proposal", JASA, 58, 415-434. 

(Original AID) 

 
2
 Morgan & Messenger (1973) THAID -- A sequential analysis program for the analysis of nominal scale 

dependent variables, Survey Research Center, U of Michigan. 

 
3
 Quinlan, J.R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufman: San Mateo, CA. 

 
4
 Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. (1984), Classification and Regression Trees, 

Wadsworth: Belmont, CA. 

 
5
 CART® is a registered trademark of Salford Systems. 
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TreeBoost – Stochastic Gradient Boosting 
 

“Boosting” is a technique for improving the accuracy of a predictive function by 

applying the function repeatedly in a series and combining the output of each function 

with weighting so that the total error of the prediction is minimized.  In many cases, the 

predictive accuracy of such a series greatly exceeds the accuracy of the base function 

used alone. 

 

See page 54 for the TreeBoost property page where you select TreeBoost models and set 

parameters. 

 

The TreeBoost algorithm used by DTREG was developed by Jerome H. Friedman 

(Friedman 1999) and is optimized for improving the accuracy of models built on decision 

trees.  Research has shown that models built using TreeBoost are among the most 

accurate of any known modeling technique.  TreeBoost is also known as “Stochastic 

Gradient Boosting” and “Multiple Additive Regression Trees” (MART).  

 

The TreeBoost algorithm is functionally similar to decision tree forests because it 

creates a tree ensemble, but a TreeBoost model consists of a series of trees whereas a 

decision tree forest consists of a collection of trees grown in parallel.  See the following 

chapter for information about decision tree forests. 

 

Mathematically, a TreeBoost model can be described as: 

 

   PredictedTarget = F0 + B1*T1(X) + B2*T2(X) + … + BM*TM(X) 

 

Where F0 is the starting value for the series (the median target value for a regression 

model), X is a vector of “pseudo-residual” values remaining at this point in the series, 

T1(X), T2(X) are trees fitted to the pseudo-residuals and B1, B2, etc. are coefficients of the 

tree node predicted values that are computed by the TreeBoost algorithm. 

 

Graphically, a TreeBoost model can be represented like this: 

 

 
The first tree is fitted to the data.  The residuals (error values) from the first tree are then 

fed into the second tree which attempts to reduce the error.  This process is repeated 

through a series of successive trees.  The final predicted value is formed by adding the 

weighted contribution of each tree. 
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Usually, the individual trees are fairly small (typically 3 levels deep with 8 terminal 

nodes), but the full TreeBoost additive series may consist of hundreds of these small 

trees. 

 

Features of TreeBoost Models 

 

 TreeBoost models often have a degree of accuracy that cannot be obtained using a 

large, single-tree model.  TreeBoost models are often equal to or superior to any 

other predictive functions including neural networks. 

 TreeBoost models have been shown to produce more accurate results than 

competing composite-tree methods such as bagging or boosting using other 

methods such as AdaBoost. 

 TreeBoost models are as easy to create as single-tree models.  By simply setting a 

control button, you can direct DTREG to create a single-tree model or a 

TreeBoost model for the same analysis. 

 TreeBoost models can handle hundreds or thousands of potential predictor 

variables. 

 Irrelevant predictor variables are identified automatically and do not affect the 

predictive model. 

 TreeBoost uses the Huber M-regression loss function (Huber, 1964) which makes 

it highly resistant to outliers and misclassified cases. 

 The sophisticated and accurate method of surrogate splitters is used for handling 

missing predictor values. 

 The stochastic (randomization) element in the TreeBoost algorithm makes it 

highly resistant to over fitting. 

 Cross-validation and random-row-sampling methods can be used to evaluate the 

generalization of a TreeBoost model and guard against over fitting. 

 TreeBoost can be applied to regression models and k-class classification 

problems. 

 TreeBoost can handle both continuous and categorical predictor and target 

variables.  Variables with textual values like “Male” and “Female” can be used as 

well as numeric variables. 

 TreeBoost models are grown quickly – in some cases up to 100 times as fast as 

neural networks. 

 The TreeBoost algorithm achieves the accuracy of other boosting methods such as 

AdaBoost with much lower sensitivity to misclassified cases and outliers. 

 

The primary disadvantage of TreeBoost is that the model is complex and cannot be 

visualized like a single tree.  It is more of a “black box” like a neural network.  Because 

of this, it is advisable to create both a single-tree and a TreeBoost model.  The single-tree 

model can be studied to get an intuitive understanding of how the predictor variables 

relate, and the TreeBoost model can be used to score the data and generate highly 

accurate predictions. 
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How TreeBoost Models Are Created 

Here is an outline of the TreeBoost algorithm for regression models.  For more details, 

see Friedman (1999). 

 

1. Find the median value of the target variable.  This is the starting value for the 

series (F0 in the mathematical description above). 

2. Determine which rows will be used to build the next tree in the series.  A 

specified proportion of the rows are chosen randomly, with the target variable 

values stratified.  (In the case of a classification model, influence trimming may 

reduce the set of rows by removing insignificant ones.) 

3. Sort the residual values for the rows being used and find the quantile cutoff point 

for the Huber-M loss function.  The quantile cutoff point is specified as a 

TreeBoost parameter.  The residual values are then transformed by Huber’s 

method to reduce the effect of outliers.  The transformed residual values are 

known as “pseudo residuals”. 

4. Fit a tree (T1) to the pseudo residual values. 

5. Compute the median of the pseudo residual values for the rows ending in each 

terminal node of the tree.  This median becomes the predicted value for the 

terminal node. (In a single-tree model, the mean value of the target variable for 

rows ending in a node is the predicted value for the node.) 

6. Sum the differences (residuals) between the predicted node value and the pseudo 

residuals that went into the tree build (with Huber’s adjustment for outliers).  

Then compute the mean value of these residuals. 

7. Compute the boost coefficient (B1) for the node based on the difference between 

the mean residual values for the node and the median (predicted) value for the 

node. 

8. Multiply the boost coefficient by the shrink factor to reduce the rate of learning. 

 

For 2-category classification models, the TreeBoost method is essentially the same as for 

regression except logit (probability) values are fitted rather than raw target values.  At the 

end of the process, the category that minimizes the misclassification cost is chosen as the 

predicted value. 

 

K-category classification is more complex: In this case, the algorithm builds K parallel 

TreeBoost series to model the probability of each possible category.  At the end of the 

process, the probability values for the categories are compared and the one that 

minimizes misclassification cost is chosen as the best predicted category.  Since K 

TreeBoost series must be built in parallel, this process is computationally expensive if the 

target variable has many categories. 

 

The TreeBoost algorithm generates the most accurate models with minimum over fitting 

if only a portion of the data rows are used to build each tree in the series (Friedman, 

1999).  This is the stochastic part of stochastic gradient boosting.  You can specify the 

proportion of the rows used for each tree on the TreeBoost parameter screen (see page 

54). 
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Research has shown (Friedman, 2001) that the predictive accuracy of a TreeBoost series 

can be improved by apply a weighting coefficient that is less than 1 (0 < v < 1) to each 

tree as the series is constructed.  This coefficient is called the “shrinkage factor”.  The 

effect is to retard the learning rate of the series, so the series has to be longer to 

compensate for the shrinkage but its accuracy is better.  Tests have shown that small 

shrinkage factors in the range of 0.1 yield dramatic improvements over TreeBoost series 

built with no shrinkage (v = 1).  The tradeoff in using a small shrinkage factor is that the 

TreeBoost series is longer and the computational time increases.  You can select the 

shrinkage factor on the TreeBoost parameter screen. 
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Decision Tree Forests 
 

You can’t see the forest for the trees. 

 – Anon. 

 

A Decision Tree Forest consists of an ensemble (collection) of decision trees whose 

predictions are combined to make the overall prediction for the forest.  A decision tree 

forest is similar to a TreeBoost model in the sense that a large number of trees are grown.  

However, TreeBoost generates a series of trees with the output of one tree going into the 

next tree in the series.  In contrast, a decision tree forest grows a number of independent 

trees in parallel, and they do not interact until after all of them have been built. 

 

Both TreeBoost and decision tree forests produce high accuracy models.  Experiments 

have shown that TreeBoost works better with some applications and decision tree forests 

with others, so it is best to try both methods and compare the results. 

 

The Decision Tree Forest technique used by DTREG is an implementation of the 

“Random Forest”™ algorithm developed by Leo Breiman (Breiman, 2001).
6
 

 

Features of Decision Tree Forest Models 

 

 Decision tree forest models often have a degree of accuracy that cannot be 

obtained using a large, single-tree model.  Decision tree forest models are among 

the most accurate models yet invented. 

 Decision tree forest models are as easy to create as single-tree models.  By simply 

setting a control button, you can direct DTREG to create a single-tree model or a 

decision tree forest model or a TreeBoost model for the same analysis. 

 Decision tree forests use the “out of bag” data rows for validation of the model.  

This provides an independent test without requiring a separate data set or holding 

back rows from the tree construction. 

 Decision tree forest models can handle hundreds or thousands of potential 

predictor variables. 

 The sophisticated and accurate method of surrogate splitters is used for handling 

missing predictor values. 

 The stochastic (randomization) element in the decision tree forest algorithm 

makes it highly resistant to over fitting. 

 Decision tree forests can be applied to regression and classification models. 

 

The primary disadvantage of decision tree forests is that the model is complex and cannot 

be visualized like a single tree.  It is more of a “black box” like a neural network.  

                                                 
6
 “Random Forest” is a trademark of Leo Breiman and Adele Cutler and is licensed exclusively to Salford 

Systems, San Diego, CA. 
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Because of this, it is advisable to create both a single-tree and a decision tree forest 

model.  The single-tree model can be studied to get an intuitive understanding of how the 

predictor variables relate, and the decision tree forest model can be used to score the data 

and generate highly accurate predictions. 

 

How Decision Tree Forests Are Created 

Here is an outline of the algorithm used to construct a decision tree forest: 

 

Assume the full data set consists of N observations. 

 

1.  Take a random sample of N observations from the data set with replacement (this is 

called “bagging”).  Some observations will be selected more than once, and others will 

not be selected.  On average, about 2/3 of the rows will be selected by the sampling.  The 

remaining 1/3 of the rows are called the “out of bag (OOB)” rows.  A new random 

selection of rows is performed for each tree constructed. 

 

2. Using the rows selected in step 1, construct a decision tree.  Build the tree to the 

maximum size, and do not prune it.  As the tree is built, allow only a subset of the total 

set of predictor variables to be considered as possible splitters for each node.  Select the 

set of predictors to be considered as a random subset of the total set of available 

predictors.  For example, if there are ten predictors, choose a random five as candidate 

splitters.  Perform a new random selection for each split.  Some predictors (possibly the 

best one) will not be considered for each split, but a predictor excluded from one split 

may be used for another split in the same tree. 

 

3. Repeat steps 1 and 2 a large number of times constructing a forest of trees. 

 

4. To “score” a row, run the row through each tree in the forest and record the predicted 

value (i.e., terminal node) that the row ends up in (just as you would score using a single-

tree model).  For a regression analysis, compute the average score predicted by all of the 

trees.  For a classification analysis, use the predicted categories for each tree as “votes” 

for the best category, and use the category with the most votes as the predicted category 

for the row. 

 

Decision tree forests have two stochastic (randomizing) elements: (1) the selection of 

data rows used as input for each tree, and (2) the set of predictor variables considered as 

candidates for each node split.  For reasons that are not well understood, these 

randomizations along with combining the predictions from the trees significantly improve 

the overall predictive accuracy. 
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No Over fitting or Pruning 

“Over fitting” is a problem in large, single-tree models where the model begins to fit 

noise in the data.  When such a model is applied to data not used to build the model, the 

model does not perform well (i.e., it does not generalize well).  To avoid this problem, 

single-tree models must be pruned to the optimal size.  In nearly all cases, decision tree 

forests do not have a problem with over fitting, and there is no need to prune the trees in 

the forest.  Generally, the more trees in the forest, the better the fit. 

 

Internal Measure of Test Set (Generalization) Error 

When a decision tree forest is constructed using the algorithm outlined above, about 1/3 

of data rows are excluded from each tree in the forest.  The rows that are excluded from a 

tree are called the “out of bag (OOB)” rows for the tree; each tree will have a different set 

of out-of-bag rows.  Since the out of bag rows are (by definition) not used to build the 

tree, they constitute an independent test sample for the tree. 

 

To measure the generalization error of the decision tree forest, the out of bag rows for 

each tree are run through the tree and the error rate of the prediction is computed.  The 

error rates for all of the trees in the forest are then averaged to give the overall 

generalization error rate for the entire forest. 

 

There are several advantages to this method of computing generalization error: (1) all of 

the rows are used to construct the model, and none have to be held back as a separate test 

set, (2) the testing is fast because only one forest has to be constructed (as compared to V-

fold cross-validation where additional trees have to be constructed). 

 

See page 60 for the Decision Tree Forest property page where you select Decision Tree 

Forest models and set parameters. 
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Multilayer Perceptron Neural Networks 
 

 

Call it a network, call it a tribe, call it a family. Whatever you call it, whoever you are, 

you need one. 

– Jane Howard, “Families” 

 

Neural networks are predictive models loosely based on the action of biological neurons.  

The following diagram by Jonathan Rosen illustrates the design and operation of a neural 

network: 

 

 
 

Just kidding! 

 

A Brief History of Neural Networks 

The selection of the name “neural network” was one of the great PR successes of the 

Twentieth Century.  It certainly sounds more exciting than a technical description such as 

“A network of weighted, additive values with nonlinear transfer functions”.  However, 

despite the name, neural networks are far from “thinking machines” or “artificial brains”.  

A typical artificial neural network might have a hundred neurons.  In comparison, the 

human nervous system is believed to have about 3x10
10

 neurons.  We are still light years 

from “Data” on Star Trek. 

 

The original “Perceptron”  model was developed by Frank Rosenblatt in 1958.  

Rosenblatt’s model consisted of three layers, (1) a “retina”  that distributed inputs to the 

second layer, (2) “association units” that combine the inputs with weights and trigger a 

threshold step function which feeds to the output layer, (3) the output layer which 

combines the values.  Unfortunately, the use of a step function in the neurons made the 

perceptions difficult or impossible to train.  A critical analysis of perceptrons published in 

1969 by Marvin Minsky and Seymore Papert pointed out a number of critical weaknesses 

of perceptrons, and, for a period of time, interest in perceptrons waned. 
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Interest in neural networks was revived in 1986 when David Rumelhart,  Geoffrey Hinton 

and Ronald Williams published “Learning Internal Representations by Error 

Propagation”.  They proposed a multilayer neural network with nonlinear but 

differentiable transfer functions that avoided the pitfalls of the original perceptron’s step 

functions.  They also provided a reasonably effective training algorithm for neural 

networks. 

 

Types of Neural Networks 

When used without qualification, the terms “Neural Network” (NN) and “Artificial 

Neural Network”  (ANN) usually refer to a Multilayer Perceptron Network (MLP).  

However, there are many other types of neural networks including Probabilistic Neural 

Networks, General Regression Neural Networks, Radial Basis Function Networks, 

Polynomial Neural Networks (GMDH),  Cascade Correlation,  Functional Link 

Networks,  Kohonen networks,  Gram-Charlier networks,  Learning Vector Quantization,  

Hebb networks,  Adaline networks,  Heteroassociative networks,  Recurrent Networks 

and Hybrid Networks.  

 

DTREG implements the most widely used types of neural networks: Multilayer 

Perceptron Networks (MLP), Probabilistic Neural Networks (PNN) and General 

Regression Neural Networks (GRNN), Radial Basic Function (RBF) networks, 

Polynomial Neural Networks (GMDH), and Cascade Correlation networks.  This chapter 

describes Multilayer Perception Networks. 

 

The Multilayer Perceptron Neural Network Model 

The following diagram illustrates a perceptron network with three layers: 

 
 

This network has an input layer (on the left) with three neurons, one hidden layer (in 

the middle) with three neurons and an output layer (on the right) with three neurons. 
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There is one neuron in the input layer for each predictor variable (x1…xp).  In the case of 

categorical variables, N-1 neurons are used to represent the N categories of the variable. 

 

Input Layer 

A vector of predictor variable values (x1…xp) is presented to the input layer.  The input 

layer (or processing before the input layer) standardizes these values so that the range of 

each variable is -1 to 1.  The input layer distributes the values to each of the neurons in 

the hidden layer.  In addition to the predictor variables, there is a constant input of 1.0, 

called the bias that is fed to each of the hidden layers; the bias is multiplied by a weight 

and added to the sum going into the neuron. 

 

Hidden Layer 

Arriving at a neuron in the hidden layer, the value from each input neuron is multiplied 

by a weight (wji), and the resulting weighted values are added together producing a 

combined value uj.  The weighted sum (uj) is fed into a transfer function, σ, which 

outputs a value hj.  The outputs from the hidden layer are distributed to the output layer. 

 

Output Layer 

Arriving at a neuron in the output layer, the value from each hidden layer neuron is 

multiplied by a weight (wkj), and the resulting weighted values are added together 

producing a combined value vj.  The weighted sum (vj) is fed into a transfer function, σ, 

which outputs a value yk.  The y values are the outputs of the network. 

 

If a regression analysis is being performed with a continuous target variable, then there is 

a single neuron in the output layer, and it generates a single y value.  For classification 

problems with a binary-value categorical target variable, there is a single output neuron 

whose value determines whether the output category is predicted to be 1 or 0.  For 

classification problems with more than two target categories, there are N neurons in the 

output layer producing N values, one for each of the N categories of the target variable. 

 

Multilayer Perceptron Architecture 

The network diagram shown above is a full-connected, three layer, feed forward, 

perceptron neural network.  “Fully connected”  means that the output from each input and 

hidden neuron is distributed to all of the neurons in the following layer.  “Feed forward” 

means that the values only move from input to hidden to output layers; no values are fed 

back to earlier layers (a Recurrent Network allows values to be fed backward). 

 

All neural networks have an input layer and an output layer, but the number of hidden 

layers may vary.  Here is a diagram of a perceptron network with two hidden layers and 

four total layers: 
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When there is more than one hidden layer, the output from one hidden layer is fed into 

the next hidden layer and separate weights are applied to the sum going into each layer. 

 

Training Multilayer Perceptron Networks 

The goal of the training process is to find the set of weight values that will cause the 

output from the neural network to match the actual target values as closely as possible. 

 

There are several issues involved in designing and training a multilayer perceptron 

network: 

 

 Selecting how many hidden layers to use in the network. 

 Deciding how many neurons to use in each hidden layer. 

 Finding a globally optimal solution that avoids local minima. 

 Converging to an optimal solution in a reasonable period of time. 

 Validating the neural network to test for over fitting. 

 

Selecting the Number of Hidden Layers 

For nearly all problems, one hidden layer is sufficient.  Two hidden layers are required 

for modeling data with discontinuities such as a saw tooth wave pattern.  Using two 

hidden layers rarely improves the model, and it may introduce a greater risk of 

converging to a local minima.  There is no theoretical reason for using more than two 

hidden layers.  DTREG can build models with one or two hidden layers.  Three layer 

models with one hidden layer are recommended. 

 

Deciding how many neurons to use in the hidden layers 

One of the most important characteristics of a multilayer perceptron network is the 

number of neurons in the hidden layer(s).  If an inadequate number of neurons are used, 

the network will be unable to model complex data, and the resulting fit will be poor. 
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If too many neurons are used, the training time may become excessively long, and, 

worse, the network may over fit the data.  When over fitting occurs, the network will 

begin to model random noise in the data.  The result is that the model fits the training 

data extremely well, but it generalizes poorly to new, unseen data.  Validation must be 

used to test for this. 

 

DTREG includes an automated feature to find the optimal number of neurons in the 

hidden layer. (See page 64 for details.)  You specify the minimum and maximum number 

of neurons you want it to test, and it will build models using varying numbers of neurons 

and measure the quality using either cross validation or hold-out data not used for 

training.  This is a highly effective method for finding the optimal number of neurons, but 

it is computationally expensive, because many models must be built, and each model has 

to be validated.  If you have a multiprocessor computer, you can configure DTREG to 

use multiple CPU’s during the process.  See page 16 for additional information. 

 

The automated search for the optimal number of neurons only searches the first hidden 

layer.  If you select a model with two hidden layers, you must manually specify the 

number of neurons in the second hidden layer. 

Finding a globally optimal solution 

A typical neural network might have a couple of hundred weighs whose values must be 

found to produce an optimal solution.  If neural networks were linear models like linear 

regression, it would be a breeze to find the optimal set of weights.  But the output of a 

neural network as a function of the weights is often highly nonlinear; this makes the 

optimization process complex. 

 

If you plotted the error as a function of the weights, you would likely see a rough surface 

with many local minima such as this: 

 

 
This picture is highly simplified because it represents only a single weight value (on the 

horizontal axis).  With a typical neural network, you would have a 200-dimension, rough 

surface with many local valleys. 

 

Optimization methods such as steepest descent and conjugate gradient are highly 

susceptible to finding local minima if they begin the search in a valley near a local 

minimum.  They have no ability to see the big picture and find the global minimum. 
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DTREG uses the Nguyen-Widrow algorithm (Nguyen, 1990) to select the initial range of 

starting weight values.  It then uses the conjugate gradient algorithm to optimize the 

weights.  Conjugate gradient usually finds the optimum weights quickly, but there is no 

guarantee that the weight values it finds are globally optimal.  So it is useful to allow 

DTREG to try the optimization multiple times with different sets of initial random weight 

values.  The number of tries allowed using randomly selected starting weights is specified 

on the Multilayer Perceptron property page (see page 67). 

 

Converging to the Optimal Solution – Conjugate Gradient 

Given a set of randomly-selected starting weight values, DTREG uses the conjugate 

gradient algorithm to optimize the weight values. 

 

Most training algorithms follow this cycle to refine the weight values: 

 

1. Run the predictor values for a case through the network using a tentative set of 

weights. 

2. Compute the difference between the predicted target value and the actual target 

value for the case.  This is the error of the prediction. 

3. Average the error information over the entire set of training cases. 

4. Propagate the error backward through the network and compute the gradient 

(vector of derivatives) of the change in error with respect to changes in weight 

values. 

5. Make adjustments to the weights to reduce the error. 

 

Each cycle is called an epoch. 

 

Because the error information is propagated backward through the network, this type of 

training method is called backward propagation or “backprop”. 

 

The backpropagation training algorithm was first described by Rumelhart and 

McClelland in 1986; it was the first practical method for training neural networks.  The 

original procedure used the gradient descent algorithm to adjust the weights toward 

convergence using the gradient.  Because of this history, the term “backpropagation” or 

“backprop” often is used to denote a neural network training algorithm using gradient 

descent as the core algorithm.  That is somewhat unfortunate since backward propagation 

of error information through the network is used by nearly all training algorithms, some 

of which are much better than gradient descent. 

 

Backpropagation using gradient descent often converges very slowly or not at all.  On 

large-scale problems its success depends on user-specified learning rate and momentum 

parameters.  There is no automatic way to select these parameters, and if incorrect values 

are specified the convergence may be exceedingly slow, or it may not converge at all.  

While backpropagation with gradient descent is still used in many neural network 

programs, it is no longer considered to be the best or fastest algorithm. 
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DTREG uses the conjugate gradient algorithm to adjust weight values using the gradient 

during the backward propagation of errors through the network.   Compared to gradient 

descent, the conjugate gradient algorithm takes a more direct path to the optimal set of 

weight values.  Usually, conjugate gradient is significantly faster and more robust than 

gradient descent.  Conjugate gradient also does not require the user to specify learning 

rate and momentum parameters. 

 

The traditional conjugate gradient algorithm uses the gradient to compute a search 

direction.  It then uses a line search algorithm such as Brent’s Method to find the optimal 

step size along a line in the search direction.  The line search avoids the need to compute 

the Hessian matrix of second derivatives, but it requires computing the error at multiple 

points along the line. The conjugate gradient algorithm with line search (CGL) has been 

used successfully in many neural network programs, and is considered one of the best 

methods yet invented. 

 

DTREG provides the traditional conjugate gradient algorithm with line search, but it also 

offers a newer algorithm, Scaled Conjugate Gradient  (see Moller, 1993). 

 

The scaled conjugate gradient algorithm  uses a numerical approximation for the second 

derivatives (Hessian matrix), but it avoids instability by combining the model-trust region 

approach from the Levenberg-Marquardt algorithm with the conjugate gradient approach. 

This allows scaled conjugate gradient to compute the optimal step size in the search 

direction without having to perform the computationally expensive line search used by 

the traditional conjugate gradient algorithm.  Of course, there is a cost involved in 

estimating the second derivatives. 

 

Tests performed by Moller show the scaled conjugate gradient algorithm converging up 

to twice as fast as traditional conjugate gradient and up to 20 times as fast as 

backpropagation using gradient descent.  Moller’s tests also showed that scaled conjugate 

gradient failed to converge less often than traditional conjugate gradient or 

backpropagation using gradient descent. 

 

Avoiding Over fitting 

 

“Over fitting” occurs when the parameters of a model are tuned so tightly that the model 

fits the training data well but has poor accuracy on separate data not used for training.  

Multilayer perceptrons are subject to over fitting as are most other types of models. 

 

DTREG has two methods for dealing with over fitting: (1) by selecting the optimal 

number of neurons as described above, and (2) by evaluating the model as the parameters 

are being tuned and stopping the tuning when over fitting is detected.  This is known as 

“early stopping”. 
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If you enable the early-stopping option, DTREG holds out a specified percentage of the 

training rows and uses them to check for over fitting as model tuning is performed.  The 

tuning process uses the training data to search for optimal parameter values.  But as this 

process is running, the model is evaluated on the hold-out test rows, and the error from 

that test is compared with the error computed using previous parameter values.  If the 

error on the test rows does not decrease after a specified number of iterations then 

DTREG stops the training and uses the parameters which produced the lowest error on 

the test data. 

 

See page 67 for information about setting the parameters for the conjugate gradient 

algorithm. 
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Radial Basis Function (RBF) Neural Networks 
 

A Radial Basis Function (RBF) neural network has an input layer, a hidden layer and an 

output layer.  The neurons in the hidden layer contain Gaussian transfer functions whose 

outputs are inversely proportional to the distance from the center of the neuron. 

 

RBF networks are very similar to PNN/GRNN networks (see page 279).  The main 

difference is that PNN/GRNN networks have one neuron for each point in the training 

file, whereas RBF networks have a variable number of neurons that is usually much less 

than the number of training points.  For problems with small to medium size training sets, 

PNN/GRNN networks are usually more accurate than RBF networks, but PNN/GRNN 

networks are impractical for large training sets. 

 

How RBF networks work 

Although the implementation is very different, RBF neural networks are conceptually 

similar to K-Nearest Neighbor (k-NN) models.   The basic idea is that a predicted target 

value of an item is likely to be about the same as other items that have close values of the 

predictor variables.  Consider this figure: 

 

 
 

Assume that each case in the training set has two predictor variables, x and y.  The cases 

are plotted using their x,y coordinates as shown in the figure.  Also assume that the target 
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variable has two categories, positive which is denoted by a square and negative which is 

denoted by a dash.  Now, suppose we are trying to predict the value of a new case 

represented by the triangle with predictor values x=6, y=5.1.  Should we predict the target 

as positive or negative? 

 

Notice that the triangle is position almost exactly on top of a dash representing a negative 

value.  But that dash is in a fairly unusual position compared to the other dashes which 

are clustered below the squares and left of center.  So it could be that the underlying 

negative value is an odd case. 

 

The nearest neighbor classification performed for this example depends on how many 

neighboring points are considered.  If 1-NN is used and only the closest point is 

considered, then clearly the new point should be classified as negative since it is on top of 

a known negative point.  On the other hand, if 9-NN classification is used and the closest 

9 points are considered, then the effect of the surrounding 8 positive points may 

overbalance the close negative point. 

 

An RBF network positions one or more RBF neurons in the space described by the 

predictor variables (x,y in this example).  This space has as many dimensions as there are 

predictor variables.  The Euclidean distance is computed from the point being evaluated 

(e.g., the triangle in this figure) to the center of each neuron, and a radial basis function 

(RBF) (also called a kernel function) is applied to the distance to compute the weight 

(influence) for each neuron.  The radial basis function is so named because the radius 

distance is the argument to the function. 

 

   Weight = RBF(distance) 

 

The further a neuron is from the point being evaluated, the less influence it has. 
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Radial Basis Function 

 

Different types of radial basis functions could be used, but the most common is the 

Gaussian function: 
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If there is more than one predictor variable, then the RBF function has as many 

dimensions as there are variables.  The following picture illustrates three neurons in a 

space with two predictor variables, X and Y.  Z is the value coming out of the RBF 

functions: 

 
 

The best predicted value for the new point is found by summing the output values of the 

RBF functions multiplied by weights computed for each neuron. 
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The radial basis function for a neuron has a center and a radius (also called a spread).  

The radius may be different for each neuron, and, in RBF networks generated by 

DTREG, the radius may be different in each dimension. 

 

 
 

With larger spread, neurons at a distance from a point have a greater influence. 

 

RBF Network Architecture 
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RBF networks have three layers: 

 

Input layer – There is one neuron in the input layer for each predictor variable.  In the 

case of categorical variables, N-1 neurons are used where N is the number of categories.  

The input neurons (or processing before the input layer) standardizes the range of the 

values by subtracting the median and dividing by the interquartile range.  The input 

neurons then feed the values to each of the neurons in the hidden layer. 

 

Hidden layer – This layer has a variable number of neurons (the optimal number is 

determined by the training process).  Each neuron consists of a radial basis function 

centered on a point with as many dimensions as there are predictor variables.  The spread 

(radius) of the RBF function may be different for each dimension.  The centers and 

spreads are determined by the training process.  When presented with the x vector of 

input values from the input layer, a hidden neuron computes the Euclidean distance of the 

test case from the neuron’s center point and then applies the RBF kernel function to this 

distance using the spread values.  The resulting value is passed to the the summation 

layer. 

 

 Summation layer – The value coming out of a neuron in the hidden layer is multiplied 

by a weight associated with the neuron (W1, W2, ...,Wn in this figure) and passed to the 

summation which adds up the weighted values and presents this sum as the output of the 

network.  Not shown in this figure is a bias value of 1.0 that is multiplied by a weight W0 

and fed into the summation layer.  For classification problems, there is one output (and a 

separate set of weights and summation unit) for each target category.  The value output 

for a category is the probability that the case being evaluated has that category. 

 

Training RBF Networks 

 

The following parameters are determined by the training process: 

 

1. The number of neurons in the hidden layer. 

2. The coordinates of the center of each hidden-layer RBF function. 

3. The radius (spread) of each RBF function in each dimension. 

4. The weights applied to the RBF function outputs as they are passed to the 

summation layer. 

 

Various methods have been used to train RBF networks.  One approach first uses K-

means clustering to find cluster centers which are then used as the centers for the RBF 

functions. However, K-means clustering is a computationally intensive procedure, and it 

often does not generate the optimal number of centers.  Another approach is to use a 

random subset of the training points as the centers. 

 

DTREG uses a training algorithm developed by Sheng Chen, Xia Hong and Chris J. 

Harris (Chen, Hong, Harris, 2005).  This algorithm uses an evolutionary approach to 

determine the optimal center points and spreads for each neuron.  It also determines when 
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to stop adding neurons to the network by monitoring the estimated leave-one-out (LOO) 

error and terminating when the LOO error beings to increase due to over fitting. 

 

The computation of the optimal weights between the neurons in the hidden layer and the 

summation layer is done using ridge regression..  An iterative procedure developed by 

Mark Orr (Orr, 1966) is used to compute the optimal regularization Lambda parameter 

that minimizes generalized cross-validation (GCV) error. 

 

See page 69 for information about parameters that control the training process. 
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GMDH Polynomial Neural Networks 
 

Group Method of Data Handling (GMDH) polynomial neural networks are “self 

organizing” networks.  The network begins with only input neurons.  During the training 

process, neurons are selected from a pool of candidates and added to the hidden layers. 

 

GMDH networks were originated in 1968 by Prof Alexey G. Ivakhnenko at the Institute 

of Cybernetics in Kyiv (Ukraine). 

 

Structure of a GMDH network 

GMDH networks are self organizing.  This means that the connections between neurons 

in the network are not fixed but rather are selected during training to optimize the 

network.  The number of layers in the network also is selected automatically to produce 

maximum accuracy without over fitting. 

 

The following figure from Kordik, Naplava, Snorek illustrates the structure of a basic 

GMDH network using polynomial functions of two variables: 

 

 
 

The first layer (at the top) presents one input for each predictor variable.  Each neuron in 

the second layer draws its inputs from two of the input variables.  The neurons in the 

third layer draw their inputs from two of the neurons in the previous layer; this progresses 

through each layer.  The final layer (at the bottom) draws its two inputs from the previous 

layer and produces a single value which is the output of the network. 
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Inputs to neurons in GMDH networks can skip layers and come from the original 

variables or layers several layers earlier as illustrated by this figure: 

 

 
 

In this network, the neuron at the right end of the third layer is connected to an input 

variable rather than the output of a neuron on the previous layer. 

 

Traditional GMDH neural networks use complete quadratic polynomials of two variables 

as transfer functions in the neurons.  These polynomials have the form: 

 

                   
       

          
 

DTREG extends GMDH networks by allowing you to select which functions may be 

used in the network.  See the GMDH property page description on page 73 for 

information about selecting functions. 

 

GMDH Training Algorithm 

Two sets of input data are used during the training process: (1) the primary training data, 

and (2) the control data which is used to stop the building process when over fitting 

occurs.  The control data typically has about 20% as many rows as the training data.  The 

percentage is specified as a training parameter. 
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The GMDH network training algorithm proceeds as follows: 

1. Construct the first layer which simply presents each of the input predictor variable 

values. 

2. Using the allowed set of functions, construct all possible functions using 

combinations of inputs from the previous layer.  If only two-variable polynomials 

are enabled, there will be n*(n-1)/2 candidate neurons constructed where n is the 

number of neurons in the previous layer.  If the option is selected to allow inputs 

from the previous layer and the input layer, then n will the sum of the number of 

neurons in the previous layer and the input layer.  If the option is selected to allow 

inputs from any layer, then n will the sum of the number of input variables plus 

the number of neurons in all previous layers. 

3. Use least squares regression to compute the optimal parameters for the function in 

each candidate neuron to make it best fit the training data.  Singular value 

decomposition (SVD) is used to avoid problems with singular matrices.  If 

nonlinear functions are selected such as logistic or asymptotic, a nonlinear fitting 

routine based on Levenberg-Marquardt method is used. 

4. Compute the mean squared error for each neuron by applying it to the control 

data.  Note, the control data is different from the training data. 

5. Sort the candidate neurons in order of increasing error. 

6. Select the best (smallest error) neurons from the candidate set for the next layer.  

A model-building parameter specifies how many neurons are used in each layer. 

7. If the error for the best neuron in the layer as measured with the control data is 

better than the error from the best neuron in the previous layer, and the maximum 

number of layers has not been reached, then jump back to step 2 to construct the 

next layer.  Otherwise, stop the training.  Note, when over fitting begins, the error 

as measured with the control data will being to increase, thus stopping the 

training. 

 

If you are running on a multi-core CPU system, DTREG will perform GMDH training in 

parallel using multiple CPU’s.  See page 16 for information about setting how many 

CPU’s to use. 

 

Output Generated for GMDH Networks 

In addition to the usual information reported for a model, DTREG displays the actual 

GMDH polynomial network generated.  Here is an example: 

 
  ============  GMDH Model  ============ 

 

N(3) = 0.650821+5.931812e+012*Age{Adult}-

5.931812e+012*Age{Adult}^2+4.685991e+015*Class{Second}-

4.685991e+015*Class{Second}^2+0.048843*Age{Adult}*Class{Second} 

 

N(1) = 13.82502-2.390281e+012*Class{Crew}+4.78725e+011*Class{Crew}^2-

28.1043*N(3)+11.9577*N(3)^2+2.959348e+012*Class{Crew}*N(3) 
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N(7) = 0.325439+9.737558e+013*Sex{Male}-

9.737558e+013*Sex{Male}^2+9.00077e+015*Class{Second}-

9.00077e+015*Class{Second}^2+1.081648*Sex{Male}*Class{Second} 

 

N(9) = 0.372317+2.225363e+013*Sex{Male}-2.225363e+013*Sex{Male}^2-

3.960104e+015*Class{First}+3.960104e+015*Class{First}^2-

0.244027*Sex{Male}*Class{First} 

 

N(6) = -0.263746+1.221826*N(7)+0.268249*N(7)^2+1.636075*N(9)-

0.172757*N(9)^2-2.019208*N(7)*N(9) 

 

Survived{Yes} = -0.008121+1.631212*N(1)-2.485552*N(1)^2-

0.186281*N(6)+0.126492*N(6)^2+1.720465*N(1)*N(6) 

 

Output from neuron i is shown as N(i).  Categorical predictor variables such as Sex are 

shown with the activation category in braces.  For example, “Sex{Male}” has the value 1 

if the value of Sex is “Male”, and it has the value 0 if Sex is any other category.  The 

final line shows the output of the network.  In this case, the probability of Survived being 

Yes is predicted.  Note how the inputs to each neuron are drawn from the outputs of 

neurons in lower levels of the network.  This example uses only two-variable quadratic 

functions. 
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Cascade Correlation Neural Networks 
 

Cascade correlation neural networks (Fahlman and Libiere, 1990) are “self-organizing” 

networks.  The network begins with only input and output neurons.  During the training 

process, neurons are selected from a pool of candidates and added to the hidden layer. 

 

Cascade correlation networks have several advantages over multi-layer perceptron (MLP) 

neural networks: 

 

1. Because they are self-organizing and grow the hidden layer during training, you 

do not have to be concerned with the issue of deciding how many layers and 

neurons to use in the network. 

2. Training time is very fast – often 100 times as fast as a multilayer perceptron 

network.  This makes cascade correlation networks suitable for large training sets. 

3. Typically, cascade correlation networks are fairly small, often having fewer than a 

dozen neurons in the hidden layer.  Contrast this to probabilistic neural networks 

which require a hidden-layer neuron for each training case. 

4. Cascade correlation network training is quite robust, and good results usually can 

be obtained with little or no adjustment of parameters. 

5. Cascade correlation is less likely to get trapped in local minima than MLP 

networks. 

 

As with all types of models, there are some disadvantages to cascade correlation 

networks: 

 

1. They have an extreme potential for over fitting the training data; this results in 

excellent accuracy on the training data but poor accuracy on new, unseen data.  

DTREG includes an over fitting control facility to prevent this. 

2. Cascade correlation networks usually are less accurate than probabilistic and 

general regression neural networks on small to medium size problems (i.e., fewer 

than a couple of thousand training rows).  But cascade correlation scales up to 

handle large problems far better than probabilistic or general regression networks. 

 

Cascade Correlation Network Architecture 

 

A cascade correlation network consists of a cascade architecture, in which hidden 

neurons are added to the network one at a time and do not change after they have been 

added.  It is called a cascade because the output from all neurons already in the network 

feed into new neurons.  As new neurons are added to the hidden layer, the learning 

algorithm attempts to maximize the magnitude of the correlation between the new 

neuron’s output and the residual error of the network which we are trying to minimize. 

 

A cascade correlation neural network has three layers: input, hidden and output. 
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Input Layer 

A vector of predictor variable values (x1…xp) is presented to the input layer.  The input 

neurons perform no action on the values other than distributing them to the neurons in the 

hidden and output layers.  In addition to the predictor variables, there is a constant input 

of 1.0, called the bias that is fed to each of the hidden and output neurons; the bias is 

multiplied by a weight and added to the sum going into the neuron. 

 

Hidden Layer 

Arriving at a neuron in the hidden layer, the value from each input neuron is multiplied 

by a weight (wji), and the resulting weighted values are added together producing a 

combined value uj.  The weighted sum (uj) is fed into a transfer function, σ, which 

outputs a value hj.  The outputs from the hidden layer are distributed to the output layer. 

 

Output Layer 

For regression problems, there is only a single neuron in the output layer.  For 

classification problems that have binary outcomes, there is a single output neuron whose 

value varies from 0 to 1 with the outcome class being determined by whether the value is 

closer to 1 or 0.  For classification problems with more than two target categories, there is 

a neuron for each category of the target variable, and the output of a neuron represents 

the probably of the corresponding category. 

 

Each output neuron receives values from all of the input neurons (including the bias) and 

all of the hidden layer neurons.  Each value presented to an output neuron is multiplied 

by a weight (wkj), and the resulting weighted values are added together producing a 

combined value vj.  The weighted sum (vj) is fed into a transfer function, σ, which outputs 

a value yk.  The y values are the outputs of the network.  For regression problems, a linear 

transfer function is used in the output neurons.  For classification problems, a sigmoid 

transfer function is used. 

 

Training Algorithm for Cascade Correlation Networks 

 

Initially, a cascade correlation neural network consists of only the input and output layer 

neurons with no hidden layer neurons.  Every input is connected to every output neuron 

by a connection with an adjustable weight, as shown below: 
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Each ‘x’ represents a weight value between the input and the output neuron.  Values on a 

vertical line are added together after being multiplied by their weights.  So each output 

neuron receives as its input a weighted sum from all of the input neurons including the 

bias.  The output neuron sends this weighted input sum through its transfer function to 

produce the final output. 

 

Even a simple cascade correlation network with no hidden neurons has considerable 

predictive power.  For a fair number of problems, a cascade correlation network with just 

input and output layers provides good predictions. 

 

Neurons are added to the hidden layer one by one.  Each new hidden neuron receives a 

connection from each of the network’s original inputs and also from every pre-existing 

hidden neuron (hence it is a cascade architecture).  The hidden neuron’s input weights are 

trained and then frozen at the time the unit is added to the net; only the output connection 

weights are trained repeatedly.  Each new neuron therefore adds a new one-unit “layer” 

to the network.  This leads to the creation of very powerful high-order feature detectors; it 

also may lead to very deep networks with a large number of inputs to the output neurons. 

 

After the addition of the first hidden neuron, the network would have this structure: 
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The input weights for the hidden neuron are shown as square boxes to indicate that they 

are fixed once the neuron has been added.  Weights for the output neurons shown as ‘x’ 

continue to be adjusted during the training process. 

 

To create a new hidden neuron, we begin with a candidate neuron that receives trainable 

input connections from all of the network’s external inputs and from all pre-existing 

hidden neurons.  The output of this candidate neuron is not yet connected to the active 

network.  We run a number of passes over the examples in the training set, adjusting the 

candidate neuron’s input weights after each pass.  The goal of this adjustment is to 

maximize the sum over all output neurons of the magnitude of the correlation between 

the candidate neuron’s value and the residual output error observed at the outputs. 

 

A candidate neuron cares only about the magnitude of its correlation with the error at a 

given output, and not about the sign of the correlation.  As a rule, if a hidden neuron 

correlates positively with the error at a given output neuron, it will develop a negative 

connection weight to that neuron, attempting to cancel some of the error; if the 

correlation is negative, the output weight will be positive.  Since a neuron’s weights to 

different output neurons may be of mixed sign, a neuron can sometimes server two 

purposes by developing a positive correlation with the error at one output and a negative 

correlation with the error at another. 

 

Instead of simply training a single candidate neuron, DTREG uses a pool of candidate 

neurons, each with a different set of random initial weights.  If allowed, the candidate 

neurons also may have a mixture of transfer functions (sigmoid and Gaussian).  All 

candidates receive the same input signals and see the same residual error for each training 

case.  After all of the candidate neurons have been training to have maximum correlation 

with the output error, the candidate with the highest correlation is selected from the pool 

and added to the hidden layer.  The output neuron weights are then trained using the all of 

their inputs including the output from the new hidden neuron.  Note that the input weights 

for the other hidden neurons that are already part of the network are not retrained. 
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Here is a schematic of a network with two hidden neurons.  Note how the second neuron 

receives inputs from the external inputs and pre-existing hidden neurons. 
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Probabilistic and General Regression Neural Networks 
 

 
 

 

Probabilistic and General Regression Neural Networks have similar architectures, but 

there is a fundamental difference:  Probabilistic networks perform classification where 

the target variable is categorical, whereas general regression neural networks perform 

regression where the target variable is continuous.  If you select a PNN/GRNN network, 

DTREG will automatically select the correct type of network based on the type of target 

variable. 

 

PNN and GRNN networks have advantages and disadvantages compared to multilayer 

perceptron (MLP) networks: 

 

 It is usually faster to train a PNN/GRNN network than a MLP network. 

 PNN/GRNN networks often are more accurate than MLP networks. 

 PNN/GRNN networks are relatively insensitive to outliers (wild points). 

 PNN networks generate accurate predicted target probability scores. 

 PNN networks approach Bayes optimal classification. 

 PNN/GRNN networks are slower than MLP networks at classifying new cases. 
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 PNN/GRNN networks require more memory space to store the model. 

 PNN/GRNN networks are very similar to RBF networks with a large number of 

nodes.  See page 261 for information about RBF networks. 

 

How PNN/GRNN networks work 

Although the implementation is very different, probabilistic neural networks are 

conceptually similar to K-Nearest Neighbor (k-NN) models.   The basic idea is that the 

predicted target value of an item is likely to be about the same as other items that have 

close values (i.e., close proximity in multi-dimensional space) of the training data 

predictor variables.  Consider this figure: 

 

 
 

Assume that each case in the training set has two predictor variables, x and y.  The cases 

are plotted using their x,y coordinates as shown in the figure.  Also assume that the target 

variable has two categories, positive which is denoted by a square and negative which is 

denoted by a dash.  Now, suppose we are trying to predict the value of a new case 

represented by the triangle with predictor values x=6, y=5.1.  Should we predict the target 

as positive or negative? 

 

Notice that the triangle is positioned almost exactly on top of a dash representing a 

negative value.  But that dash is in a fairly unusual position compared to the other dashes 
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which are clustered below the squares and left of center.  So it could be that the 

underlying negative value is an odd case. 

 

The nearest neighbor classification performed for this example depends on how many 

neighboring points are considered.  If 1-NN is used and only the closest point is 

considered, then clearly the new point should be classified as negative since it is on top of 

a known negative point.  On the other hand, if 9-NN classification is used and the closest 

9 points are considered, then the effect of the surrounding 8 positive points may 

overbalance the close negative point. 

 

A probabilistic neural network builds on this foundation and generalizes it to consider all 

of the other training points.  The distance is computed from the point being evaluated to 

each of the other points, and a radial basis function (RBF) (also called a kernel function) 

is applied to the distance to compute the weight (influence) for each point.  The radial 

basis function is so named because the radius distance is the argument to the function. 

 

   Weight = RBF(distance) 

 

The further some other point is from the new point, the less influence it has. 

 

 
Radial Basis Function 
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Different types of radial basis functions could be used, but the most common is the 

Gaussian function: 

 

 
 

If there is more than one predictor variable, then the RBF function has as many 

dimensions as there are variables.  Here is a RBF function for two variables: 

 
 

The best predicted value for the new point is found by summing the values of the other 

points weighted by the RBF function.   
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The peak of the radial basis function is always centered on the point it is weighting.  The 

sigma value (σ) of the function determines the spread of the RBF function; that is, how 

quickly the function declines as the distance increased from the point. 

 

 
 

With larger sigma values and more spread, distant points have a greater influence. 

 

The primary work of training a PNN or GRNN network is selecting the optimal sigma 

values to control the spread of the RBF functions.  DTREG uses the conjugate gradient 

algorithm to compute the optimal sigma values.  See page 80 for information about 

setting the parameters for the conjugate gradient optimization. 
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Suppose our goal is to fit the following function: 

 

 
 

If the sigma values are too large, then the model will not be able to closely fit the 

function, and you will end up with a fit like this: 
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If the sigma values are too small, the model will over fit the data because each training 

point will have too much influence: 

 

 
 

DTREG allows you to select whether a single sigma value should be used for the entire 

model, or a separate sigma for each predictor variable, or a separate sigma for each 

predictor variable and target category.  DTREG uses the Leave-One-Out (LOO) method 

of evaluating sigma values during the optimization process.  This measures the error by 

building the model with all training rows except for one and then evaluating the error 

with the excluded row.  This is repeated for all rows, and the error is averaged. 
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Architecture of a PNN/GRNN Network 

 

In 1990, Donald F. Specht proposed a method to formulate the weighted-neighbor 

method described above in the form of a neural network.  He called this a “Probabilistic 

Neural Network”.  Here is a diagram of a PNN/GRNN network: 

 

 
 

All PNN/GRNN networks have four layers: 

 

Input layer – There is one neuron in the input layer for each predictor variable.  In the 

case of categorical variables, N-1 neurons are used where N is the number of categories.  

The input neurons (or processing before the input layer) standardizes the range of the 

values by subtracting the median and dividing by the interquartile range.  The input 

neurons then feed the values to each of the neurons in the hidden layer. 

 

Hidden layer – This layer has one neuron for each case in the training data set.  The 

neuron stores the values of the predictor variables for the case along with the target value.  

When presented with the x vector of input values from the input layer, a hidden neuron 

computes the Euclidean distance of the test case from the neuron’s center point and then 

applies the RBF kernel function using the sigma value(s).  The resulting value is passed 

to the neurons in the pattern layer. 

 

Pattern layer / Summation layer – The next layer in the network is different for PNN 

networks and for GRNN networks.  For PNN networks there is one pattern neuron for 

each category of the target variable.  The actual target category of each training case is 

stored with each hidden neuron; the weighted value coming out of a hidden neuron is fed 

only to the pattern neuron that corresponds to the hidden neuron’s category.  The pattern 

neurons add the values for the class they represent (hence, it is a weighted vote for that 

category). 

 

For GRNN networks, there are only two neurons in the pattern layer.  One neuron is the 

denominator summation unit the other is the numerator summation unit.  The 
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denominator summation unit adds up the weight values coming from each of the hidden 

neurons.  The numerator summation unit adds up the weight values multiplied by the 

actual target value for each hidden neuron. 

 

Decision layer – The decision layer is different for PNN and GRNN networks.  For PNN 

networks, the decision layer compares the weighted votes for each target category 

accumulated in the pattern layer and uses the largest vote to predict the target category. 

 

For GRNN networks, the decision layer divides the value accumulated in the numerator 

summation unit by the value in the denominator summation unit and uses the result as the 

predicted target value. 

 

Removing unnecessary neurons 

 

One of the disadvantages of PNN/GRNN models compared to multi-level feed forward 

networks is that PNN/GRNN models are large due to the fact that there is one neuron for 

each training row.  This causes the model to run slower than multilayer perceptron 

networks when using scoring to predict values for new rows. 

 

DTREG provides an option to cause it remove unnecessary neurons from the model after 

the model has been constructed (see the parameter settings beginning on page 80). 

 

Removing unnecessary neurons has three benefits: 

1. The size of the stored model is reduced. 

2. The time required to apply the model during scoring is reduced. 

3. Removing neurons often improves the accuracy of the model. 

 

The process of removing unnecessary neurons is a slow (order N
2
), iterative process.  

Leave-one-out validation is used to measure the error of the model with each neuron 

removed.  The neuron that causes the least increase in error (or possibly the largest 

reduction in error) is then removed from the model.  The process is repeated with the 

remaining neurons until the stopping criterion is reached.  For models with more than 

1000 training rows, the neuron removal process may become impractically slow.  If you 

have a multi-CPU computer, you can speed up the process by allowing DTREG to use 

multiple CPU’s for the process.  See page 16 for information about how to do this. 

 

When unnecessary neurons are removed, the “Model Size” section of the analysis report 

shows how the error changes with different numbers of neurons.  You can see a graphical 

chart of this by clicking Chart/Model size. 
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There are three criteria that can be selected to guide the removal of neurons: 

 

 Minimize error – If this option is selected, then DTREG removes neurons as 

long as the leave-one-out error remains constant or decreases.  It stops when it 

finds a neuron whose removal would cause the error to increase above the 

minimum found. 

 Minimize neurons – If this option is selected, DTREG removes neurons until the 

leave-one-out error would exceed the error for the model with all neurons. 

 # of neurons – If this option is selected, DTREG reduces the least significant 

neurons until only the specified number of neurons remain. 

 



289 

 

 

Support Vector Machines (SVM) 
 

 

It’s not enough to help the feeble up, but to support him after. 

 – William Shakespeare 

Introduction to Support Vector Machine (SVM) Models 

A Support Vector Machine (SVM) performs classification by constructing an N-

dimensional hyperplane that optimally separates the data into two categories.  SVM 

models are closely related to neural networks.  In fact, a SVM model using a sigmoid 

kernel function is equivalent to a two-layer, feed-forward neural network. 

 

Support Vector Machine (SVM) models are a close cousin to classical neural networks.  

Using a kernel function, SVM’s are an alternative training method for polynomial, radial 

basis function and multi-layer perceptron classifiers in which the weights of the network 

are found by solving a quadratic programming problem with linear constraints, rather 

than by solving a non-convex, unconstrained minimization problem as in standard neural 

network training. 

 

In the parlance of SVM literature, a predictor variable is called an attribute, and a 

transformed attribute that is used to define the hyperplane is called a feature.  The task of 

choosing the most suitable representation is known as feature selection.  A set of features 

that describes one case (i.e., a row of predictor values) is called a vector.  So the goal of 

SVM modeling is to find the optimal hyperplane that separates clusters of vector in such 

a way that cases with one category of the target variable are on one side of the plane and 

cases with the other category are on the other size of the plane.  The vectors near the 

hyperplane are the support vectors. 

 

The figure below presents an overview of the SVM process. 
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A Two-Dimensional Example 

Before considering N-dimensional hyperplanes, let’s look at a simple 2-dimensional 

example.  Assume we wish to perform a classification, and our data has a categorical 

target variable with two categories.  Also assume that there are two predictor variables 

with continuous values.  If we plot the data points using the value of one predictor on the 

X axis and the other on the Y axis we might end up with an image such as shown below.  

One category of the target variable is represented by rectangles while the other category 

is represented by ovals. 

 

 
 

In this idealized example, the cases with one category are in the lower left corner and the 

cases with the other category are in the upper right corner; the cases are completely 

separated.  The SVM analysis attempts to find a 1-dimensional hyperplane (i.e. a line) 

that separates the cases based on their target categories.  There are an infinite number of 

possible lines; two candidate lines are shown above.  The question is which line is better, 

and how do we define the optimal line. 

 

The dashed lines drawn parallel to the separating line mark the distance between the 

dividing line and the closest vectors to the line.  The distance between the dashed lines is 

called the margin.  The vectors (points) that constrain the width of the margin are the 

support vectors.  The following figure which is used with the kind permission of Jaiwei 

Han (Han, Jiawei and Micheline Kamber) illustrates this. 
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An SVM analysis finds the line (or, in general, hyperplane) that is oriented so that the 

margin between the support vectors is maximized.  In the figure above, the line in the 

right panel is superior to the line in the left panel. 

 

If all analyses consisted of two-category target variables with two predictor variables, and 

the cluster of points could be divided by a straight line, life would be easy.  

Unfortunately, this is not generally the case, so SVM must deal with (a) more than two 

predictor variables, (b) separating the points with non-linear curves, (c) handling the 

cases where clusters cannot be completely separated, and (d) handling classifications with 

more than two categories. 
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Flying High on Hyperplanes 

In the previous example, we had only two predictor variables, and we were able to plot 

the points on a 2-dimensional plane.  If we add a third predictor variable, then we can use 

its value for a third dimension and plot the points in a 3-dimensional cube.  Points on a 2-

dimensional plane can be separated by a 1-dimensional line.  Similarly, points in a 3-

dimensional cube can be separated by a 2-dimensional plane. See the figure below from 

Fung, 1998. 

 

 
 

As we add additional predictor variables (attributes), the data points can be represented in 

N-dimensional space, and a (N-1)-dimensional hyperplane can separate them. 
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When Straight Lines Go Crooked 

The simplest way to divide two groups is with a straight line, flat plane or an N-

dimensional hyperplane.  But what if the points are separated by a nonlinear region such 

as shown below? 

 

 
 

In this case we need a nonlinear dividing line. 

 

Rather than fitting nonlinear curves to the data, SVM handles this by using a kernel 

function to map the data into a different space where a hyperplane can be used to do the 

separation. 
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The kernel function may transform the data into a higher dimensional space to make it 

possible to perform the separation.  The following figure by Florian Markowetz 

illustrates this: 
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The concept of a kernel mapping function is very powerful.  It allows SVM models to 

perform separations even with very complex boundaries such as shown below. 
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The Kernel Trick 

Many kernel mapping functions can be used – probably an infinite number.  But a few 

kernel functions have been found to work well in for a wide variety of applications.  The 

default and recommended kernel function is the Radial Basis Function (RBF).  

 

Kernel functions supported by DTREG: 

 

Linear:  u’*v  

 

 
(This example was generated by pcSVMdemo:  
http://www.procoders.net/en/Procoders/open_source/pcSVMdemo) 
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Polynomial:  (gamma*u’*v + coef0)^degree  

See the following figure from Kecman, 2004. 
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Radial basis function:  exp(-gamma*|u-v|^2)  

A Radial Basis Function (RBF) is the default and recommended kernel function.  The 

RBF kernel non-linearly maps samples into a higher dimensional space, so it can handle 

nonlinear relationships between target categories and predictor attributes; a linear basis 

function cannot do this.  Furthermore, the linear kernel is a special case of the RBF.  A 

sigmoid kernel behaves the same as a RBF kernel for certain parameters.  The RBF 

function has fewer parameters to tune than a polynomial kernel, and the RBF kernel has 

less numerical difficulties.  The following figure from Yang, 2003 illustrates RBF 

mapping. 

 

 
 

   
 

An SVM model using a radial basis function kernel has the architecture of an RBF 

network.  However, the method for determining the number of nodes and their centers is 

different from standard RBF networks with the centers of the RBF notes on the support 

vectors (see the figure below from C. Campbell).  
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Sigmoid:  tanh(gamma*u’*v + coef0)  
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Parting Is Such Sweet Sorrow 

Ideally an SVM analysis should produce a hyperplane that completely separates the 

feature vectors into two non-overlapping groups.  However, perfect separation may not 

be possible, or it may result in a model with so many feature vector dimensions that the 

model does not generalize well to other data; this is known as over fitting.  The following 

figure from a slide by Florian Markowetz of Max Planck Institute for Molecular Genetics 

illustrates a non-separable training set. 

 

 
 

To allow some flexibility in separating the categories, SVM models have a cost 

parameter, C, that controls the trade off between allowing training errors and forcing 

rigid margins.  It creates a soft margin that permits some misclassifications.  The penalty 

associated with a misclassified point is the distance from the point to the hyperplane 

multiplied by the cost factor C.  Increasing the value of C increases the cost of 

misclassifying points
7
 and forces the creation of a more accurate model that may not 

generalize well.  DTREG provides grid and pattern search facilities that can be used to 

find the optimal value of C. 

 

                                                 
7
 Technically, C is the cost of the sum of the distances of wrong-size points from the margins. 
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Classification with More Than Two Categories 

The idea of using a hyperplane to separate the feature vectors into two groups works well 

when there are only two target categories, but how does SVM handle the case where the 

target variable has more than two categories?  Several approaches have been suggested, 

but two are the most popular: (1) “one against many” where each category is split out and 

all of the other categories are merged; and, (2) “one against one” where k(k-1)/2 models 

are constructed where k is the number of categories.  DTREG uses the more accurate (but 

more computationally expensive) technique of “one against one”.  For a discussion of 

why this method is used and comparisons with other approaches see Hsu and Lin, 2002. 

 

Optimal Fitting Without Over fitting 

 

The accuracy of an SVM model is largely dependent on the selection of the kernel 

parameters such as C, Gamma, P, etc.  DTREG provides two methods for finding optimal 

parameter values, a grid search and a pattern search.  A grid search tries values of each 

parameter across the specified search range using geometric steps.  A pattern search (also 

known as a “compass search” or a “line search”) starts at the center of the search range 

and makes trial steps in each direction for each parameter.  If the fit of the model 

improves, the search center moves to the new point and the process is repeated.  If no 

improvement is found, the step size is reduced and the search is tried again.  The pattern 

search stops when the search step size is reduced to a specified tolerance. 

 

To avoid over fitting, cross-validation is used to evaluate the fitting provided by each 

parameter value set tried during the grid or pattern search process. 

 

The following figure by Florian Markowetz illustrates how different parameter values 

may cause under or over fitting: 
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Standing On The Shoulders of Giants 

The SVM implementation used by DTREG is partially based on the outstanding 

LIBSVM project by Chih-Chung Chang and Chih-Jen Lin (Chang and Lin, 2005).  They 

have made both theoretical and practical contributions to the development of support 

vector machines, and their work on LIBSVM is acknowledged with gratitude.  Parts of 

LIBSVM are used under the following terms: 

 
LIBSVM: Copyright (c) 2000-2005 Chih-Chung Chang and Chih-Jen Lin 
All rights reserved. 
 
Redistribution and use in source and binary forms, with or without modification, are 
permitted provided that the following conditions are met: 
 
1. Redistributions of source code must retain the above copyright notice, this list of 
conditions and the following disclaimer. 
 
2. Redistributions in binary form must reproduce the above copyright notice, this list of 
conditions and the following disclaimer in the documentation and/or other materials 
provided with the distribution. 
 
3. Neither name of copyright holders nor the names of its contributors may be used to 
endorse or promote products derived from this software without specific prior written 
permission. 
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“This software(LIBSVM) is provided by the copyright holders and contributors ‘as is’ and 
any express or implied warranties, including, but not limited to, the implied warranties of 
merchantability and fitness for a particular purpose are disclaimed.  In no event shall the 
regents or contributors be liable for any direct, indirect, incidental, special, exemplary, or 
consequential damages (including, but not limited to, procurement of substitute goods or 
services; loss of use, data, or profits; or business interruption) however caused and on 
any theory of liability, whether in contract, strict liability, or tort (including negligence or 
otherwise) arising in any way out of the use of this software, even if advised of the 
possibility of such damage.” 
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Gene Expression Programming 
 

If evolution really works, how come mothers only have two hands? 

 – Ed Dussault 

 

 

Introduction to Gene Expression Programming 

Gene Expression Programming is a procedure that mimics biological evolution to create a 

computer program to model some phenomenon.  Gene expression programming can be 

used to create many different types of models including decision trees, neural networks 

and polynomial constructs.  The type of gene expression programming implemented in 

DTREG is Symbolic Regression – so named because it creates a symbolic mathematical 

or logical function. 

 

DTREG provides a full implementation of the Gene Expression Programming algorithm 

developed by Cândida Ferreira (Ferreira 2006).  Here are some of the features of 

DTREG’s implementation: 

 

 Continuous and categorical target variables 

 Automatic handling of categorical predictor variables 

 A large library of functions that you can select for inclusion in the model 

 Mathematical and logical (AND, OR, NOT, etc.) function generation 

 Choice of many fitness functions 

 Both static linking functions and evolving homeotic genes 

 Fixed and random constants 

 Nonlinear regression to optimize constants 

 Parsimony pressure to optimize the size of functions 

 Automatic algebraic simplification of the combined function 

 Several forms of validation including cross-validation and hold-out 

 Computation of the relative importance of predictor variables 

 Automatic generation of C or C++ source code for the functions 

 Multi-CPU execution for multiple target categories and cross-validation 

 

Introduction to Symbolic Regression 

In ordinary mathematical regression, the procedure is given the form of the function to be 

fitted to the data.  This could be a linear function for linear regression or a general 
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mathematical function for nonlinear regression.  The regression procedure computes the 

optimal values of parameters for the function to make the function fit a data set as well as 

possible, but the regression procedure does not alter the form of the function.  For 

example, a linear regression problem with two variables has the form: 

 

       
 

Where x is the independent variable, y is the dependent variable, and a and b are 

parameters whose values are to be computed by the regression algorithm.  This type of 

procedure is classified as parametric regression because the goal is to estimate 

parameters for a function whose form is known (or assumed). 

 

With nonparametric regression the form of the function is not known in advance, and it 

is the goal of the procedure to find a function that will fit the data.  So we are looking for 

 ( ) that will best fit 

 

   (          ) 

 

Where y is the dependent variable and there are n independent x variables. 

 

There are many possible forms of nonparametric functions – neural networks and 

decision trees are types of nonparametric functions.  Symbolic regression is a subset of 

nonparametric regression that restricts the functions to be mathematical or logical 

expressions. 

 

Symbolic Regression Example – Kepler’s Third Law 

Around 1605, the German mathematician and astronomer Johannes Kepler discovered 

three astronomical laws that describe the orbits of planets around the Sun.  Kepler’s work 

was based on the precise astronomical observations recorded by Danish astronomer 

Tycho Brahe.  Kepler’s third law states “The squares of the orbital periods of planets are 

directly proportional to the cubes of the semi-major axis of the orbits.”  Mathematically, 

this is: 
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Let’s see if symbolic regression can figure this out without the help of a genius 

astronomer.  We will use the following data as input to the procedure: 

 

Planet Distance Period 

Venus 0.72 0.61 

Earth 1.00 1.00 

Mars 1.52 1.84 

Jupiter 5.20 11.90 

Saturn 9.53 29.40 

Uranus 19.10 83.50 

 

Gene expression programming was used to model this data.  Two genes were used per 

chromosome, and there were 7 symbols in the head section of each gene.  After four 

generations, DTREG found a perfect fit to the data.  The expression generated and 

displayed by DTREG is: 

 
    Period = sqrt(Distance)*Distance 

 

Simplifying this we find: 

 

       √                  

               
 
  

                  
 

This is exactly Kepler’s third law.  The DTREG analysis for this problem can be found in 

the GepKepler.dtr program file in the Examples folder. 

 

Odd Parity Example 

In this example, symbolic regression will be used to find a logical expression to compute 

the parity for a 3-input binary circuit.  The output parity value should be 1 if there are an 

odd number of inputs with the value 1, and the output should be 0 if there are an even 

number of inputs with the value 1.  Here is the data for the analysis: 

 

In1 In2 In3 Parity 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 
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For this problem we will allow DTREG to use only three functions in the expression: 

AND, OR, NOT.  We will use 3 genes per chromosome, and we will use the AND function 

to link the genes.  After 418 generations to train the model and an additional 397 

generations to simplify it, DTREG generated the following function which perfectly fits 

the data: 

 
   Parity = (In3|(!(In1&In2)))&((!(In1|In2))|(In1&In2)|!In3)&In2|(In1|In3) 

 

Where ‘|’ is the OR operator, ‘&’ is AND, and ‘!’ is NOT.  The project file for this example 

is named GepParity3.dtr; it can be found in the Examples folder. 

 

Genetic Algorithms 

 Genetic algorithms (GA) have been in widespread use since the 1980’s, but the first 

experiments with computer simulated evolution go back to 1954. 

 

Genetic algorithms are basically a smart search procedure.  The goal is to find a solution 

in a multi-dimensional space where there is no known exact algorithm.  Genetic 

algorithms are often thousands or even millions of times faster than exhaustive search 

procedures.  Exhaustive search is impractical for high dimension problems.  The use of 

random mutations allows genetic algorithms to avoid being trapped in locally-optimal 

regions which is a serious problem for hill-climbing algorithms typically used for 

iterative/convergence procedures.  Genetic algorithms have been used to solve otherwise 

intractable problems such as the Traveling Salesperson Problem. 

 

Genetic algorithms mimic biological evolution, and the terms used for genetic algorithms 

are based on biological features. 

 

In biological DNA systems, the basic units are the adenine (A), thymine (T), guanine (G) 

and cytosine (C) nucleotides that join the helical strands.  In genetic algorithms, the basic 

unit is called a symbol.  The nature of symbols depends on the particular genetic 

algorithm.  In gene expression programming, the symbols consist of functions, variables 

and constants.  Symbols for variables and constants are called terminals, because they 

have no arguments. 

 

An ordered set of symbols form a gene, and an ordered set of genes form a chromosome.  

In GEP programs, genes typically have 4 to 20 symbols, and chromosomes are typically 

built from 2 to 10 genes; chromosomes may consist of only a single gene.  The DNA 

strand for a mammal typically contains about 5x10
9
 nucleotides. 

 

Genetic Algorithms for Symbolic Regression 

Many efforts have been made to use genetic algorithms to solve symbolic regression 

problems – that is, to generate symbolic functions to model data.  One of the problems 

that plagues most of the efforts is finding a way to efficiently mutate and cross-breed 

symbolic expressions so that the resulting expressions have a valid mathematical syntax.  
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For example, if you mutate (     ) into (      ) it isn’t any good, because it isn’t 

syntactically correct. 

 

One approach to this problem is to perform a mutation, check the result and then try a 

different random mutation until a syntactically valid expression is generated.  Obviously, 

this can be a time consuming process for complex expressions. 

 

A second approach is to limit what type of mutations can be performed – for example, 

only exchanging complete sub-expressions.  The problem with this approach is that if 

limited mutations are used, the evolution process is hindered, and it may take a large 

number of generations to find a solution, or it may be completely unable to find the 

optimal solution. 

 

Gene Expression Programming 

An elegant solution to the expression-mutation problem was discovered in 1999 by 

Cândida Ferreira (Ferreira 1996).  Ferreira devised a system for encoding expressions 

that allows fast application of a wide variety of mutation and cross-breeding techniques 

while guaranteeing that the resulting expression will always be syntactically valid.  This 

approach is called Gene Expression Programming (GEP).  Experiments have shown that 

GEP is 100 to 60,000 times faster than older genetic algorithms. 

 

Expression Trees and Karva 

The key to GEP’s ability to quickly mutate valid expressions is the way it encodes 

symbols in genes.  This notation is called the Karva Language (Ferreira 1996).  

Expressions encoded using Karva are called K-expressions.  Consider the simple 

mathematical expression 

 

      
 

This can be encoded as an expression tree of the form 

 

 
 

An expression tree is an excellent way to represent an expression in a computer, because 

the tree can be arbitrarily complex, and expression trees can be evaluated quickly. 

 

To convert an expression tree to the Karva notation, start at the left-most symbol in the 

top line of the tree and scan symbols left-to-right and top-to-bottom.  Each time a symbol 
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is encountered, add it to the K-expression in left-to-right order.  When there are no more 

symbols on a line, advance to the left end of the following line.  Using this method, the 

tree shown above is converted to the K-expression: 

 
+*cab 

 

Note that + is the first symbol found on the first line, at the end of that line scanning 

begins on the second line and finds * followed by c.  It then starts with the third line and 

finds a and b. 

 

As a second example, consider the expression 

 

    √    
 

The corresponding expression tree is 

 

 
 

Where ‘Q’ represents square root.  This can be translated to the K-expression 

 
+*Qab*cd 

 

The process of converting an expression tree to a K-expression can be carried out quickly 

by a computer.  A reverse process can quickly convert a K-expression back to an 

expression tree. 

 

Genes 

A gene consists of a fixed number of symbols encoded in the Karva language.  A gene 

has two sections, the head and the tail.  The head is used to encode functions for the 

expression.  The tail is a reservoir of extra terminal symbols that can be used if there 

aren’t enough terminals in the head to provide arguments for the functions.  Thus, the 

head can contain functions, variables and constants, but the tail can contain only variables 

and constants (i.e. terminals).  The number of symbols in the head of a gene is specified 

as a parameter for the analysis (see page 95).  The number of symbols in the tail is 

determined by the equation 
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    (        )    
 

Where t is the number of symbols in the tail, h is the number of symbols in the head, and 

MaxArg is the maximum number of arguments required by any function that is allowed to 

be used in the expression.  For example, if the head length is 6 and the allowable set of 

functions consists of binary operators (+, -, *, /), then the tail length is: 

 

    (   )      
 

The purpose of the tail is to provide a reservoir of terminal symbols (variables and 

constants) that can be used as arguments for functions in the head if there aren’t enough 

terminals in the head. 

 

Consider a gene with three symbols in the head and which uses binary arithmetic 

operators.  The tail will then have   (   )      terminal symbols.  Here is an 

example of such a gene.  The head is in front of the comma, and the tail follows the 

comma: 

 
+-/,abcd 

 

Ignoring the distinction between the head and the tail, this K-expression can be converted 

to this expression tree: 

 

 
 

Note that the head of the gene consisted only of functions, but the tail provided enough 

terminals to fill in the arguments for the functions. 

 

During mutation, symbols in the head can be replaced by either function or terminal 

symbols.  Symbols in the tail can be replaced only by terminals.  Using the same example 

K-expression shown above, assume mutation replaces the ‘/’ symbol with d.  Then the 

K-expression is: 

 
+-d,abcd 

 

And the expression tree becomes 
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Note that this expression tree has fewer nodes than the previous one.  This illustrates an 

important point: by allowing mutation to replace functions with terminals and terminals 

with functions, the size of the expression can change was well as its content.  As a further 

example, assume the next mutation changes the first symbol in the K-expression from ‘+’ 

to c.  The K-expression becomes: 

 
c-d,abcd 

 

The expression tree for this is: 

 
The “tree” consists of a single node which is the variable c.  Note that the number of 

symbols in the gene did not change, but some symbols are not used.  The symbols that 

are not used are called the noncoding region of the gene.  Because the functional length 

of a gene may be less than the number of symbols it holds, it is called an open reading 

frame (ORF).  Biological genes also have noncoding regions. 

 

If you experiment with K-expressions you will find that any possible mutation will result 

in a valid expression as long as the following rules are adhered to: 

 

1. Symbols in the head can be replaced with functions, variables and constants. 

2. Symbols in the tail can be replaced only with variables and constants (terminals). 

3. The tail is of sufficient length to provide terminals for all possible functions that 

can occur in the head. (See the formula for tail length above.) 

 

This is the key to the efficiency of gene expression programming.  It is easy for a 

computer program to follow these three rules while performing mutations, and it never 

has to check whether the resulting expression has valid syntax.  By allowing a broad 

range of mutations, the process can efficiently explore a high dimensional space, and the 

expressions can change in size as functions are replaced by terminals and terminals by 

functions. 

 

Chromosomes and Linking Functions 

A chromosome consists of one or more genes.  The number of genes in a chromosome is 

a parameter for the analysis (see page 95).  If there is more than one gene in a 
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chromosome, then a linking function is used to join the genes in the final function.  The 

linking function can be static or evolving (see page 106). 

 

For example, consider a chromosome with two genes having the K-expressions: 

 

Gene 1: *ab 

Gene2: /cd 

 

If ‘+’ is used as the static linking function, then the combined expression is: 

 
Which is equivalent to (       ). 

 

Homeotic Genes 

 

In addition to specifying a static linking function, you can allow the linking functions to 

be selected dynamically by evolution.  This is done using homeotic genes. 

 

In biology, homeotic genes control macro organization such as determining that arms 

should be attached to shoulders and legs to hips.  Mutations in homeotic genes produce 

bizarre creatures.  An example is the Antennapedia mutant of the fruit fly Drosophila, 

where legs are found sprouting where the antennae would normally be.  Often, mutations 

in homeotic genes produce nonviable organisms. 

 

In gene expression programming, a homeotic gene is used to link together the regular 

genes in a chromosome.  There is never more than one homeotic gene in a chromosome, 

and there is no homeotic gene if a static linking function is used. 

 

Homeotic genes have the same structure as regular genes:  They have a head section with 

a length specified as a parameter (see page 107), a tail section, and a set of symbols.  The 

symbols in homeotic genes consist of references to ordinary genes and linking functions. 

 

Homeotic genes undergo mutation, inversion, transposition and crossover just as regular 

genes do during evolution.  Separate parameters are available to set the mutation rates for 

homeotic genes (see page 106).  Symbols and functions are never exchanged between 

regular genes and homeotic genes. 

 

For example, if a chromosome has 3 regular genes, G1, G2 and G3, and a homeotic gene, 

then the homeotic gene might have a K-expression of 
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+*G3G1G2 

 

And the expression tree would be 

 

 
Where G1, G2 and G3 are the expression trees for the regular genes. 

 

Mathematical Evolution 

 
 

Evolution is the engine of gene expression programming.  An initial population of 

candidate functions is created, then mutation, breeding and natural selection are used to 

evolve functions that more closely model the data. 

 

The main steps in the training and evolution of a gene expression program are: 

 

1. Create an initial population of viable individuals (chromosomes). 

2. Use evolution to attempt to create individuals that fit the data well. 

3. Use evolution to try to find a simpler, more parsimonious function. 

4. Use nonlinear regression to find optimal values of constants. 

 

Initial Population Creation 

Gene expression programming and other genetic algorithms work by evolving sets of 

individuals (chromosomes).  But before the evolution process begins, an initial, founder 

population of individuals must be constructed that can mutate, breed and be selected for 
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subsequent generations.  The number of individuals in the population is a parameter for 

the analysis (see page 95). 

 

The Karva language used to represent expressions in gene expression programming 

guarantees that all expressions will have valid mathematical syntax.  But Karva does not 

guarantee that the expressions will produce meaningful values when they are evaluated.  

For example, the K-expression 

 
/a0 

 

is syntactically valid, but it generates the expression (   ), which, of course, is infinite.  

There are many other cases where the results cannot be evaluated such as taking the 

square root of a negative number, finding the log of a negative number or overflowing the 

range of numbers by raising a large value to a huge power.  Expressions that cannot be 

evaluated to generate meaning values are called unviable and receive a fitness score of 

zero.  Expressions are also classified as unviable if they are unable to correctly classify 

any members of the population.  Some fitness functions place additional conditions on 

viability:  For example, the Hits with penalty fitness function only classifies an 

expression as viable if both the true positive (TP) and true negative (TN) hit counts are 

greater than zero (see page 97). 

 

The creation of the initial population is done by randomly selecting functions and 

terminals for the genes.  Some of the resulting individuals may be viable, and some may 

be unviable.  If the population has no viable individuals, another population is randomly 

created.  This process is repeated up to several thousand times until an initial population 

is found with at least one viable individual.  If it is impossible to create an initial 

population with a viable individual, then the analysis cannot be performed. 

 

On a philosophical note, it is difficult to imagine how an initial population could have 

been created for biological evolution.  Gene expression programming starts with the 

machinery for evolution in existence and ready to run – mutation, inversion, 

transposition, cross-replication and selection.  It also starts the process with viable 

individuals having a structure suitable for evolution – symbols, genes and chromosomes. 

 

In the natural world, the starting point would be simple elements and molecules with no 

pre-existing organization of genes, chromosomes, DNA or RNA.  The machinery for 

evolution and passing on genetic material from generation to generation would not exist.  

So evolution – at least as it is currently understood – cannot be used to explain how 

unorganized chemicals organized themselves into DNA and RNA which are essential for 

evolution.  This is one of the stronger arguments for Intelligent Design. 
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The Process of Evolution 

Once the initial population has been created, the process of evolution can be used to find 

individuals that model the data well.  Here is an outline of the evolution process: 

 

1. Convert K-expressions in chromosomes to expression trees. 

2. Compute the fitness score for each individual by comparing the predicted target 

value with the actual target value for all training cases. 

3. If the fitness score is sufficiently good, or if the maximum number of generations 

has been evolved, or if the maximum execution time has been reached, stop the 

evolution. 

4. Transfer the best (most fit) individual to the next generation without modification. 

5. Use roulette-wheel sampling to select individuals for the next generation. 

6. Perform mutations. 

7. Perform inversions. 

8. Perform transposition. 

9. Perform recombination to combine genetic material from pairs of individuals. 

10. Return to step 1 for the next evolution cycle. 

 

Natural Selection and Fitness 

 

The principle of natural selection is that healthy, fit individuals should breed and produce 

offspring at a faster rate than sick, unfit individuals.  Through this selection process, each 

generation becomes healthier and more fit.  In order for this to take place, there must be 

some characteristics of individuals that determine fitness for the environment, and there 

must be a selection mechanism that favors the breeding of individuals with greater 

fitness. 

 

In gene expression programming, fitness is based on how well an individual models the 

data.  If the target variable has continuous values, the fitness can be based on the 

difference between predicted values and actual values.  For classification problems with a 

categorical target variable, fitness can be measured by the number of correct predictions.  

DTREG provides a variety of fitness functions that you can choose from for an analysis 

(see page 95). 

 

Evolution stops when the fitness of the best individual in the population reaches some 

limit that is specified for the analysis or when a specified number of generations have 

been created or a maximum execution time limit is reached. 

 

All of the fitness functions produce fitness scores in the range 0.0 to 1.0 with 1.0 being 

ideal fitness – that is, the individual exactly fits the data.  If a function is unviable – for 

example it takes the square root of a negative number or divides by zero – then its fitness 

score is 0.0. 

 

Once the fitness has been calculated for the individuals in the population, roulette-wheel 

sampling is used to select which individuals move on to the next generation.  Each 

individual is assigned a slot of a roulette wheel, and the size of the slot is proportional to 
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the fitness of the individual.  Unviable individuals whose fitness is 0.0 have slots that can 

never be selected, so they are not propagated to the next generation.  Roulette-wheel 

sampling causes individuals to be selected with a probability proportional to their fitness, 

and it eliminates unviable individuals.  Since individuals are not removed from the 

population once they are selected, individuals may be selected more than once for the 

next generation. 

 

Gene expression programming makes one exception to the roulette-wheel sampling 

procedure:  The most fit individual in each generation is unconditionally replicated 

unchanged into the next generation.  This is known as elitism.  The reason this is done is 

to guarantee that there will never be a loss of the best individual from one generation to 

the next. 

 

Mutation, Inversion, Transposition and Recombination 

 

In order for a population to improve from generation to generation innovations must 

occur that cause some individuals to have qualities never before seen.  These innovations 

come about from mutation.  In gene expression programming there are several types of 

mutation, some are simple random changes in the symbols of genes, others are more 

complex involving reversing the order of symbols or transposing symbols or genes within 

the chromosome. 

 

Mutation is not necessarily beneficial; often the change results in a less fit individual or 

in an unviable individual who cannot survive.  But there is a possibility that a mutation 

may produce an individual with extraordinary qualities – a “genius” individual.  The 

operation of evolution depends on mutations producing some individuals with greater 

fitness.  Through natural selection, their offspring improve the overall quality of the 

population.  As described above, elitism guarantees that a genius never dies unless a 

better genius is found to take its place.  If elitism applied to people, Isaac Newton might 

have lived until Albert Einstein was born, and Einstein might still be alive today. 

 

Several types of mutation are used by gene expression programming.  See the section 

beginning on page 104 for detailed information about each method. 

 

Mutation – Simple mutation just replaces symbols in genes with replacement symbols.  

Symbols in the heads of genes can be replaced by functions or terminals (variables and 

constants).  Symbols in the tail sections can be replaced only by terminals. 

 

Inversion – Inversion reverses the order of symbols in a section of a gene. 

 

Transposition – Transposition selects a group of symbols and moves the symbols to a 

different position within the same gene.  Gene transposition moves entire genes around in 

the chromosome. 

 

Recombination – During recombination, two chromosomes are randomly selected, and 

genetic material is exchanged between them to produce two new chromosomes.  It is 
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analogous to the process that occurs when two individuals are bred, and the offspring 

share a mixture of genetic material from both parents. 

 

Parsimony Pressure and Expression Simplification 

If two expressions do an equally good job of fitting a data set, the simpler expression is 

usually preferred.  For symbolic regression, complexity is measured by the number of 

symbols and functions in the expression.  Gene expression programming has two 

techniques for selecting simpler expressions over more complex ones. 

 

The first approach is to adjust the fitness scores of individuals so that fitness is reduced 

by an amount proportional to the complexity of the expression.  This penalty for 

complexity is called parsimony pressure.  See page 95 for information about how to 

adjust how much parsimony pressure is applied. 

 

While parsimony pressure is effective at guiding evolution toward simpler expressions, 

experiments have shown that parsimony pressure may hinder the process of evolving 

toward greater fitness.  It is not uncommon for more complex expressions to do a better 

job of fitting than less complex ones, so pushing evolution to favor simpler expressions 

may increase the number of generations required to find a solution, or it may make it 

impossible to find a good solution.  If parsimony pressure is used, you also should build a 

model with it turned off, and verify that the simpler solution does not lose significant 

accuracy. 

 

The second approach to finding parsimonious solutions is to divide the task into two 

phases: (1) primary training without parsimony pressure, and (2) secondary training 

which uses parsimony pressure.  Since the primary training is done without parsimony 

pressure, evolution can focus on finding the most accurate model as quickly as possible.  

Once primary training is finished, a second round of training begins using the final 

population from primary training as the starting population for the secondary training. 

 

During secondary training, parsimony pressure is used to try to find a simpler expression 

that is at least as good as the best one found during primary training.  While secondary 

training is being performed, the primary goal is still to improve accuracy, and the 

secondary goal is to find simpler expressions.  So a simpler expression will be selected 

only if its accuracy meets or exceeds the best accuracy previously found.  If a more 

accurate expression is found, it is used even if the result is an increase in complexity.  So 

it is possible that during the secondary training complexity could actually increase in 

order to improve accuracy.  But experiments have shown that this rarely happens, and 

secondary training usually results in simpler expressions.  Since there is never any risk of 

losing accuracy with this approach, and it may result in a simpler and possibly more 

accurate expression, it is recommended. 
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Algebraic Simplification 

DTREG includes a sophisticated procedure for performing algebraic simplification on 

expressions after gene expression programming has evolved the best expressions.  This 

simplification does not alter the mathematical meaning of expressions; it just does 

simplifications such as grouping common terms and simplifying identities.  Here are 

some examples of simplifications that it can perform: 

 

(             )        
 

   

   
   

 
              

 

(√ )
 

   

 
   ( )

   ( )
     ( ) 

 

See page 100 for more information about algebraic simplification. 

 

Optimization of Random Constants 

In addition to functions and variables, expressions can contain constants.  You can 

specify a set of explicit constants, and you can allow DTREG to generate and evolve 

random constants.  While evolution can do a good job of finding an expression that fits 

data well, it is difficult for evolution to come up with exact values for real constants. 

 

DTREG provides an optional final step to the GEP process to refine the values of random 

constants.  If this option is enabled, DTREG uses a sophisticated nonlinear regression 

algorithm to refine the values of the random constants.  This optimization is performed 

after evolution has developed the functional form and linking and simplification have 

been performed.  DTREG uses a model/trust-region technique along with an adaptive 

choice of the model Hessian.  The algorithm is essentially a combination of Gauss-

Newton and Levenberg-Marquardt methods; however, the adaptive algorithm often 

works much better than either of these methods alone. 

 

If nonlinear regression does not improve the accuracy of the model, the original model is 

used.  So there is no risk of losing accuracy by using this option. 
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K-Means Clustering 
 
 

Developed between 1975 and 1977 by J. A. Hartigan and M. A. Wong (Hartigan and 

Wong, 1979), K-Means clustering is one of the older predictive modeling methods.  K-

Means Clustering is a relatively fast modeling method, but it is also among the least 

accurate models that DTREG offers. 

 

The basic idea of K-Means clustering is that clusters of items with the same target 

category are identified, and predictions for new data items are made by assuming they are 

of the same type as the nearest cluster center. 

 

K-Means clustering is similar to two other more modern methods: 

 Radial Basis Function neural networks (see page 258).  An RBF network also 

identifies the centers of clusters, but RBF networks make predictions by 

considering the Gaussian-weighted distance to all other cluster centers rather than 

just the closest one. 

 Probabilistic Neural Networks (see page 279).  Each data point is treated as a 

separate cluster, and a prediction is made by computed the Gaussian-weighted 

distance to each point. 

 

Usually, both RBF networks and PNN networks are more accurate than K-Means 

clustering models.  PNN networks are among the most accurate of all methods, but they 

become impractically slow when there are more than about 10000 rows in the training 

data file.  K-Means clustering is faster than RBF or PNN networks, and it can handle 

large training files. 

 

K-Means clustering can be used only for classification (i.e., with a categorical target 

variable), not for regression.  The target variable may have two or more categories. 

 

To understand K-Means clustering, consider a classification involving two target 

categories and two predictor variables.  The following figure (Balakrishnama and 

Ganapathiraju) shows a plot of two categories of items.  Category 1 points are marked by 

circles, and category 2 points are marked by asterisks.  The approximate center of the 

category 1 point cluster is marked “C1”, and the center of category 2 points is marked 

“C2”. 
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Four points with unknown categories are shown by diamonds.  K-Means clustering 

predicts the categories for the unknown points by assigning them the category of the 

closest cluster center (C1 or C2). 

 

There are two issues in creating a K-Means clustering model: 

1. Determine the optimal number of clusters to create. 

2. Determine the center of each cluster. 

 

Most K-Means clustering programs don’t provide any systematic way to find out the 

optimal number of clusters, and it usually isn’t as obvious as shown in the figure above.  

So the person trying to create a model must experiment and try guesses to see what works 

best.  DTREG provides an automatic search function that creates models using a varying 

number of clusters, tests each one and reports which is best.  The model performance 

tests can be performed using cross-validation or holdout sampling.  You can turn off the 

automatic search and specify a fixed number of clusters if you prefer. 

 

Given the number of clusters, the second part of the problem is determining where to 

place the center of each cluster.  Often, points are scattered and don’t fall into easily 

recognizable groupings.  Cluster center determination is done in two steps: 

 

A. Determine starting positions for the clusters.  This is performed in two steps: 

1. Assign the first center to a random point. 
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2. Find the point furthest from any existing center and assign the next center 

to it.  Repeat this until the specified number of cluster centers have been 

found. 

B. Adjust the center positions until they are optimized.  DTREG does this using a 

modified version of the Hartigan-Wong algorithm that is much more efficient 

than the original algorithm. 
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Discriminant Analysis 
 
 

Originally developed in 1936 by R.A. Fisher (Fisher, 1936), Discriminant Analysis is a 

classic method of classification that has stood the test of time.  Discriminant analysis 

often produces models whose accuracy approaches (and occasionally exceeds) more 

complex modern methods. 

 

Discriminant analysis can be used only for classification (i.e., with a categorical target 

variable), not for regression.  The target variable may have two or more categories. 

 

To explain discriminant analysis, let’s consider a classification involving two target 

categories and two predictor variables.  The following figure (Balakrishnama and 

Ganapathiraju) shows a plot of the two categories with the two predictors on orthogonal 

axes: 

 

 
 

A visual inspection shows that category 1 objects (open circles) tend to have larger values 

of the predictor on the Y axis and smaller values on the X axis. However, there is overlap 

between the target categories on both axes, so we can’t perform an accurate classification 

using only one of the predictors. 
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Linear discriminant analysis finds a linear transformation (“discriminant function”) of the 

two predictors, X and Y, that yields a new set of transformed values that provides a more 

accurate discrimination than either predictor alone: 

 

  TransformedTarget = C1*X + C2*Y 

 

  The following figure (also from Balakrishnama and Ganapathiraju) shows the 

partitioning done using the transformation function: 

 

 
 

A transformation function is found that maximizes the ratio of between-class variance to 

within-class variance as illustrated by this figure produced by Ludwig Schwardt and 

Johan du Preez (Schwardt and Preez, 2005): 
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The transformation seeks to rotate the axes so that when the categories are projected on 

the new axes, the differences between the groups are maximized.  The following figure 

(also by Schwardt and du Preez) shows two rotates axes.  Projection to the lower right 

axis achieves the maximum separation between the categories; projection to the lower left 

axis yields the worst separation. 
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The following figure by Randy Julian (Julian, Lilly Labs) illustrates a distribution 

projected on the transformed axis labeled “D”.  Note that the projected values produce 

complete separation on the transformed axis, whereas there is overlap on both the original 

X and Y axes. 

 

 
 

In the ideal case, a projection can be found that completely separates the categories (such 

as shown above).  However, in most cases there is no transformation that provides 

complete separation, so the goal is to find the transformation that minimizes the overlap 

of the transformed distributions.  The following figure by Alex Park and Christine Fry 

illustrates a distribution of two categories (“switch” in blue and “non-switch” in red).  

The black line shows the optimal axis found by linear discriminant analysis that 

maximizes the separation between the groups when they are projected on the line. 
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The following figure (also by Alex Park and Christine Fry) shows the distribution of the 

switch and non-switch categories as projected on the transformed axis (i.e., the black line 

shown in the figure above): 

 

 
 

Note that even after the transformation there is overlap between the categories, but setting 

a cutoff point around -1.7 on the transformed axis yields a reasonable classification of the 

categories. 
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Linear Regression 
 

I guide you in the way of wisdom and lead you along straight paths. 

 – Proverbs 4:11 (NIV) 

 

 
 

Introduction to Linear Regression 

Linear regression is the oldest and most widely used predictive model.  The method of 

minimizing the sum of the squared errors to fit a straight line to a set of data points was 

published by Legendre in 1805 and by Gauss in 1809.  The term “least squares” is from 

Legendre’s term, moindres carrés.  However, Gauss claimed that he had known the 

method since 1795.  The term "regression" was coined in the nineteenth century to 

describe a biological phenomenon, namely that the progeny of exceptional individuals 

tend on average to be less exceptional than their parents and more like their more distant 

ancestors [from Wikipedia]. 

 

A linear regression model fits a linear function to a set of data points.  The form of the 

function is: 

 

                                    
 

Where Y is the target variable, X1, X2,… Xn are the predictor variables, and   , …,    are 

coefficients that multiply the predictor variables.     is a constant. 

 

For example, the function shown above relating the strength of a material to hardness has 

the fitted equation: 

 

http://en.wikipedia.org/wiki/Adrien_Marie_Legendre
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/Nineteenth_century
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   Strength = -0.8453 + 0.58388*Hardness 

 

If there is a single predictor variable (X1), then the function describes a straight line.  If 

there are two predictor variables, then the function describes a plane.  If there are n 

predictor variables, then the function describes an n-dimensional hyperplane.  Here is a 

plot of a fitted plane with two predictor variables: 

 

 
 

If a perfect fit existed between the function and the actual data, the actual value of the 

target value for each record in the data file would exactly equal the predicted value.  

Typically, however, this is not the case, and the difference between the actual value of the 

target variable and its predicted value for a particular observation is the error of the 

estimate which is known as the “deviation” or “residual”.  The following plot depicts the 

residuals as red vertical lines connecting the data points and the fitted line. 
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The goal of regression analysis is to determine the values of the β parameters that 

minimize the sum of the squared residual values for the set of observations.  This is 

known as a “least squares” regression fit.  It is also sometimes referred to as “ordinary 

least squares” (OLS) regression. 

 

Since linear regression is restricted to fitting linear (straight line/plane) functions to data, 

it rarely works as well on real-world data as more general techniques such as neural 

networks which can model non-linear functions.  However, linear regression has a 

number of strengths: 

 

 Linear regression is the most widely used method, and it is well understood. 

 Training a linear regression model is usually much faster than methods such as 

neural networks. 

 Linear regression models are simple and require minimum memory to implement, 

so they work well on embedded controllers that have limited memory space. 

 By examining the magnitude and sign of the regression coefficients (β) you can 

infer how predictor variables affect the target outcome. 

 

It is possible to use linear regression to fit functions with non-linear variables.  To do this, 

use DTL (see page 153) or an external program to generate transformed values of 

variables, and then use the transformed variables as predictor variables for the function.  

For example, if you generate a new variable, X2 using the transformation: 
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and include both X and X2 as predictor variables, then the fitted function will be: 

 

                         
 

Which is equivalent to 

 

                        
 

Linear regression is best suited for analyses with a continuous target variable, but 

DTREG also can create linear regression models to perform classification with a 

categorical target variable.  When the target variable has two categories, a function is 

created to predict 1 for one of the categories and 0 for the other.  If the target variable has 

more than two categories, DTREG creates a separate linear regression function for each 

category.  A category function is trained to generate 1 if the category it is modeling is 

true and 0 for any other category. 

 

If there are categorical predictor variables, DTREG generates a separate predictor 

variable for each category.  A created predictor-category variable has the value 1 if the 

predictor variable has the category it represents and 0 if the predictor variable has any 

other category. If a categorical predictor variable has n categories, then (n-1) dummy 

variables are generated. Each generated variable has the value 1 if the variable’s value 

matches its associated category.  All generated variables have the value 0 if the value of 

the predictor variable matches the remaining category.  For example, if predictor variable 

TicketClass has three categories, FirstClass, Tourist and SuperSaver, then DTREG will 

arbitrarily select two of the categories for generated variables; let’s assume it selects 

FirstClass and Tourist. Then if the value of TicketClass is FirstClass, the generated 

variables would have the values: FirstClass=1, Tourist=0.  If TicketClass was Tourist, 

then the generated variables would have the values: FirstClass=0, Tourist=1. And if 

TicketClass was SuperSaver, then the generated variables would have the values: 

FirstClass=0, Tourist=0. 

 

Several computational algorithms can be used to perform linear regression.  DTREG uses 

Singular Value Decomposition (SVD) which is robust and less sensitive to predictor 

variables that are nearly collinear. 

 

Output Generated for Linear Regression 

In addition to statistics measuring how well the function fits the data (see page 189), 

DTREG generates a table showing the computed β coefficient values.   

 
  --------------  Computed Coefficient (Beta) Values  -------------- 

 

Variable   Coefficient    Std. Error       t       Prob(t)     95% Confidence Interval 

--------  -------------  ------------  ---------  ---------  ------------  ------------ 

Hardness       0.583884         0.016      36.40  < 0.00001        0.5508        0.6169 

Constant      -0.845341         1.106      -0.76    0.45203        -3.124         1.434 
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A line is displayed showing the computed β coefficient for each predictor variable.  If a 

constant (β0) is included in the equation, the last line shows the value of “Constant”. 

 

Using the information in this table, we conclude that the function is: 

 

  Strength = -0.845341 + 0.583884*Hardness 

 

In addition to the coefficient value, the standard error of the coefficient is displayed along 

with several other statistics: 

t Statistic 

The “t” statistic is computed by dividing the estimated value of the β  coefficient by its 

standard error.  This statistic is a measure of the likelihood that the actual value of the 

parameter is not zero.  The larger the absolute value of t, the less likely that the actual 

value of the parameter could be zero.  The t statistic probability is computed using a two-

sided test. 

Prob(t) 

The “Prob(t)” value is the probability of obtaining the estimated value of the coefficient if 

the actual coefficient value is zero.  The smaller the value of Prob(t), the more significant 

the coeficient and the less likely that the actual value is zero.  For example, assume the 

estimated value of a parameter is 1.0 and its standard error is 0.7.  Then the t value would 

be 1.43 (1.0/0.7).  If the computed Prob(t) value was 0.05 then this indicates that there is 

only a 0.05 (5%) chance that the actual value of the parameter could be zero.  If Prob(t) 

was 0.001 this indicates there is only 1 chance in 1000 that the parameter could be zero.  

If Prob(t) was 0.92 this indicates that there is a 92% probability that the actual value of 

the parameter could be zero; this implies that the term of the regression equation 

containing the parameter can be eliminated without significantly affecting the accuracy of 

the regression.  One thing that can cause Prob(t) to be 1.00 (or near 1.00) is having 

redundant parameters.  If at the end of an analysis several parameters have Prob(t) values 

of 1.00, check the function carefully to see if one or more of the parameters can be 

removed. 

 

ANOVA Table 
 
  --  ANOVA and F Statistics  -- 

 

    Source      DF    Sum of Squares    Mean Square     F value    Prob(F) 

  ----------  ------  --------------  --------------  ----------  --------- 

  Regression       2        16510.39        8255.195      10.885   0.000432 

  Error           24        18201.91        758.4128 

  Total           26         34712.3 

 
An "Analysis of Variance” table provides statistics about the overall significance of the 

model being fitted. 
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F Value, and Prob(F) 

The "F value” and "Prob(F)” statistics test the overall significance of the regression 

model.  Specifically, they test the null hypothesis that all of the regression coefficients are 

equal to zero.  This tests the full model against a model with no variables and with the 

estimate of the dependent variable being the mean of the values of the dependent 

variable.  The F value is the ratio of the mean regression sum of squares divided by the 

mean error sum of squares.  Its value will range from zero to an arbitrarily large number. 

 

The value of Prob(F) is the probability that the null hypothesis for the full model is true 

(i.e., that all of the regression coefficients are zero).  For example, if Prob(F) has a value 

of 0.010 then there is 1 chance in 100 that all of the regression parameters are zero.  This 

low a value would imply that at least some of the regression parameters are nonzero and 

that the regression equation does have some validity in fitting the data (i.e., the 

independent variables are not purely random with respect to the dependent variable). 

Confidence interval 

The confidence interval shows the range of values for the computed coefficient that 

covers the actual coefficient value with the specified confidence.  For example, the 

results above show a 95% confidence interval of 0.5508 to 0.6169 for the Hardness 

coefficient.  This means that we are 95% confident that the true coefficient of Hardness 

falls in this range.  You can set the percentage for the confidence interval on the Linear 

Regression Property Page (see page 115). 

 

Coefficients for categorical predictor variables 

If some of the predictor variables have categorical values, then the table of computed 

coefficients has a line for each variable generated for categories.  Here is an example: 

 
  --------------  Coefficient (Beta) Values for Survived = 1  (Yes)  -------------- 

 

Variable    Coefficient    Std. Error       t       Prob(t)     95% Confidence Interval 

---------  -------------  ------------  ---------  ---------  ------------  ------------ 

Class 

     Crew       0.131181       0.02164       6.06  < 0.00001       0.08875        0.1736 

    First       0.306734       0.02771      11.07  < 0.00001        0.2524        0.3611 

   Second       0.120654       0.02852       4.23    0.00002       0.06473        0.1766 

Age 

    Adult      -0.181296       0.04097      -4.43    0.00001       -0.2616        -0.101 

Sex 

     Male       -0.49068       0.02301     -21.33  < 0.00001       -0.5358       -0.4456 

Constant        0.767591       0.04186      18.34  < 0.00001        0.6855        0.8497 

 

Note that variables were generated for Crew, First and Second categories of Class.  The 

variable generated for Age is 1 if Age=Adult and 0 otherwise.  Similarly, there is a 

generated value for Sex that has the value 1 if Sex=Male and 0 otherwise. 
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Logistic Regression 
 

Introduction to Logistic Regression 

 

Logistic Regression is a type of predictive model that can be used when the target 

variable is a categorical variable with two categories – for example live/die, has 

disease/doesn’t have disease, purchases product/doesn’t purchase, wins race/doesn’t win, 

etc.  A logistic regression model does not involve decision trees and is more akin to 

nonlinear regression such as fitting a polynomial to a set of data values. 

 

Logistic regression can be used only with two types of target variables: 

 

1.  A categorical target variable that has exactly two categories (i.e., a binary or 

dichotomous variable). 

2.  A continuous target variable that has values in the range 0.0 to 1.0 representing 

probability values or proportions. 

 

As an example of logistic regression, consider a study whose goal is to model the 

response to a drug as a function of the dose of the drug administered.  The target 

(dependent) variable, Response, has a value 1 if the patient is successfully treated by the 

drug and 0 if the treatment is not successful.  Thus the general form of the model is: 

 

   Response = f(dose) 
 

The input data for Response will have the value 1 if the drug is effective and 0 if the drug 

is not effective.  The value of Response predicted by the model represents the probability 

of achieving an effective outcome, P(Response=1|Dose).  As with all probability values, 

it is in the range 0.0 to 1.0. 

 

One obvious question is “Why not simply use linear regression?”  In fact, many studies 

have done just that, but there are two significant problems: 

 

1.  There are no limits on the values predicted by a linear regression, so the predicted 

response might be less than 0 or greater than 1 – clearly nonsensical as a response 

probability. 

 

2.  The response usually is not a linear function of the dosage.  If a minute amount of the 

drug is administered, no patients will respond.  Doubling the dose to a larger but still 

minute amount will not yield any positive response.  But as the dosage is increases a 

threshold will be reached where the drug begins to become effective.  Incremental 

increases in the dosage above the threshold usually will elicit an increasingly positive 

effect.  However, eventually a saturation level is reached, and beyond that point 

increasing the dosage does not increase the response. 
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The Dose-Response Curve 

 

The logistic regression dose-response curve has an S (sigmoidal) shape such as shown 

here: 

 

 
 

Notice that all of the Response values are 0 or 1.  The Dose varies from 0 to 25.  Below a 

dose of 9 all of the Response values are 0.  Above a dose of 10 all of the response values 

are 1. 
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The Logistic Model Formula 

 

The logistic model formula computes the probability of the selected response as a 

function of the values of the predictor variables. 

 

If a predictor variable is categorical variable with two values, then one of the values is 

assigned the value 1 and the other is assigned the value 0.  Note that DTREG allows you 

to use any value for categorical variables such as “Male” and “Female”, and it converts 

these symbolic names into 0/1 values.  So you don’t have to be concerned with recoding 

categorical values. 

 

If a predictor variable is a categorical variable with more than two categories, then a 

separate dummy variable is generated to represent each of the categories except for one 

which is excluded.  The value of the dummy variable is 1 if the variable has that 

category, and the value is 0 if the variable has any other category; hence, no more than 

one dummy variable will be 1.  If the variable has the value of the excluded category, 

then all of the dummy variables generated for the variable are 0.  DTREG automatically 

generates the dummy variables for categorical predictor variables; all you have to do is 

designate variables as being categorical. 

 

In summary, the logistic formula has each continuous predictor variable, each 

dichotomous predictor variable with a value of 0 or 1, and a dummy variable for every 

category of predictor variables with more than two categories less one category. 

 

The form of the logistic model formula is: 

 

)))...(exp(1/(1 22110 kkXXXP    

 

Where β0 is a constant and βi are coefficients of the predictor variables (or dummy 

variables in the case of multi-category predictor variables).  The computed value, P, is a 

probability in the range 0 to 1.  The exp() function is e raised to a power.  You can 

exclude the β0 constant by turning off the option “Include constant (intercept) term” on 

the logistic regression model property page. 
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Output Generated for a Logistic Regression Analysis 

Summary statistics for the model 

 
============  Logistic Regression Parameters  ============ 

 

Predict: DeathPenalty = 1  (Yes) 

 

Number of parameters calculated = 4 

Number of data rows used = 147 

 

Wald confidence intervals are computed for 95% probability. 

 

Log likelihood of model = -88.142490 

Deviance (-2 * Log likelihood) = 176.284981 

Akaike's Information Criterion (AIC) = 184.284981 

Bayesian Information Criterion (BIC) = 196.246711 

 

The summary statistics begin by showing the name of the target variable and the category 

of the target whose probability is being predicted by the model.  You can select the 

category on the logistic regression property page for the analysis. 

 

The log likelihood of the model is the value that is maximized by the process that 

computes the maximum likelihood value for the β parameters.  Technically, it is the value 

of the likelihood function, 
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The Deviance is equal to -2*log-likelihood. 

 

Akaike’s Information Criterion (AIC) is -2*log-likelihood+2*k where k is the number 

of estimated parameters. 

 

The Bayesian Information Criterion (BIC) is -2*log-likelihood + k*log(n) where k is 

the number of estimated parameters and n is the sample size.  The Bayesian Information 

Criterion is also known as the Schwartz criterion. 

 

 

Computed Beta Parameters 

 
  ------------------  Computed Parameter (Beta) Values  ------------------ 

 

   Variable      Parameter   Std. Error   Pr. Chi Sq.   Lower C.I.    Upper C.I. 

--------------  ----------  ------------  -----------  ------------  ------------ 

BlackDefendant      0.5952         0.394       0.1308        -0.177         1.367 

WhiteVictim         0.2565         0.400       0.5216        -0.528         1.041 

Serious             0.1871         0.061       0.0022         0.067         0.307 

Constant           -2.6516         0.675     < 0.0001        -3.974        -1.329 
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The computed beta parameters are the maximum likelihood values of the β parameters in 

the logistic regression model formula (see above).  By using them in an equation with the 

corresponding values of the predictor (X) variables, you can compute the expected 

probability, P, for an observation. 

 

In addition to the maximum likelihood value, the standard error for the estimate is 

displayed along with the Chi squared probability that the true value of the parameter is 

not zero.  The last two columns display the Wald upper and lower confidence intervals.  

You can select the confidence interval percentage range on the Logistic Regression 

property page. 

 

The odds ratios corresponding to the parameter values are displayed in the next table.  

The odds ratios are computed by raising e (base of natural logs) to the power of the 

parameter value. 

 
  ------------------  Odds Ratios  ------------------ 

 

   Variable       Odds Ratio      Lower C.I.      Upper C.I. 

--------------  --------------  --------------  -------------- 

BlackDefendant          1.8134          0.8378          3.9247 

WhiteVictim             1.2924          0.5898          2.8316 

Serious                 1.2057          1.0694          1.3594 

 

If a predictor variable is categorical, then a dummy variable is generated for each 

category except for one.  In this case, there is a β parameter for each dummy variable, and 

the categories are shown indented under the names of the variables like this: 

 
  ---------------  Computed Parameter (Beta) Values  --------------- 

 

Variable    Parameter  Std. Error  Pr. Chi Sq.  Lower C.I.  Upper C.I. 

---------  ----------  ----------  -----------  ----------  ---------- 

Class 

     Crew     0.8845      0.1643     < 0.0001      0.5624      1.2065 

    First     1.7733      0.1896     < 0.0001      1.4016      2.1450 

   Second     0.7742      0.1921     < 0.0001      0.3977      1.1507 

Age 

    Adult    -1.0225      0.2726       0.0002     -1.5568     -0.4881 

Sex 

     Male    -2.2831      0.1534     < 0.0001     -2.5838     -1.9825 

Constant      1.1915      0.2765     < 0.0001      0.6495      1.7334 
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Likelihood Ratio Statistics 

 
  ------  Likelihood Ratio Statistics  ------ 

 

   Variable      L. Ratio    DF   Pr. Chi Sq. 

--------------  ----------  ----  ----------- 

BlackDefendant       2.321    1       0.12763 

WhiteVictim          0.413    1       0.52020 

Serious             10.234    1       0.00138 

Constant            18.609    1       0.00002 

 

If you enable the option “Compute likelihood ratio significance tests” on the logistic 

regression property page, then a table similar to the one shown above will be printed.  

The likelihood ratio significance tests are computed by performing a logistic regression 

with each parameter omitted from the model and comparing the log likelihood ratio for 

the model with and without the parameter.  These significance tests are considered to be 

more reliable than the Wald significance test.  However, since the logistic regression 

must be recomputed with each predictor omitted, the computation time increases in 

proportion to the number of predictor variables.  If a predictor variable is a categorical 

variable with multiple categories, the significance test is performed with all of the 

categories included and all of them excluded. 

 

 

Computational Issues for Logistic Regression 

Failure to Converge 

 

An iterative Newton-Raphson algorithm is used to calculate the maximum likelihood 

values of the parameters.  This procedure uses the partial second derivatives of the 

parameters in the Hessian matrix to guide incremental parameter changes in an effort to 

maximize the log likelihood value for the likelihood function.  The algorithm iterates 

until the absolute value of the largest parameter change is less than the value specified for 

“Tolerance” on the logistic regression property page. 

 

Most logistic regression analyses converge to a solution in a dozen or so iterations, but 

you may occasionally run into one that does not converge.  If this happens, try enabling 

the option “Use Firth’s procedure” on the logistic regression property page.  Firth’s 

procedure slows down the calculations, but it usually results in achieving convergence.  

Note: if Firth’s procedure is enabled, unbiased parameter values are calculated which 

may be somewhat different than what you would get with Firth’s procedure turned off. 
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Singular Hessian Matrix 

 

The Hessian matrix with the partial second derivatives of the parameter values is used to 

guide the convergence process.  If the Hessian matrix is singular, the logistic regression 

procedure will be unsuccessful and a warning message will be displayed. 

 

Complete and Quasi-Complete Separation of Values 

 

Complete separation is a condition where one predictor or a linear combination of 

predictors perfectly predicts the target value.  For example, consider a situation where 

every value of the Response target variable is 0 if Dose is less than 10 and every value is 

1 if Dose is greater than 10.  Then the value of Response can be perfectly predicted by 

checking if Dose is less than or greater than 10.  In this case it is impossible to compute 

the maximum likelihood values for the β parameters because the slope of the logistic 

function would be infinite. 

 

At the beginning of each logistic regression analysis, a check is made for complete 

separation on each predictor variable.  If complete separation is detected, a report will be 

generated similar to this: 

 
-----------  Report On Separation of Variables  ----------- 

 

Warning: Complete separation of target values occurs on Age 

 

The example above indicates that values of the target variable are completely determined 

by the Age predictor variable.  If separation occurs for a particular category of a multi-

category predictor variable, the category will be shown in brackets after the variable 

name, for example “Race[2]”. 

 

Quasi-complete separation occurs when values of the target variable overlap or are tied 

at a single or only a few values of a predictor variable.  The analysis does not check for 

quasi-complete separation, but the symptoms are extremely large calculated values for 

the β parameters or large standard errors.  The analysis also may fail to converge. 

 

If complete or quasi-complete separation is detected, the predictor variable(s) showing 

separation should be removed from the analysis. 
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Correlation, Factor Analysis, Principal Components 
 

 

Correlation, Factor Analysis, and Principal Components Analysis are different than the 

other procedures in DTREG, because they do not generate predictive models.  Instead, 

these procedures are used for exploratory analysis where you are trying to understand the 

nature and relationship between variables. 

 

See page 119 for information about setting parameters to control these procedures. 

 

Introduction to Correlation 

Correlation is a measure of the association between two variables.  That is, it indicates if 

the value of one variable changes reliably in response to changes in the value of the other 

variable.  The correlation coefficient can range from -1.0 to +1.0.  A correlation of -1.0 

indicates that the value of one variable decreases as the value of the other variable 

increases.  A correlation of +1.0 indicates that when the value of one variable increases, 

the other variable increases.  Positive correlation coefficients less than 1.0 mean that an 

increasing value of one variable tends to be related to increasing values of the other 

variable, but the increase is not regular – that is, there may be some cases where an 

increased value of one variable results in a decreased value of the other variable (or no 

change).  A correlation coefficient of 0.0 means that there is no association between the 

variables: a positive increase in one variable is not associated with a positive or negative 

change in the other. 

 

Types of Correlation Coefficients 

When used without qualification, “correlation” refers to the linear correlation between 

two continuous variables, and it is computed using the Pearson Product Moment 

function.  A Pearson correlation coefficient of 1.0 occurs when an increase in value of 

one variable results in an increase in value of the other variable in a linear fashion.  That 

is, doubling the value of one variable doubles the value of the other variable.  

 

If two variables have an association but the relationship is not linear, then the Pearson 

correlation coefficient will be less than 1.0 even if there is a perfectly reliable change in 

one variable as the other changes.  The Spearman rank-order correlation coefficient is 

the most popular method for handling non-linear correlation.  Spearman correlation sorts 

the values being correlated and replaces the values by their order (rank) in the sorted list.  

So the smallest value is replaced by 1, the second smallest by 2, etc.  Correlation is then 

computed using the rank-orders rather than the original data values.  The Spearman 

correlation coefficient will be 1.0 if a positive change in one variable produces a positive 

change in the other variable even if the response is not linear. 
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Most correlation programs can compute correlations only between two continuous 

variables.  Since DTREG allows categorical variables, it must also compute correlations 

between categorical variables.  It’s not too hard to grasp the idea of correlating two 

categorical variables with dichotomous values such as correlating Sex (male/female) with 

Outcome (live/die), but it is harder to imagine correlating categorical variables with 

multiple categories such as Marital Status with State of Residence.  However, there are 

established correlation procedures for handling these cases, and DTREG implements 

procedures for handling all combinations of correlations between continuous, 

dichotomous, and general categorical variables.  The table below shows the method used 

for each case.  

 

 Continuous Dichotomous Multi-Category 

Continuous Pearson or 
Spearman 

Point biserial Tau squared 

Dichotomous Point biserial Phi coefficient Cramer’s V or 
Entropy 

Multi-Category Tau squared Cramer’s V or 
Entropy 

Cramer’s V or 
Entropy 

 

 

The correlation between two multi-category variables is essentially an ANOVA to 

determine if there is a significant difference between the number of cases that fall in the 

cells of an n by m array where n and m are the number of categories of the two variables.  

These correlations can vary only from 0.0 to 1.0; they cannot be negative. 

 

The Correlation Matrix 

If you compute the correlation between n variables, then these correlations can be 

presented in the form of an n by n matrix such as shown here:  

 
       V1       V2       V3       V4       V5       V6   

    -------  -------  -------  -------  -------  ------- 

V1   1.0000   0.4944   0.7134  -0.1041   0.1141   0.0762 

V2   0.4944   1.0000   0.3882   0.0535  -0.0597   0.1423 

V3   0.7134   0.3882   1.0000  -0.0247   0.2038   0.0583 

V4  -0.1041   0.0535  -0.0247   1.0000   0.6201   0.6353 

V5   0.1141  -0.0597   0.2038   0.6201   1.0000   0.4551 

V6   0.0762   0.1423   0.0583   0.6353   0.4551   1.0000 

 

 

Introduction to Factor Analysis and Principal Components Analysis 

When you find a set of variables that are highly correlated with each other, it is 

reasonable to wonder if this mutual association may be due to some common underlying 

cause.  For example, suppose values for the following variables are collected for an 

incoming college freshman class:  High school GPA, IQ, SAT Verbal, SAT Math, 
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Height, Weight, Waist size, and Chest size.  A correlation matrix for these variables is 

likely to show large positive correlations between High school GPA, IQ, and SAT scores.  

Similarly, Height, Weight, Waist and Chest measurements will probably be positively 

correlated.  So, the question is whether High school GPA, IQ, and SAT scores are related 

because of some underlying, common factor.  The answer, of course, is yes, because they 

are all measures of intelligence.  Similarly, Height, Weight, Waist, and Chest 

measurements are all related to physical size.  So the conclusion is that there are only two 

underlying factors that are being measured by the eight variables, and these factors are 

intelligence and physical size.  These common factors are sometimes called latent 

variables.  Since “intelligence” is an abstract concept, it cannot be measured directly: 

instead, measures such as GPA, IQ, etc. are used to estimate the intelligence of an 

individual. 

 

In the simple example presented above, it’s not too difficult to isolate the pattern of 

correlations that link the variables in the two groups; but when you have hundreds of 

variables and there are multiple underlying factors, it is much more difficult to identify 

the factors and the variables associated with each factor. 

 

The purpose of Factor Analysis is to identify a set of underlying factors that explain 

the relationships between correlated variables.  Generally, there will be fewer 

underlying factors than variables, so the factor analysis result is simpler than the original 

set of variables. 

 

Principal Component Analysis is very similar to Factor Analysis, and the two procedures 

are sometimes confused.  Both procedures are built on the same mathematical techniques. 

Factor Analysis assumes that the relationship (correlation) between variables is due to a 

set of underlying factors (latent variables) that are being measured by the variables. 

 

Principal Components Analysis is not based on the idea that there are underlying 

factors that are being measured.  It is simply a technique for finding a linear combination 

of the original variables that produce orthogonal (uncorrelated) variables that explain the 

maximum amount of variance in the original variables.  It is often used to reduce the 

number of variables while retaining most of the predictive power. 

 

The goal of PCA is to rigidly rotate the axes of an n-dimensional space (where n is the 

number of variables) to a new orientation that has the following properties: 

1. The first axis corresponds to the direction with the most variance among the 

variables, and subsequent axes have progressively less variance in their direction. 

2. The correlation between each pair of rotated axes is zero.  This is a result of the 

axes being orthogonal to each other (i.e., they are uncorrelated). 

 

 PCA is performed by finding the eigenvalues and eigenvectors of the covariance or 

correlation matrix.  The eigenvectors represent a linear transformation from the original 

variable coordinates to rotated coordinates that satisfy the criteria listed above.    For 

example, if you have variables X1 through Xn.  Then the eigenvector components would 

be: 
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       EVC1 = a11X1 + a12X2 + … + a1nXn 

 

Through 

 

        EVCm = am1X1 + am2X2 + … + amnXn 

 

Where amn is the eigenvector value of the mth eigenvector component and the nth 

variable.  Note that the principal components are just linear combinations of the 

variables.  There is an option on the PCA properties page where you can specify a file to 

which the coefficients of the PCA function will be written (see page 119). 

 

DTREG can compute the variable values after being transformed by eigenvectors and 

write them to a file.  See the PCA option screen on page 119 for information about this 

option. 

 

Here is an example showing two principal components fitted to two variables.  Note that 

PC1 is oriented along a line that has the maximum variance (dispersion) of values, and 

PC2 is orthogonal (perpendicular) to PC1. 

 
 

Determining the Number of Factors to Use 

In the example at the beginning of this chapter, we concluded that the eight variables 

were related to two underlying factors, intelligence and physical size.  However, the 

choice of two factors was arbitrary.  It is likely that IQ and SAT scores will have higher 

correlation with each other than with GPA, because GPA is largely affected by 

motivation and effort. Similarly, weight, waist, and chest size may be measures of heft 

while height may be something different.  So perhaps we should use four factors: (1) IQ, 

SAT Verbal, SAT Math; (2) GPA; (3) Weight, Waist, and Chest size; (5) Height. 
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Determining the number of factors to use has been an issue since the beginning of factor 

analysis.  There is no perfect way to determine how many factors to use: there are a 

number of suggested guidelines, but ultimately it is a judgment call.  One of the most 

useful measures is a chart called a Scree Plot that shows what percentage of the variance 

is accounted for by each factor.  A small scree plot is shown in the analysis report; a 

larger and prettier one can be seen by clicking Charts/Model Size after finishing an 

analysis.  Here is an example of a Scree Plot:  

 

 
 

 

The horizontal axis shows the number of factors.  The vertical axis shows the percent of 

the overall variance explained by each factor.  Notice that there is a sharp drop off after 2 

factors.  So in this case, it is reasonable to retain two factors. 

 

DTREG includes a number of methods for controlling how many factors are used.  See 

the Factor Analysis property page described on page 119 for details. 

 



350 

 

Output Generated by Factor Analysis 

Factor Importance (Eigenvalue) Table 

The Factor Importance table shows the relative and cumulative amount of variance 

explained by each factor.  Here is an example of such a table:  

 
  ==============  Factor Importance  ============== 

 

Factor  Eigenvalue  Variance %  Cumulative %       Scree Plot 

------  ----------  ----------  ------------  -------------------- 

    1      1.90099    31.683       31.683     ******************** 

    2      1.68129    28.022       59.705     ***************** 

    3      0.18959     3.160       62.865     ** 

    4      0.02137     0.356       63.221      

    5     -0.01090      .            . 

    6     -0.20007      .            . 

 

  Maximum allowed number of factors = 2 

  Stop when cumulative explained variance = 80% 

  Minimum allowed eigenvalue = 0.50000 

  Number of factors retained = 2 

 

This chart lists each factor, its associated eigenvalue, the percent of total variance 

explained by the factor, and the total cumulative variance explained by all factors up to 

and including this one.  A small scree plot is show on the right. 

 

One popular rule of thumb in determining how many factors to use is to only use factors 

whose eigenvalues are at least 1.0.  However, experience has show that this may exclude 

useful factors, so a smaller eigenvalue cutoff is recommended. 

 

Table of Communalities 

 
  ==============  Communalities  ============== 

 

    Initial   Final   Common Var. %  Unique Var. % 

    -------  -------  -------------  ------------- 

V1   0.5908   0.9285      92.848          7.152 

V2   0.3250   0.2554      25.540         74.460 

V3   0.5332   0.5693      56.927         43.073 

V4   0.5938   0.9234      92.342          7.658 

V5   0.4861   0.4449      44.488         55.512 

V6   0.4326   0.4608      46.083         53.917 

 

 

A communality is the percent of variance in a variable that is accounted for by the 

retained factors.  For example, in the table above, about 93% of the variance in V1 is 

accounted for by the factors, while only 44% of the variance of  V5 is accounted for. 
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Factor Loading Matrix 
  ==============  Un-rotated Factor Matrix  ============== 

 

           Fac1       Fac2   

        ---------  --------- 

    V1   0.6167 *   0.7404 * 

    V2   0.3619     0.3527   

    V3   0.5359     0.5311   

    V4   0.6727 *  -0.6862 * 

    V5   0.5724    -0.3423   

    V6   0.5677    -0.3722   

------  ---------  --------- 

  Var.    1.901      1.681   

 

 

The factor loading matrix shows the correlation between each variable and each factor.  

For example, V1 has a 0.6167 correlation with Factor 1 and a 0.7404 correlation with 

Factor 2.  From the factor matrix shown above, we see that Factor 1 is related most 

closely to V4 followed by V1.  V5 and V6 are also moderately significant variables on 

Factor 1.  Factor 2 is related to V1 and V4.  So when trying to interpret the meaning of 

Factor 2, you should try to figure out the common connection between V1 and V4. 

Factor Rotation 
==============  Rotated Factor Matrix  ============== 

 

  Rotation method: Varimax 

 

           Fac1       Fac2   

        ---------  --------- 

    V1  -0.0056     0.9636 * 

    V2   0.0494     0.5030   

    V3   0.0674     0.7515 * 

    V4   0.9566 *  -0.0911   

    V5   0.6583 *   0.1072   

    V6   0.6740 *   0.0813   

------  ---------  --------- 

  Var.    1.901      1.681   

 

There are several methods of rotating the factor matrix that make the relationship 

between the variables and the factors easier to understand.  The factor matrix presented 

above is the result of rotating the factor matrix presented in the previous section.  In this 

case Varimax rotation was used.   After a Varimax rotation, some of the factor loadings 

will be large, and the rest will be close to zero making it easy to see which variables 

correlate strongly with the factor.  Varimax is the most popular rotation method.  After 

performing the Varimax rotation, it is easy to see that Factor 1 is related to variables V4, 

V5, and V6 whereas Factor 2 is related to variables V1, V2, and V3. 

 

A Varimax rotation is an orthogonal transformation.  That means the factor axes remain 

orthogonal to each other, and the factors are uncorrelated.  A Promax rotation relaxes that 

restriction and allows the rotated axes to be oblique and correlated with each other.  
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When a Promax rotation is done, DTREG displays a table showing the correlations 

between the rotated factors: 

 
====  Correlation Between Rotated Factor Axes  ==== 

 
          Fac1     Fac2  

        -------  ------- 

  Fac1   1.0000  -0.1400 

  Fac2  -0.1400   1.0000 

 

Using Principal Components transformations 

As discussed above, principal components are weighted, linear combinations of the 

variables, and the principal components are ordered in decreasing order of explained 

variance.  It is possible to generate new variables whose values are computed using the 

eigenvectors.  For example, a new variable, PC1, could be computed for each set of 

variable values using the formula: 

 

       PC1 = a11X1 + a12X2 + … + a1nXn 

 

Then this computed variable can be used in a predictive model instead of the original 

variables.  Since the principal components (and eigenvectors) are ordered in decreasing 

order of explained variance, it is often possible to use fewer principal component 

variables than original variables. For example, the following table taken from a DTREG 

report shows the percent of total variance explained by each principal component and the 

cumulative amount explained: 

 
Factor  Eigenvalue  Variance %  Cumulative %       Scree Plot 

------  ----------  ----------  ------------  -------------------- 

    1      6.12685    47.130       47.130     ******************** 

    2      1.43328    11.025       58.155     **** 

    3      1.24262     9.559       67.713     **** 

    4      0.85758     6.597       74.310     ** 

    5      0.83482     6.422       80.732     ** 

    6      0.65741     5.057       85.789     ** 

    7      0.53536     4.118       89.907     * 

    8      0.39610     3.047       92.954     * 

    9      0.27694     2.130       95.084     * 

   10      0.22024     1.694       96.778      

   11      0.18601     1.431       98.209      

   12      0.16930     1.302       99.511      

   13      0.06351     0.489      100.000      

 

There were 13 original variables, but the cumulative effect of using only the first five 

principal components accounts for 80.732% of the variance. 

 

One word of caution: principal components are formed from a linear combination of the 

variables.  If the variables are related in a nonlinear manner, the principal components 

will not correctly reflect the relationship. 
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The Enterprise Version of DTREG contains features to (1) compute principal component 

transformations, (2) use the PCA transformations to convert the input data to PCA 

transformed values, and (3) use PCA transformation functions computed in one model to 

automatically generate new PCA variables in a subsequent model. 

 

Here are the steps in computing PCA transform functions and then using them to generate 

PCA variables in a subsequent model. 

 

 

1. Perform a PCA analysis, select the criteria to determine how many principal 

components will be stored, and check the option “Compute PCA transformation 

function” on the PCA properties page. 

 

 

 
 

2. After the PCA analysis has been performed, save the generated model to a 

DTREG project file (.dtr file). 

3. Open or create a new project in which you want to use the PCA transformation. 
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4. On the Data property page for the new model, click the button “Set PCA 

transform”. 

 

 
 

5. A popup screen will appear looking like this: 
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6. Check the box “Enable use of PCA transformation in model”, specify the name of 

the DTREG project file contain the previously-computed PCA transformation, 

then click the “Load PCA transformation from file” button.  DTREG will read the 

project file containing the PCA transformation function and attach the PCA 

transformation function to this project.  DTREG will report if the PCA 

transformation was found in the auxiliary project and successfully attached to this 

project: 

 
 

7. Once the transformation has been read from the auxiliary project file and bound to 

this model, the auxiliary project file is no longer needed.  The PCA 

transformation function becomes part of the new project, and it will be stored with 
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the new project file.  If surrogate variables were computed with the PCA 

transformation, they also will become part of the new model, and they will be 

used to handle missing values going into the PCA transformation. 

8. After binding a PCA transformation function to the model, new variables will 

appear in the list of variables on the Variables Property Page with names PCn 

where n is the principal component number. 

 

 
 

 

9. You can then use these variables as predictors in the new model.  The PCA 

variables are also available for predicting values using the Score Function (see 

page 163).  If you use the DTREG COM DLL component, the PCA 

transformations will be applied to the input data for computing predictions.  If you 

use DTL with PCA transformations, variables created by DTL may be used as 

inputs to the PCA transformation function, but the PCA variables created by the 

transformation are not available to the DTL program.
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Handling Missing Data Values 
 

 Missing data values are an unfortunate but frequent occurrence in many predictive 

modeling situations.  For example, demographic information obtained for marketing 

analysis may have hundreds of variables, but not all of the information will be available 

(or even relevant) to some of the people.  In medical studies some tests may be performed 

for some patients but not others. 

 

Specifying missing values in input data 

There are three ways to denote a missing value in an input data record: 

1. Leave the column blank. 

2. Put a single period (‘.’) in the column without any numbers around it. 

3. Put a question mark (‘?’) in the column. 

 

Types of missing variables 

DTREG recognizes three types of variables: target, predictor, and weight.  If the target or 

weight variables for a data record have missing values, the data record is unconditionally 

excluded from the analysis.  Also, if all of the predictor variables have missing values, 

the data record is excluded.  But if some predictor variables are available but others have 

missing values, DTREG provides four methods for handling the data records with 

missing values: 

 

Exclude the data row 

The simplest way to deal with records having some missing predictor variable values is to 

exclude those rows from the analysis.  If there are many data rows available and the 

percentage of rows with missing values is small, then this may be the best method.  

Excluding rows is fast, and it prevents any error from being introduced due to the missing 

values. 

 

Replace missing values with median/mode values 

The second approach is to replace missing predictor values by the median value of the 

variable.  For categorical predictors, the mode (most frequent category) is used for the 

replacement.  Using the median/mode introduces some error into the model for that 

variable, but it allows the non-missing values of the other predictors to contribute to the 

model. 
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Surrogate Variables 

 The most sophisticated method is to use surrogate variables to impute the predictor 

values that are missing.  A surrogate variable is another predictor variable that is 

associated (correlated) with the primary predictor variable.  DTREG fits a linear or 

polynomial function to estimate the missing variable value based on the available value 

of the surrogate variable. 

 

Before the model building process starts, DTREG examines each potential surrogate 

variable for each primary predictor variable and computes the association between the 

variables.  Continuous and categorical predictor variables with two categories may have 

surrogates and be used as surrogates.  Categorical variables with more than two 

categories cannot have surrogates nor can they be used as surrogates.  The mode is used 

as the replacement value for categorical variables with more than two categories. 

 

If there are n eligible variables, then   (   ) potential matches must be evaluated.  

For each potential variable pair, the association is calculated.  The association measures 

how closely the variables are related.  Association values range from 0 (no association) to 

100 (perfect association).  The surrogates with the highest association are connected to 

the primary predictor.  So each predictor has a different set of surrogate variable 

functions. 

 

The method used to compute the association depends on the type of the predictor: 

 

Continuous predictors – Linear regression is used to fit a function: 

 

           (         ) 
 

The association is then computed as 100 times the proportion of the variance of the 

predictor explained by the function.  So if the function output exactly matches the 

predictor, the association is 100. 

 

Categorical predictors – A slightly different method is used to compute the association 

for categorical predictors with two categories.  If the potential surrogate is also 

categorical, the values of the predictor and the surrogate are compared and the proportion 

of the values that match (have the same category) is computed; call this 

MatchProportion.  Then association is computed using the formula: 

 

                |                   | 
 

If the proportion of matching rows is 0.5, then the association is 0.0, because there is a 

50/50 chance of a match.  If the proportion matching is either 1.0 or -1.0 then the 

association is 100.  A negative match proportion means that the variables are associated 

in the opposite direction.  A match proportion of (-1.0) means that the category values are 

exactly opposite; hence, the predictor value can be imputed by reversing the category 

value of the surrogate.  If the primary predictor is categorical and the surrogate is 
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continuous, a function is fitted to the 0/1 predictor values and a threshold of 0.5 is used to 

convert the value computed by the function to the predictor category value. 

 

When a predictor variable is encountered with a missing value, DTREG examines each of 

the associated surrogate variables looking for one that has a non-missing value on that 

data row.  The surrogates are examined in the order of decreasing association values.  

When a surrogate variable is found with a non-missing value, the surrogate function is 

used to compute the replacement value for the variable.  If all surrogates have missing 

values, the median/mode is used replace the missing value. 

 

Surrogate variables are almost always the best method for handling missing values.  

However, there are situations where surrogate variables may improve the accuracy of the 

model on the training data but produce inferior results on the validation results compared 

with using median/mode values.  So it is recommended that you build models using both 

surrogate variables and median/mode values and compare the validation results. 

 

Surrogate variables are used (1) during the model building process, (2) when using the 

Score function (page 163) to predict values for a data file, and (3) when the DTREG 

COM library is used to predict values (page 375).  If the Translate procedure (page 169) 

is used to generate source code for a model, surrogate variable calculations are included 

in the generated source code. 

 

Parameters related to selecting surrogate variables are specified on the Variables property 

page which is described on page 41.  Here is the surrogate variable portion from that 

page: 

 

 
 

The following parameters can be specified: 

 

Number of surrogates to store – This is the maximum number of surrogate variables 

that DTREG will store for each predictor variable.  Fewer surrogates may be stored if no 

significant associations are found. 

 

Minimum surrogate association – The association computed for each potential 

surrogate is compared to this value.  If the association is smaller than this, then the 

surrogate is excluded. 

 

Maximum polynomial order – This controls whether linear, quadratic, or cubic 

functions are used for surrogate associations.  If a polynomial order greater than 1 is 

specified, DTREG computes the association for all polynomials up to that order, and it 
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only uses the higher order polynomials if they provide superior fit (greater association) 

than lower-order polynomials. 

 

Report surrogate variables – If this option is checked, then DTREG adds a table to the 

analysis report showing which surrogate variables were stored for each predictor along 

with the polynomial coefficients and the association.  See page 182 for an example of the 

surrogate variable report. 

 

Surrogate Splitters 

A surrogate splitter is similar to a surrogate variable, but it is specialized for decision tree 

based models – single trees, TreeBoost, and decision tree forests. 

 

When a decision tree is created, each predictor variable is evaluated at each split point to 

determine how well it can partition the values.  After the best predictor has been 

determined, other candidate predictors are examined and the splits generated by them are 

compared with the primary split.  The association is computed by comparing the split 

generated by the predictor with the primary predictor.  The best surrogate splitters are 

stored along with the primary splitter.  If the primary splitter value is missing, surrogate 

splits are examined looking for a non-missing value on a surrogate predictor. 

 

One of the key differences between surrogate variables and surrogate splitters is that a 

different set of surrogate splitters is stored for each split.  So the same predictor may have 

different surrogate splitter variables at different spit points in the decision tree.  In 

contrast, surrogate variables are computed once before the model building process 

begins, and the same set of surrogate variables is always used for a particular predictor 

variable. 
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How Trees are Built and Pruned 
 

Train up a tree in the way it should go, and when you are old sit under the shade of it. 

 – Charles Dickens 

 

The process DTREG uses to build and prune a tree is complex and computationally 

intensive.  Here is an outline of the steps: 

 

1) Build the tree 

a) Examine each node and find the best possible split 

i) Examine each predictor variable 

(1) Examine each possible split on each predictor 

b) Create two child nodes 

c) Determine which child node each row goes into.  This may involve using 

surrogate splitters. 

d) Continue the process until a stopping criterion (e.g., minimum node size) is 

reached. 

2) Prune the tree 

a) Build a set of cross-validation trees 

b) Compute the cross validated misclassification cost for each possible tree size 

c) Prune the primary tree to the optimal size 

 

Building Trees 

The process used to split a node is the same whether the node is the root node with all of 

the rows or a child node many levels deep in the tree.  The only difference is the set of 

rows in the node being split. 

 

Splitting Nodes 

DTREG tries each predictor variable to see how well it can divide the node into two 

groups. 

 

If the predictor is continuous, a trial split is made between each discrete value (category) 

of the variable.  For example, if the predictor being evaluated is Age and there are 80 

values of Age ranging from 10 to 79, then DTREG makes a trial split putting the rows 

with a value of 10 for Age in the left node and the rows with values from 11 to 79 in the 

right node.  The improvement gained from the potential split is remembered, and then the 

next trial split is done putting rows with Age values of 10 and 11 in the left group and 

values from 12 to 79 in the right group.  The number of splits evaluated is equal to the 

number of discrete values of the predictor variable less one. 
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You can control the maximum number of discrete values used for continuous variables 

by setting the value of “Max. categories for predictor variables” on the Design property 

screen (see page 33).  If there are more actual discrete values than this parameter setting, 

values are grouped together into value ranges. 

 

This process is repeated by moving the split point across all possible division points.  The 

best improvement found from any split point is saved as the best possible split for that 

predictor variable in this node.  The process is then repeated for each other predictor 

variable.  The best split found for any predictor variable is used to perform the actual split 

on the node.  The next best five splits are saved as “competitor splits” for the node. 

 

When examining the possible splits for a categorical predictor variable, the calculations 

are more complex and potentially much more time consuming. 

 

If the predictor variable is categorical and the target variable is continuous, the categories 

of the predictor variable are sorted so that the mean value of the target variable for the 

rows having each category of the predictor are increasing.  For example, if the target 

variable is “Income” and the predictor variable has three categories, single, married and 

divorced, the categories are ordered so that the mean value of Income for the people in 

each predictor category is increasing.  The splitting process then tries each split point 

between each category of the predictor.  This is very similar to the process used for 

continuous predictor variables except the categories are arranged by values of the target 

variable rather than by values of the predictor variable.  The number of splits evaluated is 

equal to the number of categories of the predictor variable less one. 

 

If both the target variable and the predictor variable are categorical, the process gets more 

complex.  In this case, to perform an exhaustive search DTREG must evaluate a potential 

split for every possible combination of categories of the predictor variable.  The number 

of splits is equal to 2
(k-1)

-1 where k is the number of categories of the predictor variable.  

For example, if there are 5 categories, 15 splits are tried; if there are 10 categories, 511 

splits are tried; if there are 16 categories, 32,767 splits are tried; if there are 32 categories, 

2,147,483,647 splits are tried.  Because of this exponential growth, the computation time 

to do an exhaustive search becomes prohibitive when there are more than about 12 

predictor categories.  In this case, DTREG uses the clustering technique described below 

to group the target categories. 

 

There is one case where classification trees are efficient to build using exhaustive search 

even with categorical predictors having a large number of categories.  That is the case 

where the target variable has only two possible categories.  Fortunately, this situation 

occurs fairly often – the target categories might be live/die, bought-product/did-not-buy, 

malignant/benign, etc.  For this situation, DTREG has to evaluate only many splits as the 

number of categories for the predictor variable less one. 

 

In order to make it feasible to construct classification trees with target variables that have 

more than two categories and predictor variables that have a large number of categories, 

DTREG switches from using an exhaustive search to a cluster analysis method when the 



363 

 

number of predictor categories exceeds a threshold that you can specify on the Model 

Design property page (see page 33).  This technique uses cluster analysis to group the 

categories of the target variable into two groups.  DTREG is then able to try only (k-1) 

splits, where k is the number of predictor categories. 

 

Once DTREG has evaluated each possible split for each possible predictor variable, a 

node is split using the best split found.  The runner-up splits are remembered and 

displayed as “Competitor Splits” in the report. 

 

Evaluating Splits 

The ideal split would divide a group into two child groups in such a way so that all of the 

rows in the left child have the same value on the target variable and all of the rows in the 

right group have the same target value – but different from the left group.  If such a split 

can be found, then you can exactly and perfectly classify all of the rows by using just that 

split, and no further splits are necessary or useful.  Such a perfect split is possible only if 

the rows in the node being split have only two possible values on the target variable. 

 

Unfortunately, perfect splits do not occur often, so it is necessary to evaluate and 

compare the quality of imperfect splits.  Various criteria have been proposed for 

evaluating splits, but they all have the same basic goal which is to favor homogeneity 

within each child node and heterogeneity between the child nodes.  The heterogeneity – 

or dispersion – of target categories within a node is called the “node impurity”.  The goal 

of splitting is to produce child nodes with minimum impurity. 

 

The impurity of every node is calculated by examining the distribution of categories of 

the target variable for the rows in the group.  A “pure” node, where all rows have the 

same value of the target variable, has an impurity value of 0 (zero).  When a potential 

split is evaluated, the probability-weighted average of the impurities of the two child 

nodes is subtracted from the impurity of the parent node.  This reduction in impurity is 

called the improvement of the split.  The split with the greatest improvement is the one 

used.  Improvement values for splits are shown in the node information that is part of the 

report generated by DTREG. 

 

DTREG provides two methods for evaluating the quality of splits when building 

classification trees, (1) Gini and (2) Entropy,.  Only one method is provided when 

building regression trees, and that is minimum variance within nodes.  The minimum 

variance/least squares criteria is essential the same criteria used by traditional, numeric 

regression analysis (i.e., line and function fitting). 

 

Experience has shown that the splitting criterion is not very important, and Gini and 

Entropy yield trees that are very similar.  Gini is considered slightly better than Entropy, 

so it is the default criteria used for classification trees.  See Breiman, Friedman, Olshen 

and Stone Classification And Regression Trees (1984) for a technical description of the 

Gini and Entropy criteria. 
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Assigning Categories to Nodes 

When a decision tree is used to predict values of the target variable, rows are run through 

the tree down to the point where they reach a terminal node.  The category assigned to the 

terminal node is the predicted value for the row being evaluated.  So a natural question is 

how categories are assigned to nodes. 

 

For regression trees built with a continuous target variable, the value assigned to a node is 

simply the average value of the target variable for all rows that end up in the node 

weighted by the row weights. 

 

For classification trees built with a categorical target variable, the determination of what 

category to assign to a node is more complex: it is the category that minimizes the 

misclassification cost for the rows in the node.  The calculation of the misclassification 

cost is somewhat complex.  The formula involves the distribution of target categories in 

the node compared with the distribution in the total (learning) sample.  The category 

weights and the misclassification costs also affect the assigned category.  In the simplest 

case, every row that is misclassified has a cost of 1 and every row that is correctly 

classified has a cost of 0, so the category with the most rows in the node is assigned to the 

node.  The misclassification cost for every node is displayed in the report generated by 

DTREG.  A misclassification summary table is included near the end of the report. 

 

If you wish, you can specify specific costs for misclassifying one target category as 

another target category.  For example, you might want to assign a greater cost to 

classifying a heart attack as indigestion than classifying indigestion as a heart attack.  

These misclassification costs are implemented by generating altered prior  (category 

weight) values that are used in the calculation.  See Breiman, Friedman, et al (1984) for a 

detailed description of how misclassification costs are used. 

 

Missing Values and Surrogate Splitters 

Ideally, every row would have values for every variable.  Unfortunately, in the real 

world, missing values are encountered often: People being surveyed refuse or forget to 

answer questions, some questions may not apply to all people, some medical tests may 

not be performed on all patients, etc. 

 

Some simple programs discard rows that have any missing values.  But this is a waste of 

valuable information that may be available on other variables. 

 

DTREG uses a sophisticated technique involving surrogate splitters to estimate the 

values of predictor variables with missing values.   

 

Surrogate splitters are predictor variables that are not as good at splitting a group as the 

primary splitter but which yield similar splitting results; they mimic the splits produced 

by the primary splitter. 
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DTREG compares which rows are sent to the left and right child groups by the primary 

splitter with the rows sent to the corresponding child groups by every other predictor 

variable.  The association between the primary splitter and each alternate predictor is 

computed as a function of how closely the alternate predictor matches the primary 

splitter.  (This roughly corresponds to a count of how many rows each predictor sends left 

and right, but the actual calculation is more complex.)  The alternate predictor variables 

are then ranked in decreasing order of association. 

 

The largest possible association value is 1.0 which means the surrogate sends exactly the 

same set of rows to the left and right groups as the primary splitter.  An association value 

of 0.0 means that the surrogate does no better at assigning rows than simply putting them 

in the most probable group. 

 

Surrogate splitters are similar to competitor splitters in the sense that they both yield 

splits of benefit but are not as good as the primary splitter.  Often, the same variable will 

be listed as both a competitor and a surrogate.  However, there is a significant difference 

between the way variables are ranked as competitors and as surrogates.  Competitor splits 

are runners-up to the primary split: they are judged the same way the primary splitter is 

judged by how much improvement they make in reducing node impurity.  Surrogate 

splitters are not ranked by the amount of improvement they produce but rather by how 

closely they mimic the split selected for the primary splitter.  The optimal split point for a 

surrogate maximizes the association between the surrogate and the primary splitter; it 

does not necessarily maximize the improvement.  If you compare entries for the same 

variable in the competitor and surrogate lists, you may see different split points selected 

and different values for the improvement from the splits. 

 

Surrogate splitters are used to classify rows that have missing values in the primary 

splitter.  They function both when the tree is being built and later when the tree is used to 

score additional datasets. 

 

When a row is encountered that has a missing value on the primary splitter, DTREG 

searches the list of surrogate splitters and uses the one with the highest association to the 

primary splitter that has a non-missing value for the row. 

 

Surrogate splitters provide the most accurate classification of rows with missing values.  

This is the default and recommended method for handling missing predictor values. 

 

In addition to their function in classifying rows with missing predictor values, the 

association between the primary splitter and surrogate splitters is used in the calculation 

of the overall importance of variables.  To understand why this is done, consider two 

variables that are very similar and highly correlated, for example height and weight.  At 

some split point, weight may be selected as the primary splitter because it is slightly 

better than height.  If this preference for weight prevails at many split points, weight 

would appear to be extremely important and height as unimportant.  However, if you 

removed weight as a predictor variable and reran the analysis, an identical tree very well 

might be built using height as the splitting variable wherever weight was used before.  
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Hence, height is nearly as important as weight.  When one variable hides the importance 

of another variable, it is known as masking.  By considering not only which variables are 

used as primary splitters but also the association of the surrogates, DTREG is able to 

provide a more accurate evaluation of variable importance. 

 

Stopping Criteria 

If no limits were placed on the size of a tree, DTREG theoretically might build a tree so 

large that every row of the learning dataset ended up in its own terminal node.  But doing 

this would be computationally expensive, and the tree would be so large that it would be 

difficult or impossible to interpret and display. 

 

Several criteria are used to limit how large a tree DTREG constructs.  Once a tree is built, 

the pruning method described in a following section is used to reduce its size to the 

optimal number of nodes. 

 

The following criteria are used to limit the size of a tree as it is build: 

 

 Minimum size node to split.  On the Design property page, you can specify that 

nodes containing fewer than a specified number of rows are not to be split. 

 Maximum tree depth.  On the Design property page, you can specify the 

maximum number of levels in the tree that are to be constructed. 

 

 

Pruning Trees 

Every branch of mine that bears no fruit, he takes away, and every branch that does bear 

fruit he prunes, that it may bear more fruit. 

 – Jesus (John 15:2) 

 

One of the classic problems in building decision trees is the question of how large a tree 

to build.  Early programs such as AID (Automatic Interaction Detection) used stopping 

criteria such as those described in a preceding section along with other criteria such as the 

improvement from splits to decide when to stop.  This is known as forward pruning.  But 

analysis of trees generated by these programs showed that they often were not of the 

optimal size. 

 

DTREG does not use its stopping criteria as the primary means for deciding how large a 

tree should be.  Instead, it uses relaxed stopping criteria and builds an overly-large tree.  

It then analyzes the tree and prunes it back to the optimal size.  This is known as 

backward pruning.  Backward pruning requires significantly more calculations than 

forward pruning, but the optimal tree sizes are much more accurately calculated.  See 

page 209 for information about displaying a chart showing error rate versus model size. 

 



367 

 

Why Tree Size Is Important 

There are two reasons why it is desirable to generate trees of the optimal size. 

 

First, if a situation can be described and explained equally well by two descriptions, the 

description that is simpler and more concise is generally preferred.  The same is true with 

decision trees: if two trees provide equivalent predictive accuracy, the simpler tree is 

preferred because it is easier to understand and faster to use for making predictions. 

 

Second, and more importantly, smaller trees may provide greater predictive accuracy 

for unseen data than larger trees.  This is a non-intuitive fact that warrants explanation. 

 

When creating a decision tree, a learning dataset is used.  This dataset contains a set of 

rows that are a representative sample of the overall population.  The process used to build 

the decision tree selects optimal splits to fit the tree to the learning dataset.  Once the tree 

has been built, the records in the learning dataset can be run through the tree to see how 

well the tree fits the data.  The rate of classification errors measured when running the 

learning dataset through a tree built using that dataset is known as the “resubstitution 

cost” for the tree.  (It is called resubstitution because the same data is rerun through the 

tree.) 

 

For the learning dataset, the accuracy of the fit always improves (resubstitution cost 

decreases) as the tree is grown larger.  It is always possible to grow a sufficiently large 

tree to provide 100% accuracy in predicting the learning dataset.  In an extreme case, the 

tree might be grown so large that every row of the learning dataset ended up in its own 

terminal node.  Obviously, with such a tree, an exactly correct value of the target value 

for every row could be predicted. 

 

However, it is desirable that a decision tree not only accurately model the learning dataset 

from which it was built, but also that it be able to predict the values of other cases that are 

presented to it later after it has been constructed.  The ability to predict values for 

independent datasets is known as generalization. 

 

While a large tree may fit the learning dataset with extreme accuracy, its size may reduce 

its generalization accuracy.  As an analogy, consider fitting a suit of clothes.  

Manufactured clothes sold in stores are made to fit various sizes, but they are designed so 

that there is some slack and leeway around a specified size.  In contrast, a custom tailored 

suit is made precisely to fit a specific individual.  While the custom tailored suit will fit 

one person extremely well, it will not fit other people in the same size range as well as a 

generic suit.  In the same way, adding extra nodes to a tree to “custom tailor” it to the 

learning dataset may introduce misclassifications when it is later applied to a different 

dataset. 

 

Another way to understand why large trees can be inferior to smaller trees is that the 

large trees fit and model minor “noise” in the data, whereas smaller trees model only the 

significant data factors. 
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See page 209 for information about generating a chart showing misclassification error 

rate versus model size. 

 

The primary goal of the pruning process is to generate the optimal size tree that can 

be generalized to other data beyond the learning dataset. 
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V-Fold Cross Validation 

You’re dealing with the demon of external validation.  You can’t beat external validation.  

You want to know why?  Because it feels soooo good! 

 – Barbara Hall, Northern Exposure 

 

The method used by DTREG to determine the optimal tree size is V-fold cross validation.  

Research has shown that this method is highly accurate, and it has the advantage of not 

requiring a separate, independent dataset for assessing the accuracy and size of the tree. 

 

If a tree is built using a specific learning dataset, and then independent test datasets are 

run through the tree, the classification error rate for the test data will decrease as the tree 

increases in size until it reaches a minimum at some specific size.  It the tree is grown 

beyond that point, the classification errors will either remain constant or increase.  A 

graph showing how classification errors typically vary with tree size is shown below: 

 

 
 

In order to perform tests to measure classification error as a function of tree size, it is 

necessary to have test data samples independent of the learning dataset that was used to 

build the tree.  However, independent test data frequently is difficult or expensive to 

obtain, and it is undesirable to hold back data from the learning dataset to use for a 

separate test because that weakens the learning dataset.  V-fold cross validation is a 
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technique for performing independent tree size tests without requiring separate test 

datasets and without reducing the data used to build the tree. 

 

Cross validation would seem to be paradoxical: we need independent data that was not 

used to build the tree to measure the generalized classification error, but we want to use 

all data to build the tree.  Here is how cross validation avoids this paradox. 

 

All of the rows in the learning dataset are used to build the tree.  This tree is intentionally 

allowed to grow larger than is likely to be optimal.  This is called the reference, unpruned 

tree.  The reference tree is the best tree that fits the learning dataset. 

 

Next, the learning dataset is partitioned into some number of groups called “folds”.  The 

partitioning is done using stratification methods so that the distribution of categories of 

the target variable are approximately the same in the partitioned groups.  The number of 

groups that the rows are partitioned into is the ‘V’ in “V-fold cross classification”.  

Research has shown that little is gained by using more than 10 partitions, so 10 is the 

recommended and default number of partitions in DTREG. 

 

For the point of discussion, let’s assume 10 partitions are created.  DTREG then collects 

the rows in 9 of the partitions into a new pseudo-learning dataset.  A test tree is built 

using this pseudo-learning dataset.  The quality of the test tree for fitting the full learning 

dataset will, in general, be inferior to the reference tree because only 90% of the data was 

used to build it.  Since the 10% (1 out of 10 partitions) of the data that was held back 

from the test tree build is independent of the test tree, it can be used as an independent 

test sample for the test tree. 

 

The 10% of the data that was held back when the test tree was built is run through the test 

tree and the classification error for that data is computed.  This error rate is stored as the 

independent test error rate for the first test tree. 

 

A different set of 9 partitions is now collected into a new pseudo-learning dataset.  The 

partition being held back this time is selected so that it is different than the partition held 

back for the first test tree.  A second test tree is built and its classification error is 

computed using the data that was held back when it was built. 

 

This process is repeated 10 times, building 10 separate test trees.  In each case, 90% of 

the data is used to build a test tree and 10% is held back for independent testing.  A 

different 10% is held back for each test tree. 

 

Once the 10 test trees have been built, their classification error rate as a function of tree 

size is averaged.  This averaged error rate for a particular tree size is known as the “Cross 

Validation cost” (or “CV cost”).  The cross validation cost for each size of the test trees is 

computed.  The tree size that produces the minimum cross validation cost is found.  This 

size is labeled as “Minimum CV” in the tree size report DTREG generates.  See page 183 

for an example of a tree size report with cross validation statistics. 
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The reference tree is then pruned to the number of nodes matching the size that produces 

the minimum cross validation cost.  The pruning is done in a stepwise fashion, removing 

the least important nodes during each pruning cycle.  The decision as to which node is the 

“least important” is based on the cost complexity measure as described in Classification 

And Regression Trees by Breiman, Friedman, Olshen and Stone (1984). 

 

It is important to note that the test trees built during the cross-validation process are used 

only to find the optimal tree size.  Their structure (which may be different in each test 

tree) has no bearing on the structure of the reference tree which is constructed using the 

full learning dataset.  The reference tree pruned back to the optimal size determined by 

cross validation is the best tree to use for scoring future datasets. 

 

Adjusting the Optimal Tree Size 

If you plot the cross-validation error cost for a tree versus tree size, the error cost will 

drop to a minimum point at some tree size, then it will rise as the tree size is increased 

beyond that point.  Often, the error cost will bounce up and down in the vicinity of the 

minimum point, and there will be a range of tree sizes that produce approximately the 

same low error cost.  A graph illustrating this is shown below: 

 

 
 

Note that the absolutely smallest misclassification cost is only slightly smaller than the 

misclassification cost for a tree that is several nodes smaller.  Since smaller and simpler 

trees are preferred over larger trees that have the same predictive accuracy, you may 

prefer to prune back to the smaller tree if the increase in misclassification cost is minimal.  

The cross validation cost for each possible tree size is displayed in the Tree Size report 

that DTREG generates.  See page 183 for an example. 
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On the “Validation” property page for the model, DTREG provides several options for 

controlling the size that is used for pruning: 

 

 Prune to the minimum cross-validated error – If you select this option, 

DTREG will prune the tree to the size the produces the absolutely minimum 

cross-validated classification error. 

 Allow 1 standard error from minimum – Many researchers believe that it is 

acceptable to prune to a smaller tree as long as the increase in misclassification 

cost does not exceed one standard error of the variance in the cross validation 

misclassification cost.  The standard error for the cross validation cost values is 

displayed in the Tree Size report.  See page 183 for an example. 

 Allow this many S.E. from the minimum – Using this option, you can specify 

an exact number of standard errors from the minimum misclassification cost you 

will allow. 
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Example Analyses 
 

 

The DTREG installation program installs a set of example projects in a folder named 

“Examples” under the DTREG installation directory.  Normally, this is C:\Program 

files\DTREG\Examples.  A good way to get started using DTREG is to browse the 

examples in that directory and run some of them. 

 

Most of the example analyses came from the UCI Repository of Machine Learning 

Databases (http://www.ics.uci.edu/~mlearn/MLRepository.html).  Irvine, CA: University 

of California, Department of Information and Computer Science.  This repository has 

greatly benefited the development of many decision tree and machine learning programs. 

 

Summary information about some of the examples is presented below.  Other information 

can be found in the “Notes” section displayed on the Design property page within 

DTREG. 

 

TITANIC.DTR – The sinking of the Titanic is a famous event, and new books are still 

being published about it.  Many well-known facts - from the proportions of first-class 

passengers to the "women and children first" policy, and the fact that that policy was not 

entirely successful in saving the women and children in the third class - are reflected in 

the survival rates for various classes of passenger.  These data were originally collected 

by the British Board of Trade in their investigation of the sinking.  For each person on 

board the fatal maiden voyage of the ocean liner Titanic, this dataset records sex, age 

(adult/child), booking class (first/second/third class, or crew) and whether or not that 

person survived. 

 

IRIS.DTR – This is a classification problem dating back to 1936.  Its originator, R. A. 

Fisher, developed the problem to test clustering analysis and other types of classification 

programs prior to the development of computerized decision tree generation programs.  

The dataset is small consisting of 150 records.  The target variable is categorical 

specifying the species of iris.  The predictor variables are measurements of plant 

dimensions. 

 

BOSTON.DTR – This is a regression tree example to predict the value of houses in 

various areas around Boston based on characteristics of the locale such as proximity to 

the Charles River and major highways, socioeconomic status, air pollution and other 

factors. 

 

LIVERDISORDER.DTR – This is a dataset from England that generates a classification 

tree to predict liver disorders.  The target variable is liver condition (healthy or 

abnormal).  The predictor variables are various blood chemical measurements along with 

the number of alcoholic drinks consumed per day. 

 

HOUSEVOTES.DTR – This is a classification problem that attempts to predict the 

political party affiliation of U.S. House members based on how they voted on various 
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bills in 1984.  The target variable is political party (Republican/Democrat).  The predictor 

variables are Yes/No votes cast on various bills. 

 

LANDINGCONTROL.DTR – This is a classification problem to decide whether it is 

better to use manual or automatic (autopilot) control when landing the space shuttle.  The 

target variable has two categories, Automatic and Manual.  The predictor variables 

include wind direction, velocity and visibility. 

 

BRIDGES.DTR – This is a classification problem that attempts to classify the type of 

various bridges around Pittsburg based on predictors such as their length, type of material 

and date of construction. 

 

HORSECOLIC.DTR – This is a classification problem to decide if horses suffering 

from colic need to be treated surgically.  The target variable categories are surgical or 

non-surgical.  The predictor variables describe the horse’s condition such as age, 

temperature, degree of discomfort, etc. 

 

CLEVELANDHEART14.DTR – This is a classification problem that attempts to 

predict heart disease due to vessel narrowing.  The target variable, ‘num’, is the number 

of vessels showing narrowing.  The focus is on predicting a value of 0 (no disease) versus 

non-disease which indicates narrowing in some vessels. 
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DTREG .NET Class Library 
 

The optional DTREG .NET class library makes it easy for production applications to call 

DTREG as an “engine” to compute the predicted value for data records using a predictive 

model created by DTREG. 

 

Any type of model (Single Tree, TreeBoost or Decision Tree Forest, SVM, etc.) can be 

used with the DTREG COM library to generate predicted values 

 

Because of the standardization of the .NET interface, it is easy to call DTREG functions 

from programs written in C#, VB.NET and other .NET languages. 

 

Example C# program 

 

Here is an example of a complete C# program: 
using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using DTREGclassLibrary; 

 

namespace TestDTREGclassLibrary 

{ 

    /*--------------------------------------------------------------------------------------- 

     *  Class to build a DTREG model. 

     */ 

    class BuildModel 

    { 

        /*----------------------------------- 

         * Routine that trains a DTREG model. 

         */ 

        public int BuildTheModel() 

        { 

 

            int intStatus; 

            /* 

             *  Establish a reference to a DTREGclass object. 

             */ 

            DTREGclass objDtreg = new DTREGclass(); 

            m_objDtreg = objDtreg; 

            /* 

             *  Enter our registration information. 

             */ 

            intStatus = objDtreg.SetRegistration("registered name", "registration key"); 

            if (CheckStatus(intStatus)) return (intStatus); 

            /* 

             *  Initialize for a new model. 

             */ 

            intStatus = objDtreg.BeginTraining("Test model training"); 

            if (CheckStatus(intStatus)) return(intStatus); 

            /* 

             *  Set the type of model to build. 

             *  1 = Single decision tree. 

             *  2 = TreeBoost. 

             *  3 = Decision tree forest. 

             *  4 = Logistic regression. 

             *  5 = SVM 

             *  7 = LDA 

             *  9 = Neural network 

             *  10 = PNN/GRNN 

             *  11 = RBF 

             *  12 = Cascase correlation 

             *  13 = GEP 

             *  14 = Linear regression 

             *  15 = K-Means 
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             *  16 = GMDH 

             *  17 = Correlation, factor analysis. 

             */ 

            intStatus = objDtreg.SetModelType(2); 

            if (CheckStatus(intStatus)) return (intStatus); 

            /* 

             *  Define 5 variables.  The first variable is the categorical target variable. 

             *  The other 4 variables are continuous predictor variables. 

             */ 

            intStatus = objDtreg.BeginVariableDefinitions(); 

            if (CheckStatus(intStatus)) return (intStatus); 

            intStatus = objDtreg.DefineVariable("Species", 2, true); 

            if (CheckStatus(intStatus)) return (intStatus); 

            intStatus = objDtreg.DefineVariable("Sepal length", 1, false); 

            if (CheckStatus(intStatus)) return (intStatus); 

            intStatus = objDtreg.DefineVariable("Sepal width", 1, false); 

            if (CheckStatus(intStatus)) return (intStatus); 

            intStatus = objDtreg.DefineVariable("Petal length", 1, false); 

            if (CheckStatus(intStatus)) return (intStatus); 

            intStatus = objDtreg.DefineVariable("Petal width", 1, false); 

            if (CheckStatus(intStatus)) return (intStatus); 

            intStatus = objDtreg.EndVariableDefinitions(); 

            if (CheckStatus(intStatus)) return (intStatus); 

            /* 

             *  Feed in data records. 

             *  The column delimiter character is "," 

             */ 

            intStatus = objDtreg.BeginStoringData(",", 0); 

            if (CheckStatus(intStatus)) return (intStatus); 

            foreach (var item in DataRow) 

            { 

                intStatus = objDtreg.StoreDataRow(item); 

                if (CheckStatus(intStatus)) return (intStatus); 

            } 

            intStatus = objDtreg.EndOfData(); 

            if (CheckStatus(intStatus)) return (intStatus); 

            /* 

             *  Train the model.  The type of the model was set by SetModelType(). 

             */ 

            intStatus = objDtreg.GenerateModel(); 

            if (CheckStatus(intStatus)) return (intStatus); 

            /* 

             *  Get analysis reports from the model, and write them to files. 

             *  --- Change the folder for the files --- 

             */ 

            String txtReport = objDtreg.GetAnalysisReport(); 

            String txtXMLReport = objDtreg.GetAnalysisReportXML(); 

            System.IO.File.WriteAllText(@"C:\Test\AnalysisReport.txt", txtReport); 

            System.IO.File.WriteAllText(@"C:\Test\AnalysisReport.xml", txtXMLReport); 

            /* 

             *  Write the project to a file. 

             */ 

            intStatus = objDtreg.SaveProject(@"C:\Test\Model.dtr"); 

            if (CheckStatus(intStatus)) return (intStatus); 

            /* 

             *  Finished 

             */ 

 

            return(0); 

        } 

 

        /*---------------------------------------------------------------------------------- 

         *  Check a status code and display a message box if there is an error. 

         *  Return true if there is an error or false for success. 

         */ 

        bool CheckStatus(int intStatus) 

        { 

            if (intStatus != 0) { 

                MessageBox.Show(m_objDtreg.StatusMessage(intStatus), "Error"); 

                return(true); 

            } else { 

                return(false); 

            } 

        } 

/* 

 *  Data rows for model training. 

 */ 

string []DataRow = { 

  "Setosa,5.1,3.5,1.4,0.2", 

  [… More data rows …] 
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 }; 

} 

   

} 
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Licensing and Use of DTREG 
 

Use and Distribution of DTREG 

There are two versions of the DTREG program: demonstration and registered.  You are 

welcome to make copies of the demonstration version of DTREG and pass them on to 

friends or post this program on bulletin boards or distribute it via disk catalog services, 

CD ROMS, or other means provided the entire DTREG distribution is included in its 

original, unmodified form.  A distribution fee may be charged for the cost of the diskette, 

shipping and handling.  Vendors are encouraged to contact the author to get the most 

recent version of DTREG. 

 

As a demonstration product, you are granted a no-cost, trial period of 30 days during 

which you may evaluate DTREG.  If you find DTREG to be useful, educational, and/or 

entertaining, and continue to use it beyond the 30 day trial period, you are required to 

compensate the author by purchasing it. 

 

In return for purchasing DTREG, you will be authorized to continue using DTREG 

beyond the trial period on a single computer.  Contact the author for information about 

multi-system licenses. 

 

The registered version of DTREG may not be redistributed or used on more than one 

computer system. 

Copyright Notice 

 
Both the DTREG program and documentation are copyright © 1991-2004 by Phillip H. Sherrod. 

You are not authorized to modify the program or documentation. "DTREG” is a trademark of 

Phillip H. Sherrod. 

 

Web page 

 

Up-to-date information about DTREG can be found on the web page: http://www.dtreg.com 

 

Contacting the author 

Phil Sherrod, the author of DTREG, can be contacted at PhilSherrod@comcast.net 

Disclaimer 

This software and documentation are provided on an "as is” basis.  This program may 

contain "bugs” and inaccuracies, and its results should not be assumed to be correct 

unless they are verified by independent means. Phillip H. Sherrod disclaims all warranties 

http://www.nlreg.com/
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relating to this software, whether expressed or implied, including but not limited to any 

implied warranties of merchantability or fitness for a particular purpose.  Neither Phillip 

H. Sherrod nor anyone else who has been involved in the creation, production, or 

delivery of this software shall be liable for any indirect, consequential, or incidental 

damages arising out of the use or inability to use such software, even if Phillip H. Sherrod 

has been advised of the possibility of such damages or claims.  The person using the 

software bears all risk as to the quality and performance of the software. 

 

This agreement shall be governed by the laws of the State of Tennessee and shall inure to 

the benefit of Phillip H. Sherrod and any successors, administrators, heirs and assigns.  

Any action or proceeding brought by either party against the other arising out of or 

related to this agreement shall be brought only in a state or federal court of competent 

jurisdiction located in Williamson County, Tennessee.  The parties hereby consent to in 

personam jurisdiction of said courts. 

 



381 

 

References 
 

 

Agresti, Alan.  Categorical Data Analysis, Second Edition.  Wiley series in probability 

and statistics, 2002. 

 

Aldenderfer, Mark S. and Roger K. Blashfield.  Cluster Analysis.  Sage Publications, 

1984. 

 

Allison, Paul D.  Logistic Regression Using The SAS System: Theory and Application.  

SAS Institute Inc., Cary, NC, 1999. 

 

Balakrishnama, S. and A. Ganapathiraju, Linear Discriminant Analysis – A Brief 

Tutorial, Institute for Signal and Information Processing, Mississippi State University. 

 

Berk, Richard A. (2003) “An Introduction to Ensemble Methods for Data Analysis” 

UCLA Department of Statistics Technical Report. 

 

Bishop, Christopher M. (2005) Neural Networks for Pattern Recognition.  Oxford 

University Press.  

 

Blake, C.L. & Merz, C.J. (1998). UCI Repository of Machine Learning Databases 

[http://www.ics.uci.edu/~mlearn/MLRepository.html].  Irvine, CA: University of 

California, Department of Information and Computer Science. 

 

Blok, Hendrick J. On the nature of the stock market: Simulations and experiments.  

PhD thesis, University of British Columbia, 2000. 

(http://www.zoology.ubc.ca/~rikblok/lib/blok00b.html) 

 

Breiman, Leo, Jerome Friedman, Richard Olshen, and Charles Stone.  Classification and 

Regression Trees.  Pacific Grove: Wadsworth, 1984. 

 

Breiman, Leo (1996) “Bagging Predictors.”  Machine Learning 26:123-140. 

 

Breiman, Leo (2001). “Decision Tree Forests.”  Machine Learning 45 (1):5-32, October 

2001. 

 

Campbell, C.  An Introduction to Kernel Methods. 

 

Caruana, Rich and Alexandru Niculescu-Mizil.  An Empirical Comparison of Supervised 

Learning Algorithms Using Different Performance Metrics.  Computer Science, Cornell 

University, Ithaca NY 14850. 

 

Cattell, Raymond B.  Factor Analysis – An introduction and Manual for the Psychologist 

and Social Scientist.  Harper & Brothers, 1952. 

 



382 

 

Chang, Chih-Chung and Chih-Jen Lin.  LIBSVM – A Library for Support Vector 

Machines.  April, 2005. http://www.csie.ntu.edu.tw/~cjlin/libsvm/  

 

Chen, C.H. (1996)  Fuzzy Logic and Neural Network Handbook.  McGraw-Hill. 

 

Chen, Chao, Andy Liaw, Leo Breiman, Using Random Forest to Learn Imbalanced Data. 

 

Chen, Sheng, Xia Hong and Chris J. Harris, "Orthogonal Forward Selection for 

Constructing the Radial Basis Function Network with Tunable Nodes", 2005. 

 

Chen, Sheng, Xunxian Weng and Chris J. Harris: "Experiments with Repeating Weighted 

Boosting Search for Optimization in Signal Processing Applications".  IEEE 

Transactions on Systems, Man and Cybernetics – Part, B Cybernetics, Vol. 35, No. 4, 

August 2005. 

 

Cristianini, Nello and John Shawe-Taylor: An Introduction to Support Vector Machines 

and other kernel-based learning methods. Cambridge University Press, 2000. 

 

Efron, Bradley and Robert J. Tibshirani.  An Introduction to the Bootstrap.  Chapman & 

Hall/CRC, 1998. 

 

Fahlman, Scott E. and Christian Libiere (1990)  The Cascade-Correlation Learning 

Architecture.  Carnegie Mellon University. CMU-CS-90-100 

 

Fawcett, Tom.  ROC Graphs: Notes and Practical Considerations for Data Mining 

Researchers.  March 16, 2004.  

 

Ferreira, Cândida.  Gene Expression Programming.  Mathematical Modeling by an 

Artificial Intelligence, 2
nd

 Edition.  Springer-Verlag--Studies in computational 

intelligence 21, 2006. 

 

Fisher, R.A (1936).  The use of multiple measures in taxonomic problems, Ann. 

Eugenics, 7:179—188, 1936. 

 

Fung, Glenn.  CS 525 Project.  Fall, 1998. 

 

Freund, Y. (1995).  Boosting a weak learning algorithm by majority, Information and 

Computation 121(2): 256-285. 

 

Freund, Y. and Schapire, R. (1996a).  Experiments with a new boosting algorithm, 

Machine Learning: Proceedings of the Thirteenth International Conference, Morgan 

Kauffman, San Francisco, pp. 148-156. 

 

Friedman, Jerome H., Trevor Hastie and Robert Tibshirani (1998)  “Addative Logistic 

Regression: A Statistical View of Boosting.”  Stanford University, Dept. of Statistics, 

Technical Report. 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/


383 

 

 

Friedman, Jerome H. (1999a).  Greedy Function Approximation: A Gradient Boosting 

Machine.  Technical report, Dept. of Statistics, Stanford University. 

 

Friedman, Jerome H. (1999b).  Stochastic Gradient Boosting.  Technical report, Dept. of 

Statistics, Stanford University. 

 

Friedman, Jerome H. and Bogdan E. Popescu (2003)  Importance Sampled Learning 

Ensembles. 

 

Fung, Glenn. Siemens Medical Solutions.  The Disputed Federalist Papers: SVM Feature 

Selection via Concave Minimization. 

 

Gorsuch, Richard L.  Factor Analysis.  W. B. Saunders Co.  1974 

 

Han, Jiawei and Micheline Kamber  Data Mining: Concepts and Techniques.  Slides for 

Textbook Chapter 6.  http://www-courses.cs.uiuc.edu/~cs498han/slides/06.ppt#1095 

 

Hand, David, Heikki Mannila, Padhraic Smyth.  Principles of Data Mining.  The MIT 

Press, 2001. 

 

Harman, Harry H.  Modern Factor Analysis.  The University of Chicago Press.  1967. 

 

Hartigan, J.A. and Wong, M.A. 1979. A K-Means Clustering Algorithm.  Applied 

Statistics 28. 

 

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman.  The Elements of Statistical 

Learning; Data Mining, Inference, and Prediction.  Springer, 2001. 

 

Hastie, T.J. and R.J. Tibshirani.  Generalized Additive Models.  Chapman & Hall/CRC, 

1999. 

 

Heinze, G. and Schemper, M. (2002).  A solution to the problem of separation in logistic 

regression.  Statistics in Medicine, 21, 2409 - 2419.  

 

Heinze, G. and Ploner, M. (2003).  Fixing the nonconvergence bug in logistic regression 

with SPLUS and SAS.  Computer Methods and Programs in Biomedicine, 71, 181-187.  

 

Heinze, G. (1999).  Technical Report 10/1999:  The application of Firth's procedure to 

Cox and logistic regression. Section of Clinical Biometrics, Department of Medical 

Computer Sciences, University of Vienna, Vienna, Austria. 

 

Hosmer, David W., Stanley Lemeshow.  Applied Logistic Regression, Second Edition.  

Wiley Series in Probability and Statistics, 2000. 

 



384 

 

Huber, P. (1964).  Robust estimation of a location parameter, Annals of Math. Stat. 53: 

73-101. 

 

Hsu, C.-W and C.-J. Lin.  A comparison of methods for multi-class support vector 

machines.  IEEE Transactions on Neural Networks, 13(2):415-425, 2002. 

 

Huberty, Carl J.  Applied Discriminant Analysis.  John Wiley & Sons, 1994. 

 
Ivakhnenko G.A. Self-Organisation of Neuronet with Active Neurons for Effects of Nuclear Tests 

Explosions Forecasting. System Analysis Modeling Simulation 
 

Julian, Randy.  Using LDA.  Lilly Research Laboratories 

(http://miner.chem.purdue.edu/Lectures/Lecture10.pdf). 

 

Klecka, William R.  Discriminant Analysis.  Sage Publications, 1980 

 

Kecman, Vojislav.  Support Vector Machines Basics.  School of Engineering Report 616. 

The University of Auckland, School of Engineering.  April, 2004. 

 

Kleinbaum, David G., Mitchel Klein.  Logistic Regression, A Self Learning Text, Second 

Edition.  Springer, 1992. 

 

Kordík, Pavel, Pavel Náplava, Miroslav Šnorek, Marko Genyk-Berezovskyj. “The 

Modified GMDH Method Applied to Model Complex Systems” Department of 

Computer Science and Engineering, CTU, FEE Karlovo nám. 13, Prague, Czech Republic 
 

Kubat, Miroslav and Stan Matwin.  Addressing the Curse of Imbalanced Training Sets: 

One-Sided Selection. 

 

Loh, W.Y. and Shih, Y.S. (1997).  Split selection methods for classification trees.  

Statistica Sinica 7: 815-840. 

 

Maindonald, John and John Braun.  Data Analysis and Graphics Using R, An Example-

based Approach.  Cambridge University Press, 2003. 

 

Markowetz, Florian.  “Classification by Support Vector Machines. Practical DNA 

Microsarray Analysis 2003.”  Max Planck Institute for Molecular Genetics, 

Computational Molecular Biology, Berlin.  
https://phssec1.fhcrc.org/secureplone/www.bioconductor.org/workshops/2003/NGFN03/svm.pdf 

 

Masters, Timothy (1993)  Practical Neural Network Recipes in C++.  Morgan 

Kaufmann.  

 

Masters, Timothy (1995)  Advanced Algorithms for Neural Networks, A C++ 

Sourcebook.  John Wiley & Sons, Inc. 

 

http://miner.chem.purdue.edu/Lectures/Lecture10.pdf


385 

 

Meyer, David, Friedrich Leisch and Kurt Hornik (Nov., 2002).  “Benchmarking Support 

Vector Machines”, Report No. 78, Vienna University of Economics and Business 

Administration. 

 

Meyer, David (Jan. 23, 2004).  Results of a benchmark study with focus on SVM’s and 

resample/combine methods. 

http://www.imbe.med.uni-erlangen.de/links/EnsembleWS/talks/Meyer.pdf 

 

Minsky, Marvin and Seymour Papert.   Perceptrons.  MIT Press, 1969. 

 

Moller, Martin Fodslette (1993)  A Scaled Conjugate Gradient Algorithm for Fast 

Supervised Learning.  Pergamon Press.  

 

Momma, Michinari and Kristin P. Bennett.  A Pattern Search Method for Model 

Selection of Support Vector Regression.  SIAM Conference on Data Mining, 2002. 

 

Morgan, J. N. and Messenger.  “THAID -- A sequential analysis program for the analysis 

of nominal scale dependent variables”, Survey Research Center, U of Michigan. (1973) 

 

Morgan, J. N. and J. A. Sonquist.  [AID – Automatic Interaction Detection]  “Problems 

in the analysis of survey data and a proposal", JASA, 58, 415-434. (1963) 

 

Murphy, Patrick M and Michael J. Pazzani (1994). Exploring the Decision Forest: An 

Empirical Investigation of Occam’s Razor in Decision Tree Induction.  Journal of 

Artificial Intelligence Research, 1, (pp. 257-275). 

 

Nguyen, Derrick and Bernard Widrow, “Improving the learning speed of 2-layer neural 

networks by choosing initial values of adaptive weights”, in Proc. IJCNN, vol. 3, pp. 21-

26, July 1990. 

 

Orr, Mark J.L. (1966): Introduction to Radial Basis Function Networks, Centre for 

Cognitive Science, University of Edinburgh, Scotland. 

 

Park, Alex and Christine Fry.  Statistical modeling of user switching behavior based on 

reward histories. (http://web.mit.edu/9.29/www/brett/ca_model.html) 

 

Price, Kenneth V., Rainer M. Storn, Jouni A. Lampien (2005)  Differential Evolution, A 

Practical Approach to Global Optimization.  Springer-Verlag.  

Qian, Bo and Khaled Rasheed (2004)   “Hurst Exponent and Financial Market 

Predictability”.  Department of Computer Science, University of Georgia, Athens, GA 

USA. 

 

Quinlan, J. Ross.  C4.5: Programs for Machine Learning.  Morgan Kaufmann Publishers, 

1993. 

 

http://www.imbe.med.uni-erlangen.de/links/EnsembleWS/talks/Meyer.pdf
http://web.mit.edu/9.29/www/brett/ca_model.html


386 

 

Reyment, Richard and K.G. Koreskog.  Applied Factor Analysis in the Natural Sciences. 

Cambridge University Press, 1993. 

 

Rosenblatt, Frank.  “The Perceptron: A Probabilistic Model for Information Storage and 

Organization in the Brain.”  Psychological Review.  1958 

 

Rumelhart, David and James McClelland.   Parallel Distributed Processing.  MIT Press, 

1986. 

 

Rummell, R.J. Applied Factor Analysis, Northwestern University Press, 1970. 

 

Schwardt, Ludwig and Johan du Preez.  Manipulating Feature Space, PR414/PR813.  

The University of Stellenbosch.  Feb. 15, 2005. 

 

Segal, Mark R (2003).  “Machine Learning Benchmarks and Decision Tree Forest 

Regression”.  Division of Biostatistics, University of California, San Francisco. 

 

Shawe-Taylor, John and Nello Cristianni: Kernel Methods for Pattern Analysis.  

Cambridge University Press, 2004. 

 

Sherrod, Phillip H.  NLREG Nonlinear Regression Analysis Program.  Phillip H. 

Sherrod, 2003. (http://www.nlreg.com) 

 

Specht, Donald F.  “Probabilistic Neural Networks” Neural Networks, 3: (1990). 

 

Specht, Donald F.  “Enhancements to Probabilistic Neural Networks,” Proceedings of the 

International Joint Conference on Neural Networks (IJCNN ’92). 1992. 

 

Steinberg, Dan and Phillip Colla. CART: Tree-Structured Non-Parametric Data Analysis.  

San Diego, CA: Salford Systems, 1995. 

 

Venables, W.N and B.D Ripley.  Modern Applied Statistics with S, Forth Edition.  

Springer Science+Business Media, Inc., 2002. 

 

Wilson, D. Randall and Tony R. Martinez.  “Improved Center Point Selection for 

Probabilistic Neural Networks.”  Proceedings of the International Conference on 

Artifical Neural Networks and Genetic Algorithms, 9ICANNGA 1997), pp. 514-517, 

1997. 

 

Witten, Ian H, Eibe Frank.  Data Mining; Practical Machine Learning Tools and 

Technique with JAVA Implementations.  Academic Press, 2000. 

 

Yang, Haiqin.  Margin Variations in Support Vector Regression for the Stock Market 

Prediction.  Masters thesis, The Chinese University of Hong Kong, June, 2003. 

 

http://www.nlreg.com/


387 

 

Zhang, Heping and Burton Singer.  Recursive Partitioning in the Health Sciences.  

Springer, 1999. 

 





Index 
 

. 

.csv file type, 18, 36 

.dtr file type, 19, 24 

.NET program interface, 375 

1 

1 SE pruning, 53, 372 

A 

A priori probabilities, 128 

Absolute selection range fitness function, 99 

Access, data for DTREG, 36 

Activation function, 66 

Actual versus predicted chart, 231 

AdaBoost, 246 

Adaline networks, 254 

Addative logistic regression, 383 

Adjusting optimal tree size, 371 

AID, Automatic Interaction Detection, 243, 366, 385 

Akaike’s Information Criterion, 340 

Algebraic simplification, 100, 319 

Altered priors, 132, 364 

Amplitude adjustment, 144 

Amplitude stabilization, 48 

Analysis of variance report, 189 

Analysis of variance table, 335 

Analysis report format, 179 

Analysis report log file, 35 

ANOVA table, 335 

Antennapedia mutant, 313 

ARMA models, 140 

Artificial neural network, 254 

Assigning categories to nodes, 364 

Association direction, 188 

Association of surrogate splitters, 188 

AUC statistic, 193, 199 

Autocorrelation, 147 

Automatic Interaction Detection, 243 

Automatic trend removal, 48 

Auto-Regressive Moving Average models, 140 

Average category weights, 129 

Average weighted probability error, 196 

B 

Backpropagation algorithm, 258 

Backward propagation of errors, 258 

Backward pruning, 367 

Balanced category weights, 129 

Balancing target categories, 37 

Bayesian Information Criterion, 340 

Berk, Richard A., 381 

Berra, Yogi, 11 

Beta parameters, logistic regression, 340 

Bibliography, 381 

Binary split, 235 

Bishop, Christopher M., 381 

Blake, C. L., 381 

Blok, Henrik J., 147 

Boosting, 245, 383 

Boston.dtr example, 373 

Box-Jenkins, 140 

Brahe, Tyco, 306 

Breiman, Leo, 243, 249, 381 

Brent’s method, 259 

Bridges.dtr example, 374 

Building trees, 361 

BUILDMODEL command, 29 

C 

C code generation, 170, 172 

C source code generation, 169 

C statistic, 199 

C# program interface, 375 

C++ code generation, 170 

C4.5 program, 243 

CART program, 243, 386 

Cascade correlation neural networks, 273 

Cascade correlation property page, 76 

Categorical variables, 14 

Categories for continuous variables, 34 

Category labels property page, 124 

Category weights, 128 

Chang, Chih-Chung, 302 

Charts and plots, 209 

Christ, Jesus, 366 

Class labels property page, 124 

Classes of variables, 13 

Classification trees, 240 

ClevelandHeart14.dtr example, 374 

Cluster analysis, 12, 321, 362 

Column separator character, 19, 38 

Comma as decimal point, 19, 38 

Comma separated value files, 36 

Command line operation, 27 

Communality estimates, 121 

Competitor splits, 187, 363 

Complete separation, 343 

Complexity measure, 371 

Computer learning, 12 

Confidence intervals, 341 

Confusion matrix, 191 

Conjugate gradient algorithm, 68, 258, 259 

Conjugate gradient parameters, 67 

Continuous variable categories, 34 

Continuous variables, 14 

Convergence failure, 342 

Convergence tolerance, 109 

Copyright notice, 379 

Correlation, 345 

Correlation matrix, 346 

Correlation matrix data input, 120 



390 

 

Correlation property page, 119 

Cost complexity measure, 184, 371 

CPU’s to use for processing, 16 

Cramer’s V correlation, 346 

Creating a new project, 18 

Credit scoring, 12 

Cross validation, 52, 57, 369 

Cross validation cost, 184, 370 

Cross validation cost standard error, 184 

Cross validation variable importance, 59 

Cross-validation control variable, 45 

C-Statistic, 193 

csv file type, 18, 36 

CSV files, 36 

Cumulative gain, 202 

Cumulative lift chart, 214 

Custom category weights, 129 

Custom pruning cutoff, 53, 372 

Customer targeting, 11 

CV cost, 370 

D 

DATA command, 28 

Data file format, 36 

Data mining, 11 

Data modeling, 12 

Data plot chart, 229 

Data property page, 36 

Data subset, 19, 36 

Data Transformation Language (DTL), 153 

Decimal point character, 19, 38 

Decision Forests, 249 

Decision layer, 287 

Decision Tree Forest, 249 

Decision tree forest property page, 60 

Decision tree forest size control, 61 

Decision trees, 235 

Default type of model, 16 

Denominator summation unit, 286 

Depth of trees, 55 

Design property page, 33 

Deviance of log likelihood, 340 

Deviation, 332 

Dichotomous variables, 337 

Differential evolution, 385 

Dimension reduction, 352 

Disclaimer, 379 

Discriminant analysis, 325 

Discriminant analysis property page, 113 

Dispersional Analysis, 147 

DJIA, 139 

Dose-response curve, 338 

Dow Jones Industrial Average, 139 

DTL DataTransformation Language, 153 

DTL reference manual, 154 

dtr file type, 19, 24 

DTREG .NET class library, 375 

DTREG COM library, 375 

DTREG Web page, 379 

DTREGcom.dll, 375 

DTREGsetup.exe, 15 

E 

Eigenvalues, 350 

Einstein, Albert, 317 

Elitism, 317 

e-mail contact for author, 379 

EndRun() function, 160 

Ensemble tree methods, 245, 249 

Entropy correlation, 346 

Entropy splitting method, 34, 363 

Epsilon SVM parameter, 89 

Equal category weights, 129 

Equal misclassification costs, 131 

Equal priors, 129 

Evaluating splits, 363 

Example projects, 25, 373 

Excel, data for DTREG, 36 

Excluding rows with missing values, 357 

Execution priority, 16 

Execution threads, 16 

Exhaustive search, 362 

Explained variance, 189 

Explained variance fitness function, 97 

Explicit global variables, 156 

Exploratory tree generation, 52 

Exponentially weighted moving average, 49 

Expression simplification, 100, 102 

Expression tree, 309 

F 

F value, 336 

F Value and Prob(F), 336 

Factor analysis, 12, 345 

Factor analysis property page, 119 

False negative, 98, 192 

False positive, 98, 192 

Feature selection, 289 

Federalists Papers, 292 

Feed-forward neural network, 89, 299 

Ferreira, Cândida, 382 

First row in data file, 38 

Firth’s procedure, 118, 342 

Fisher, R.A., 325, 382 

Fitness functions, 97 

Fitness score, 96 

Fixed size pruning, 52 

F-Measure, 193 

Focus category, 199 

Focus Category Impurity chart, 210 

Focus Category Loss chart, 211 

Focus category, designating, 126 

Focus category, Impurity, 200, 211 

Focus category, Loss, 200, 212 

FOLDER command, 28 

Forcing the initial split, 127 

Forecasts for time series, 50 

Forward pruning, 366 

Founder population, 314 

Freund, Y., 382 

Friedman, Jerome, 243, 245, 381, 383 

Full tree generation, 52 



391 

 

Fully connected networks, 255 

Functional link networks, 254 

G 

Gain chart, 212, 213, 214 

Gain table, 201 

Gauss, Johann Carl Friedrich, 331 

Gauss-Newton optimization, 109, 319 

Gene expression programming, 305 

Gene Expression Programming property page, 94 

Gene head length, 96 

Gene recombination rate, 106 

Gene transposition, 105 

Gene transposition rate, 105 

General regression neural network property page, 80 

General regression neural networks, 279 

Generalization of trees, 367 

Generating scoring code, 169 

Generations without improvement, 96 

Genes per chromosome, 96 

Genetic algorithms, 308 

GEP Constants property page, 108 

GEP Evolution property page, 104 

GEP expression simplification, 100 

GEP Expression simplifier, 102 

GEP functions property page, 103 

GEP General property page, 95 

GEP Linking property page, 106 

GEP missing value parameters, 101 

GEP model building parameters, 95 

GEP Mutation rate, 104 

GEP property page, 94 

GEP Recombination rates, 105 

GEP testing and validation parameters, 101 

GEP Transposition rates, 105 

GepKepler example, 307 

GepParity3 example, 308 

Gini splitting method, 34, 363 

Global variables, 155 

GMDH polynomial neural networks, 269 

GMDH property page, 73 

Gradient, 259 

Gradient boosting, 245 

Gradient descent algorithm, 258 

Gram-Charlier networks, 254 

Graphs and charts, 209 

Grid search, 91 

GRNN property page, 80 

Gross domestic product, 139 

H 

Hartigan, J.A., 383 

Hebb networks, 254 

Hessian matrix, 259, 342, 343 

Heteroassociative networks, 254 

Heterogeneity of nodes, 363 

Hidden layer, 255, 274 

Hidden layer activation function, 66 

Hinton, Geoffrey, 254 

Homeotic genes, 107, 313 

Homogeneity of nodes, 363 

HorseColic.dtr example, 374 

HouseVotes.dtr example, 374 

Huber M-regression loss function, 246 

Huber’s quantile cutoff, 55 

Hurst Exponent, 147 

Hybrid networks, 254 

Hyperplane, 289, 292 

I 

ID3 program, 243 

Implicit constants, 108 

Implicit global variables, 155 

Importance chart, 228 

Improvement of split, 363 

Impurity of focus category, 200, 211 

Impurity of nodes, 363 

Influence trimming factor, 56 

Initial population, 314 

Initial split property page, 126 

Initial split variable, 127 

Input data report section, 180 

Input layer, 255, 274 

Insertion sequence transposition, 105 

Installing DTREG, 15 

Intelligent Design, 315 

Interior nodes, 235 

Interval variables, 14 

Intervention event, 142 

Intervention variable, 142 

Inversion rate, 104 

Iris.dtr example, 19, 373 

IS transposition rate, 105 

J 

Jesus Christ, 366 

K 

Karva language, 309 

Kepler, Johannes, 306 

Kepler’s laws, 306 

Kernel function, 86, 262, 281, 293 

Kernel trick, 296 

K-expressions, 309 

K-Means clustering, 321 

K-Means Clustering property page, 110 

K-nearest neighbor classification, 261, 280 

Kohonen networks, 254 

L 

lag function, 158 

Lag value, 139 

Lag variable, 141 

Lag variables, 48 

LandingControl.dtr example, 374 

Latent variables, 347 

Leaf nodes, 235 



392 

 

Learning dataset, 236 

Learning rate parameter, 258 

Learning vector quantization, 254 

Least squares criteria, 363 

Least squares regression, 332 

Legendre, Adrien-Marie, 331 

Levenberg-Marquardt algorithm, 259 

Levenberg-Marquardt method, 109, 319 

LIBSVM, 302, 382 

License information, 379 

Lift and gain chart, 212 

Lift chart, 214 

Lift table, 201 

Lift/Gain bins, 35 

Likelihood ratio significance test, 118 

Likelihood ratio significance tests, 342 

Lin, Chih-Jen, 302 

Line search, 91, 259, 301 

Linear activation function, 66 

Linear discriminant analysis, 325 

Linear kernel function, 86, 296 

Linear regression, 305, 331 

Linear regression property page, 115 

Linear trend, 49 

Linearly weighted moving average, 49 

Linking function, 107, 313 

LiverDisorder.dtr example, 373 

Log file, 33 

Log likelihood function, 340 

Logistic activation function, 66 

Logistic regression, 337 

Logistic regression property page, 117 

Loh, W.Y., 384 

Loss of focus category, 200, 212 

M 

Machine learning, 12 

Main screen, 15 

main() function, 154 

MART, 245 

Masters, Timothy, 384 

Maximum tree levels, 51 

McClelland, James, 386 

Mean squared error fitness function, 97 

Median/mode missing value replacement, 357 

Merz, C. J., 381 

Minimal cross-validated error, 53, 370, 372 

Minimum CV, 371 

Minimum node size, 51, 55 

Minimum trees in TreeBoost series, 58 

Minimum variance criteria, 363 

Minsky, Marvin, 253, 385 

Miscellaneous property page, 137 

Misclassification cost, 130, 364 

Misclassification cost property page, 130 

Misclassification cost splitting method, 34 

Misclassification matrix, 191 

Misclassification summary table, 190 

Missing data property page, 133 

Missing value category, 38 

Missing value code, 158 

Missing value indicator, 38 

Missing value methods, 357 

Missing values, 364 

Missing values in data, 40 

MissingValue implicit value, 158 

Mix category weights, 129 

MLP neural networks, 253 

MLP property page, 63 

Model size chart, 209 

Model-trust region, 259 

Moller, Martin Fodslette, 259 

Momentum parameter, 258 

Monotonic variables, 14 

Morgan, J.N., 243, 385 

Most probable category in node, 364 

Moving average, 48 

M-regression loss function, 55, 246 

Multi-CPU support, 16 

Multilayer feed-forward neural networks, 253 

Multilayer perceptron neural networks, 253 

Multiple Additive Regression Trees, 245 

Murphy, Patrick M., 385 

Mutation rate, 104 

N 

Natural selection, 316 

Nearest neighbor classification, 261, 280 

Negative predictive value, 192 

Negative Predictive Value chart, 221 

Neural network, 289 

Neural network kernel function, 89, 299 

Neural network property page, 63, 69, 76, 80 

Neural networks, 246, 253, 261, 273 

New project, 18 

Newton, Isaac, 317 

Newton-Raphson algorithm, 117 

Nguyen, Derrick, 385 

NLREG program, 386 

Node impurity, 363 

Node split information, 186 

Node splits report section, 185 

Node summary report section, 185 

Nodes in tree, 235 

Nodes, interior, 235 

Nodes, leaf, 235 

Nodes, root, 235 

Nodes, terminal, 235 

Nominal variables, 14 

Noncoding region, 312 

Nonlinear regression, 306, 386 

Nonparametric regression, 306 

Non-stationary time series, 143 

Notes about project, 35 

NPV, 192 

Number of hits fitness function, 97 

Number of hits with penalty fitness function, 98 

Number of trees in decision tree forest, 61 

Numerator summation unit, 286 



393 

 

O 

Oblique rotation, 351 

Odd parity example, 307 

Odds Ratio, logistic regression, 341 

Olshen, Richard, 243, 381 

One standard error pruning, 53 

One-point recombination rate, 105 

Open reading frame, 312 

Opening a project, 24 

Optimal tree size, 367 

Ordered variables, 14 

Ordinal variables, 14 

Ordinary least squares, 333 

Orr, Mark, 385 

Orthogonal forward selection, 382 

Orthogonal rotation, 351 

OUTPUT command, 28 

Output layer, 255, 274 

Output layer activation function, 66 

Output report, 179 

Overall variable importance, 208 

P 

Papert, Seymore, 253 

Papert, Seymour, 385 

Parametric regression, 306 

Parity example, 307 

Parsimony pressure, 100, 318 

Partial autocorrelation, 148 

Pattern layer, 286 

Pattern search, 91, 92, 301 

Pazzani, Michael J., 385 

PCA scores, 123 

PCA transform function, 123 

PCA transform functions, 352 

PCA variables, 352 

pcSVMdemo, 296 

Pearson product moment correlation, 120, 345 

Perceptron, 253 

Perceptron neural networks, 253 

Period as decimal point, 19, 38 

Phi coefficient correlation, 346 

Phil Sherrod, 379 

Plots and charts, 209 

PNN property page, 80 

PNN sigma value, 283 

Point biserial correlation, 346 

Polynomial kernel function, 86, 87, 297 

Polynomial networks property page, 73 

Polynomial neural networks, 269 

Positive predictive value, 192 

Positive Predictive Value chart, 221 

Positive target category, 132 

Posterior probability scores, 165 

PPV, 192 

Precision, 192 

Predicted probability accuracy, 195 

Predictor category balance, 43 

Predictor coverage, 43 

Predictor variable, 13 

Preferences, 16 

Preferred splitting variables, 127 

Principal components analysis, 345 

Principal components property page, 119 

Principle components analysis, 12 

Prior probabilities, 128 

Priority of execution, 16 

Priors property page, 128 

Prob(F), 336 

Prob(t) value, 335 

Probabilistic neural network property page, 80 

Probabilistic neural networks, 279 

Probability accuracy report, 195 

Probability calibration chart, 227 

Probability calibration report, 195 

Probability scores, 165 

Probability threshold balance chart, 225 

Probability threshold chart, 223 

Probability threshold report, 197 

Probability threshold, balance misclassifications, 199 

Probability threshold, minimize total error, 199 

Probability threshold, minimize weighted errors, 131, 

199, 226 

Probability threshold, specifying, 131 

PROJECT command, 28 

Project log file, 33 

Project parameters report section, 180 

Project title, 33 

Promax rotation, 121, 351 

Properties for a model, 31 

Proportion of variance explained, 189 

Pruning control, 53 

Pruning tolerance, 59 

Pruning trees, 366 

Q 

Qian, Bo, 386 

Quasi-complete separation, 343 

Quinlan, J. Ross, 243, 386 

R 

Radial basis function, 88, 262, 281, 298 

Radial basis function networks, 254 

Radial Basis Function neural networks, 261 

Radial Basis Function property page, 69 

Radial basis kernel function, 86 

Random Forests™, 249 

Random number seeds, 137 

Random rows validation, 52, 57 

Random shock, 139 

Rasheed, Khaled, 386 

RBF kernel function, 86 

RBF network, 88, 298 

RBF networks, 254 

RBF neural networks, 261 

RBF property page, 69 

Recall, 192 

Receiver Operating Characteristic chart, 215 

Recombination, 105 

Recurrent networks, 254, 255 



394 

 

Recursive partitioning, 235 

Reduction of dimensions, 352 

Reference tree, 370 

References, 381 

Registering DTREG, 379 

Registration key, 17 

Regression trees, 239 

Relative selection range fitness function, 99 

Repeating weighted boosting search, 382 

Repeating Weighted Boosting Search parameters, 70 

REPORT command, 29 

Rescaled Range algorithm, 147 

Residual, 332 

Residual chart, 231 

Residual variance, 189 

Resubstitution cost, 184, 367 

Retina, 253 

Retraining PNN/GRNN models, 83 

Return on investment, 202 

Return statement, 154 

Ridge regression, 267 

RIS transposition rate, 105 

ROC chart, 215 

ROC chart, area under, 193, 199, 215 

ROC chart, reference, 382 

ROI, 202 

Root insertion sequence transposition, 105 

Root node, 235 

Root relative squared error fitness function, 97 

Rosen, Jonathan, 253 

Rosenblatt, Frank, 253, 386 

Roulette-wheel sampling, 316 

Rumelhart, David, 254, 386 

Running an analysis, 26 

RWBS parameters, 70 

S 

Salford Systems, 386 

SAS code generation, 170, 175 

Scaled conjugate gradient, 259, 385 

Scaled conjugate gradient algorithm, 68 

Schapire, R., 382 

Schwartz Criterion, 340 

SCOREINPUT command, 29 

SCOREOUTPUT command, 29 

ScoreRecord function, 174 

Scoring data, 163 

Scree plot, 349 

Sensitivity, 99, 192 

Sensitivity and specificity fitness function, 98 

Sensitivity Specificity chart, 217 

Setting preferences, 16 

Shakespeare, William, 289 

Sherrod, Phil, 379 

Sherrod, Phillip H., 386 

Shih, Y.S., 384 

Shrinkage factor, 56 

Sigma spread value, 283 

Sigmoid kernel function, 86, 89, 299 

Sigmoidal dose-response curve, 338 

Simple moving average, 48 

Single Tree property page, 51 

Singular Hessian matrix, 343 

Singular value decomposition, 334 

Slack variables, 300 

Smooth minimum spikes, 53, 58 

Soft margin, 300 

Softmax activation function, 66 

Sonquist, J.A., 243, 385 

Spearman rank-order correlation, 120, 345 

Specht, Donald F., 286, 386 

Specificity, 99, 192 

Specifying category weights, 129 

Specifying misclassification costs, 132 

Split, 365 

Split point, 236, 362 

Splitting algorithm, 34 

Splitting nodes, 361 

Splitting variable, 236 

Squared multiple correlation, 121 

Stabilization of variance, 48 

Stabilizing variance, 144 

Standard error of cross validation cost, 184 

Star Trek, 253 

StartRun() function, 160 

Static global variables, 159 

Static linking function, 107 

Stationary time series, 143 

Stochastic gradient boosting, 245 

Stone, Charles, 243, 381 

Stopping criteria, 366 

StoreData() function, 159 

Subset of data rows, 19, 36 

Summary of variables report section, 181 

Summation layer, 266, 286 

Supervised learning, 12 

Support of DTREG, 379 

Support Vector Machine, 289 

Surrogate splitters, 134, 167, 185, 187, 208, 360, 364 

Surrogate splitters association, 188 

Surrogate Variable report section, 182 

Surrogate variables, 358 

SVM, 289 

SVM cache size, 89 

SVM Epsilon parameter, 89 

SVM grid search, 91 

SVM kernel function, 86 

SVM line search, 91, 301 

SVM pattern search, 91, 92, 301 

SVM probability estimates, 90 

SVM property page, 85 

SVM shrinking heuristic, 90 

SVM stopping criteria, 89 

Symbolic regression, 305 

Symbols in GEP programs, 308 

T 

t statistic, 335 

Target category distribution, 128 

Target category distribution report, 186 

Target variable, 13 

Tau squared correlation, 346 



395 

 

Terminal node table, 206 

Terminal nodes, 235 

Terminal symbols, 308 

THAID, 385 

THAID program, 243 

Threshold balance chart, 225 

Threshold chart, 223 

Threshold report, 197 

Time series chart, 232 

Time series forecasting, 50 

Time series lag function, 158 

Time series models, 139 

Time series property page, 47 

Time series residuals chart, 233 

Time series transformed chart, 234 

Time series trend chart, 233 

Time series validation, 50 

Titanic passenger example, 373 

Title for project, 33 

TNR/FNR chart, 219 

TPR/FPR chart, 218 

TPR/TNR chart, 220 

Trademark notice, 379 

Training data category weights, 129 

Training dataset, 236 

Translate property page, 170 

Translation, 169 

Transposition, 105 

Traveling Salesperson Problem, 308 

Tree fitting algorithm, 34 

Tree level control, 51 

Tree nodes, 235 

Tree pruning control, 53 

Tree size optimization, 367 

Tree size report section, 183 

TreeBoost, 245 

TreeBoost cross validation, 57 

TreeBoost probability scores, 165 

TreeBoost property page, 54 

TreeBoost series length, 55 

Trend removal, 48, 143 

True negative, 98, 192 

True positive, 98, 192 

Two-point recombination rate, 106 

Type 1 + 2 margins, 62 

Type 1 margins, 62 

Types of variables, 14 

U 

UCI Repository of Machine Learning Databases, 373, 

381 

Unexplained variance, 189 

Unitary misclassification costs, 131 

Unpruned tree, 54 

Unsupervised learning, 12 

Unviable expressions, 315 

Use and distribution, 379 

Using a decision tree to predict values, 238 

V 

Validating a time series model, 145 

Validating time series, 50 

Validation cost, 184 

Validation cost standard error, 184 

Validation data row report file, 46 

Validation property page, 45 

Validation row selection variable, 46 

Validation Statistics report section, 183 

Values of nodes, 364 

Variable attributes in data file, 39 

Variable classes, 13 

Variable for initial split, 127 

Variable importance chart, 228 

Variable importance table, 208 

Variable names in data file, 38 

Variable types, 14 

Variable weights property page, 136 

Variables property page, 41 

Variance splitting method, 34 

Variance stabilization, 48, 144 

Varimax rotation, 121, 351 

VB.NET program interface, 375 

V-fold cross validation, 52, 57, 369 

Viable expressions, 315 

Viewing the tree, 27, 241 

Voter targeting, 11 

W 

Wald confidence intervals, 341 

Web page, 379 

Weight variable, 13 

Weighted misclassification errors, 131, 199, 226 

Widrow, Bernard, 385 

Williams, Ronald, 254 

Wong, M.A., 383 

X 

XML Analysis report log file, 35 

X-Y data plot chart, 229 

Y 

Yogi Berra, 11 

 


