
1

DTREG

Predictive Modeling Software

Phillip H. Sherrod

Copyright © 2003-2014
All rights reserved

www.dtreg.com

DTREG (pronounced D-T-Reg) builds classification and regression decision
trees, neural networks, support vector machine (SVM), GMDH polynomial
networks, gene expression programs, K-Means clustering, discriminant analysis
and logistic regression models that describe data relationships and can be used
to predict values for future observations. DTREG also has full support for time
series analysis.

DTREG accepts a dataset containing of number of rows with a column for each
variable. One of the variables is the “target variable” whose value is to be
modeled and predicted as a function of the “predictor variables”. DTREG
analyzes the data and generates a model showing how best to predict the values
of the target variable based on values of the predictor variables.

DTREG can create classical, single-tree models and also TreeBoost and
Decision Tree Forest models consisting of ensembles of many trees. DTREG
also can generate Neural Networks, Support Vector Machine (SVM), Gene
Expression Programming/Symbolic Regression, K-Means clustering, GMDH
polynomial networks, Discriminate Analysis, Linear Regression, and Logistic
Regression models.

DTREG includes a full Data Transformation Language (DTL) for transforming
variables, creating new variables and selecting which rows to analyze.

2

3

Contents

Data Mining and Modeling ... 11
Data Mining .. 11
Data Modeling ... 12
Supervised and Unsupervised Machine Learning ... 12
Time Series Analysis ... 12
Classes of Variables ... 13
Types of Variables ... 14

Using DTREG...15
Installing DTREG ... 15
DTREG’s Main Screen ... 15
Setting DTREG Preferences ... 16

Default type of model to build ... 16
Max. execution threads .. 16
Execution priority .. 16

Entering DTREG Registration Key... 17
Creating a New Project ... 18

New Project Example .. 19
Opening an Existing Project .. 24

Example Projects Installed With DTREG .. 25
Running an Analysis ... 26
Viewing the Generated Decision Tree ... 27
Command Line Operation ... 27

The Template Project ... 27
The Command File .. 28
The Command Line ... 30

Specifying Properties for a Model ..31
Design Property Page .. 33

Title of project.. 33
Write a report of the analysis to a project_Log.txt disk file... 33
Type of model to build ... 33
How to categorize continuous variables .. 34
Decision tree cluster analysis control .. 34
Tree fitting algorithm ... 34
Bins for Lift/Gain... 35
Notes about this project ... 35
Analysis report log file .. 35
Analysis report XML file ... 35

Data Property Page .. 36
Data File Format .. 36
Specifying Variable Attributes in the Data File ... 39
Continuing Data Lines ... 40
Specifying Missing Values in Data Files ... 40

Variables Property Page .. 41

4

Validation Property Page ... 45
Time Series Property Page .. 47

Time series or normal predictive model .. 47
Type of model to build ... 47
Range of lag values to generate ... 48
Automatic removal of trend ... 48
Validation of forward predictions .. 50
Print validation values and forecasts.. 50
Forecast future values .. 50
Print future forecast values .. 50
Write forecast to file .. 50

Single Tree Model Property Page ... 51
Type of model to build ... 51
Minimum rows in a node ... 51
Minimum size node to split ... 51
Maximum tree levels ... 51
Method for validating and pruning the tree ... 52
Tree Pruning Control ... 53

TreeBoost Property Page ... 54
Decision Tree Forest Property Page .. 60

Forest size controls .. 61
Random Predictor Control ... 61
How to Handle Missing Values .. 62
How to Compute Variable Importance .. 62

Multilayer Perceptron Neural Networks (MLP) Property Page .. 63
Number of neurons ... 64

Over fitting Detection and Prevention .. 65
Activation Functions ... 66

Model testing and validation ... 66
Conjugate gradient parameters ... 67

RBF Neural Networks Property Page ... 69
GMDH Polynomial Neural Networks Property Page ... 73
Cascade Correlation Neural Networks Property Page .. 76
Probabilistic and General Regression Neural Networks Property Page 80
Support Vector Machine (SVM) Property Page .. 85
Gene Expression Programming (GEP) Property Pages .. 94

GEP General Property Page ... 95
Model Building Parameters .. 95
Fitness Function Parameters ... 97
Expression Simplification Parameters .. 100

Model Testing and Validation Parameters .. 101

Missing Value Parameters .. 101

Miscellaneous Options .. 102
Expression Simplifier.. 102
GEP Functions Property Page .. 103
GEP Evolution Property Page .. 104

Mutation and inversion rates ... 104
Transposition rates .. 105

Recombination rates.. 105

5

GEP Linking Property Page ... 106
How to link subexpression genes .. 107
Evolving (linking) homeotic genes ... 107

Linking functions to use with evolution ... 107
GEP Constants Property Page .. 108

K-Means Clustering Property page ... 110
Discriminant Analysis Property page .. 113
Linear Regression Property Page .. 115
Logistic Regression Property Page ... 117
Correlation, Factor Analysis, and Principal Components Property Page 119
Class Labels Property Page ... 124

Designating a Focus Category ... 126
Initial Split Property Page ... 126
Category Weights Property Page ... 128
Misclassification Cost Property Page .. 130
Missing Data Property Page .. 133
Variable Weights Property Page .. 136
Miscellaneous Property Page .. 137

Random Number Starting Seeds .. 137

Time Series Modeling and Forecasting ..139
Introduction to time series analysis ... 139

ARMA and modern types of models ... 140
Setting up a time series analysis .. 140

Input variables.. 140
Lag variables .. 141
Intervention variables .. 142
Trend removal and stationary time series .. 143
Selecting the type of model for a time series ... 145

Evaluating the forecasting accuracy of a model .. 145
Time series model statistics report .. 147

Hurst Exponent .. 147
Autocorrelation and partial autocorrelation ... 147
Autocorrelation table ... 147
Partial autocorrelation table ... 148
Measures of fitting accuracy .. 149

Forecasting future values .. 150

DTL: Data Transformation Language ..153
DTL Property Page.. 153
The main() function... 154
Global Variables .. 155

Implicit Global Variables ... 155
Explicit Global Variables ... 156
Static Global Variables ... 159

Using the StoreData() function to generate data records .. 159
The StartRun() and EndRun() Functions .. 160

Scoring Data Values ...163
Input and output scoring files .. 164

6

Variables written to the output scoring file ... 164
Start scoring the data ... 166
Using scoring for validation with a test dataset .. 166
How missing values are handled during scoring ... 167

Translation: Generating Code for Scoring ...169
Translate Property Page .. 170
How to call the scoring function – C and C++ programs.. 172

Generated header file ... 172
Generated Source File .. 174

How to call the scoring function – SAS
®
 programs .. 175

Data types of variables ... 176
Generated header file ... 177
Generated Model Execution Source File ... 178

The Output Report Generated by DTREG ...179
Project Parameters ... 180
Input Data .. 180
Summary of Variables ... 181
Summary of Categories ... 181
Surrogate Variable Report ... 182
Tree Size and Validation Statistics .. 183
Node Splits .. 185

Node Summary .. 185
Target Category Distribution ... 186
Node Split Information .. 186
Competitor Predictor Variables .. 187
Surrogate Splitters.. 187

Analysis of Variance ... 189
Misclassification Summary Table ... 190
Confusion Matrix .. 191
Sensitivity and Specificity Report ... 192
Probability Calibration Report .. 195
Probability Threshold Report .. 197
Focus Category Report .. 199
Lift and Gain Table ... 201

How Lift and Gain Values are calculated... 204
Terminal Node Table ... 206
Variable Importance Table .. 208

Charts and Graphs ..209
Model Size Chart .. 209
Focus Category Impurity Chart ... 210
Focus Category Loss Chart ... 211
Lift and Gain Chart ... 212

Gain Chart .. 213
Lift Chart ... 214
Cumulative Lift Chart .. 214

ROC Chart ... 215
Sensitivity and Specificity Chart ... 217

7

Positive and Negative Predictive Value Chart ... 221
Probability Threshold Chart .. 223
Threshold Balance Chart ... 225
Probability Calibration Chart .. 227
Variable Importance Chart .. 228
X-Y Data Plot .. 229
Residual (Actual versus Predicted) Chart ... 231
Time Series Chart .. 232
Time Series Residuals Chart ... 233
Time Series Trend Chart ... 233
Time Series Transformed Chart .. 234

Decision Trees ...235
Building and Using a Decision Tree Model .. 236

Overview of the Tree Building Process ... 236
Overview of Using Decision Trees .. 237
Using a Decision Tree to Predict Target Variable Values (Scoring) 238

Regression and Classification Models .. 239
Viewing a Decision Tree ... 241

What’s in a node – Classification tree .. 241
What’s in a node – Regression tree .. 242

The History of Decision Tree Analysis ... 243

TreeBoost – Stochastic Gradient Boosting ...245
Features of TreeBoost Models .. 246
How TreeBoost Models Are Created .. 247

Decision Tree Forests ...249
Features of Decision Tree Forest Models .. 249
How Decision Tree Forests Are Created ... 250
No Over fitting or Pruning .. 251
Internal Measure of Test Set (Generalization) Error ... 251

Multilayer Perceptron Neural Networks ...253
A Brief History of Neural Networks ... 253
Types of Neural Networks .. 254
The Multilayer Perceptron Neural Network Model .. 254

Input Layer ... 255
Hidden Layer ... 255
Output Layer .. 255

Multilayer Perceptron Architecture ... 255
Training Multilayer Perceptron Networks .. 256

Selecting the Number of Hidden Layers .. 256
Deciding how many neurons to use in the hidden layers ... 256
Finding a globally optimal solution ... 257
Converging to the Optimal Solution – Conjugate Gradient ... 258
Avoiding Over fitting ... 259

8

Radial Basis Function (RBF) Neural Networks ..261
How RBF networks work.. 261
RBF Network Architecture ... 265
Training RBF Networks .. 266

GMDH Polynomial Neural Networks ..269
Structure of a GMDH network .. 269
GMDH Training Algorithm... 270
Output Generated for GMDH Networks ... 271

Cascade Correlation Neural Networks ..273
Cascade Correlation Network Architecture ... 273

Input Layer ... 274
Hidden Layer ... 274
Output Layer .. 274

Training Algorithm for Cascade Correlation Networks .. 274

Probabilistic and General Regression Neural Networks ..279
How PNN/GRNN networks work ... 280
Architecture of a PNN/GRNN Network ... 286

Removing unnecessary neurons ... 287

Support Vector Machines (SVM) ...289
Introduction to Support Vector Machine (SVM) Models .. 289
A Two-Dimensional Example ... 290
Flying High on Hyperplanes ... 292
When Straight Lines Go Crooked ... 293
The Kernel Trick ... 296
Parting Is Such Sweet Sorrow ... 300
Classification with More Than Two Categories .. 301
Optimal Fitting Without Over fitting .. 301
Standing On The Shoulders of Giants ... 302

Gene Expression Programming ..305
Introduction to Gene Expression Programming .. 305
Introduction to Symbolic Regression .. 305
Symbolic Regression Example – Kepler’s Third Law .. 306
Odd Parity Example .. 307
Genetic Algorithms ... 308

Genetic Algorithms for Symbolic Regression ... 308
Gene Expression Programming ... 309

Expression Trees and Karva .. 309
Genes ... 310
Chromosomes and Linking Functions ... 312

Mathematical Evolution .. 314
Initial Population Creation ... 314
The Process of Evolution ... 316
Parsimony Pressure and Expression Simplification .. 318
Algebraic Simplification .. 319

9

Optimization of Random Constants ... 319

K-Means Clustering ...321

Discriminant Analysis ..325

Linear Regression ..331
Introduction to Linear Regression ... 331
Output Generated for Linear Regression .. 334

t Statistic .. 335
Prob(t) .. 335
F Value, and Prob(F) .. 336
Confidence interval .. 336
Coefficients for categorical predictor variables ... 336

Logistic Regression ..337
Introduction to Logistic Regression .. 337
The Dose-Response Curve .. 338
The Logistic Model Formula .. 339
Output Generated for a Logistic Regression Analysis .. 340

Summary statistics for the model ... 340
Computed Beta Parameters .. 340
Likelihood Ratio Statistics ... 342

Computational Issues for Logistic Regression .. 342
Failure to Converge ... 342
Singular Hessian Matrix .. 343
Complete and Quasi-Complete Separation of Values .. 343

Correlation, Factor Analysis, Principal Components ...345
Introduction to Correlation .. 345
Types of Correlation Coefficients ... 345
The Correlation Matrix ... 346
Introduction to Factor Analysis and Principal Components Analysis 346
Determining the Number of Factors to Use .. 348
Output Generated by Factor Analysis ... 350

Factor Importance (Eigenvalue) Table ... 350
Table of Communalities ... 350
Factor Loading Matrix ... 351
Factor Rotation .. 351

Using Principal Components transformations ... 352

Handling Missing Data Values ..357
Specifying missing values in input data .. 357
Types of missing variables .. 357
Exclude the data row ... 357
Replace missing values with median/mode values ... 357
Surrogate Variables ... 358
Surrogate Splitters ... 360

10

How Trees are Built and Pruned ..361
Building Trees ... 361

Splitting Nodes .. 361
Evaluating Splits .. 363
Assigning Categories to Nodes .. 364
Missing Values and Surrogate Splitters ... 364
Stopping Criteria .. 366

Pruning Trees .. 366
Why Tree Size Is Important ... 367
V-Fold Cross Validation ... 369
Adjusting the Optimal Tree Size .. 371

Example Analyses...373

DTREG .NET Class Library ..375
Example C# program .. 375

Licensing and Use of DTREG ...379
Use and Distribution of DTREG ... 379
Copyright Notice ... 379
Web page ... 379
Contacting the author .. 379
Disclaimer ... 379

References ...381

Index ..389

11

Data Mining and Modeling

 “Predicting the future is hard, especially if it hasn’t happened yet.”

 – Yogi Berra

Data Mining

The process of extracting useful information from a set of data values is called “data

mining”. Many techniques have been developed for data mining, and there is an art to

selecting and applying the best method for a particular situation.

DTREG (pronounced D-T-Reg) builds classification and regression decision trees, neural

networks, support vector machine (SVM), gene expression programming (GEP), K-

Means clustering, discriminant analysis and logistic regression models that describe data

relationships and predict values for future observations.

DTREG also has full support for time series analysis. Most of the model types such as

neural networks, gene expression programming and SVM can be used to model time

series using lag variables generated by DTREG.

Data mining has great commercial and scientific value. Consider these cases:

1. A company has collected data showing how much of their product consumers

buy. For each consumer, the company has demographic and economic

information such as age, gender, education, hobbies, income and occupation.

Since the company has a limited advertising budget, they want to determine how

to use the demographic data to predict which people are the most likely buyers of

their product so they can focus their advertising on that group. A decision tree is

an excellent tool for this type of analysis because it shows which combination of

attributes best predict the purchase of the product. And, a decision tree can be

used to “score” a set of individuals and rank them by the probability that they will

respond positively to a marketing effort. For information about how Lift and

Gain tables and charts are used for customer targeting, please see page 201.

2. A political campaign wants to maximize the turnout of their supporters on

Election Day. Exit polling has been done during previous elections giving a

breakdown of voting patterns by precinct, race, gender, age and other factors.

DTREG can analyze this data and generate a decision tree identifying which sets

of voters should be targeted for get-out-the-vote efforts for upcoming elections.

3. A bank wants to reduce the default rate on personal loans. Using historical data

collected for previous borrowers, the bank can use DTREG to generate a decision

tree that can then be used to “score” candidate borrowers to predict the likelihood

12

that they will default on their loans.

4. An emergency room treats patients with chest pain. Based on factors such as

blood pressure, age, gender, severity of pain, location of pain, and other

measurements, the caregiver must decide whether the pain indicates a heart attack

or some less critical problem. A decision tree can be generated to decide which

patients require immediate attention.

Data Modeling

One of the most useful applications of statistical analysis is the development of a model

to represent and explain the relationship between data items (variables). Many types of

models have been developed, including linear and nonlinear regression (function fitting),

discriminant analysis, logistic regression, support vector machines, neural networks and

decision trees. Each method has its advantages: there is no single modeling method that

is best for all applications. DTREG provides the best, state-of-the-art modeling methods

including neural networks, decision trees, TreeBoost, decision tree forests, support vector

machines (SVM), gene expression programming, K-Means clustering, discriminant

analysis and logistic regression. By applying the right method to the problem, the analyst

using DTREG should be able to match or exceed the predictive ability of any other

modeling program.

Supervised and Unsupervised Machine Learning

Methods for analyzing and modeling data can be divided into two groups: “supervised

learning” and “unsupervised learning.” Supervised learning requires input data that has

both predictor (independent) variables and a target (dependent) variable whose value is to

be estimated. By various means, the process “learns” how to model (predict) the value of

the target variable based on the predictor variables. Decision trees, regression analysis

and neural networks are examples of supervised learning. If the goal of an analysis is to

predict the value of some variable, then supervised learning is recommended approach.

Unsupervised learning does not identify a target (dependent) variable, but rather treats all

of the variables equally. In this case, the goal is not to predict the value of a variable but

rather to look for patterns, groupings or other ways to characterize the data that may lead

to understanding of the way the data interrelates. Cluster analysis, correlation, factor

analysis (principle components analysis) and statistical measures are examples of

unsupervised learning.

Time Series Analysis

A time series is a sequence of values occurring over a period of time. Often time series

describe economic conditions such as price fluctuations, hotel occupancy, airline

passenger load, etc. DTREG can build models using methods such as neural networks,

gene expression programming and SVM to model time series and make future forecasts.

13

Classes of Variables

You can specify three classes of variables when performing analyses:

Target variable -- The “target variable” is the variable whose values are to be modeled

and predicted by other variables. It is analogous to the dependent variable (i.e., the

variable on the left of the equal sign) in linear regression. There must be one and only

one target variable.

Predictor variable -- A “predictor variable” is a variable whose values will be used to

predict the value of the target variable. It is analogous to the independent variables (i.e.,

the variables on the right side of the equal sign) in linear regression. There must be at

least one predictor variable specified, and there may be many predictor variables. If more

than one predictor variable is specified, DTREG will determine how the predictor

variables can be combined to best predict the values of the target variable. For time

series analysis, DTREG can automatically generate lag variables that can be used as

predictor variables.

Weight variable -- Optionally, you can specify a “weight variable”. If a weight variable

is specified, it must a numeric (continuous) variable whose values are greater than or

equal to 0 (zero). The value of the weight variable specifies the weight given to a row in

the dataset. For example, a weight value of 2 would cause DTREG to give twice as much

weight to a row as it would to rows with a weight of 1; the effect on model training is the

same as two occurrences of the row in the dataset. Weight values may be real (non-

integer) values such as 2.5. A weight value of 0 (zero) causes the row to be ignored. If

you do not specify a weight variable, all rows are given equal weight.

An integer weight value has the same effect on model training as duplicating rows the

equivalent number of times in the training data. Since the goal of model training is to

tune parameters to minimize the overall error (or variance) of the training data, weighted

(or duplicated) rows that are misclassified add a greater amount to the total error than un-

weighted rows, so they have an increased influence on the model.

While duplicating rows is equivalent to integer weighting during the training process,

there is a difference during the testing and validation process. If you manually duplicate

rows in the training data and specify that you want DTREG to use cross validation for

testing or you want it to hold out a subset of the data for testing, some of the duplicated

copies of the rows may be used for training, and some duplicate copies of the same rows

may be used in the test/validation data. This results in the testing data using some of the

same data used for training, and it renders the test results – which are supposed to be

based on independent data – invalid. For this reason, if you manually duplicate rows

rather than using weighting, you must do the validation using the Score function (see

page 166) rather than using cross validation or hold-out validation.

14

Types of Variables

Variables may be of two types: continuous and categorical.

Continuous variables with ordered values -- A continuous variable has numeric values

such as 1, 2, 3.14, -5, etc. The relative magnitude of the values is significant (e.g., a

value of 2 indicates twice the magnitude of 1). Examples of continuous variables are

blood pressure, height, weight, income, age, and probability of illness. Some programs

call continuous variables “ordered”, “ordinal”, “interval” or “monotonic” variables. If a

variable is numeric and the values indicate relative magnitude or order, then the variable

should be declared as continuous even if the numbers are discrete and do not form a

continuous scale.

Categorical variables with unordered values -- A categorical variable has values that

function as labels rather than as numbers. Some programs call categorical variables

“nominal” variables. For example, a categorical variable for gender might use the value

1 for male and 2 for female. The actual magnitude of the value is not significant; coding

male as 7 and female as 3 would work just as well. As another example, marital status

might be coded as 1 for single, 2 for married, 3 for divorced and 4 for widowed. DTREG

allows you to use non-numeric (character string) values for categorical variables. So

your dataset could have the strings “Male” and “Female” or “M” and “F” for a

categorical gender variable. Because categorical values are stored and compared as

string values, a categorical value of 001 is different than a value of 1. In contrast, values

of 001 and 1 would be equal for continuous variables.

15

Using DTREG

Once you understand the concept of predictive models, it is very easy to use DTREG to

analyze data and build many types of models.

Installing DTREG

To install DTREG, run the installation program named DTREGsetup.exe. A “wizard”

screen will guide you through the installation process. You can accept the default

installation location (C:\Program files\DTREG) or select a different folder location. When

the installation finishes, you should see this icon for DTREG on your desktop:

To launch DTREG, double-click the Shortcut to DTREG icon on your desktop.

DTREG’s Main Screen

When you launch DTREG, its main screen displays:

From this screen, you can

 Create a new project to build a model by clicking

 Open an existing project by clicking

 Set options and enter your registration key.

16

Setting DTREG Preferences

To set DTREG preferences, click “Tools” on the menu bar and select “Preferences” from

the dropdown menu.

Default type of model to build: Select which type of model you would like

DTREG to create for new projects (single tree, SVM neural network, etc.). You can

always change the type of a model later by modifying its properties.

Max. execution threads: Specify how many execution threads you want DTREG

to use during its computations. If you have a multi-CPU system, you can increase the

speed of calculation by allowing DTREG to use more than one CPU, but this will place a

heavier load on your system.

Execution priority: Specify the preferred execution for DTREG to use during an

analysis. Currently the execution priority is only applied to neural network training

processes.

17

Entering DTREG Registration Key

When you register DTREG, you will receive a registration key. To enter your key, click

“Enter-key” on the main menu and enter your key in the screen that appears:

18

Creating a New Project

To create a new project, click the leftmost icon on the toolbar that looks like this:

Project “wizard” screens will guide you through setting up the project. The first screen

looks like this:

There are several fields on this page.

 Title of project – This is an optional field. If you wish, you can specify a title to

be displayed for this project.

 Input data file – This is a required field. Specify the device, folder and name of

the file containing the input (learning) dataset to be used to build the tree. The

data must be in a comma separated value (CSV) file with the names of the

19

variables on the first line. Please see page 36 for detailed information about the

format of input data files. You can click the “Browse files” button to browse for

the file rather than typing it in.

 Character used for a decimal point in the input data file – Select whether a

period or a comma will be used to indicate the decimal point in numeric values in

the input data file. The American standard decimal point marker is a period while

the European standard is a comma. This setting affects only data read from the

input file; a period always is used as the decimal point marker in the generated

report.

 Character used to separate columns – Select the character that will be used to

separate columns in the input file. The default separator is a comma, but you may

select any character you wish to use.

 Data subsetting – If you wish, you can tell DTREG to use only a subset of the

records in the data file for the analysis. This speeds up the analysis and is useful

when experimenting with different model settings. If you tell DTREG to use a

subset of the data, specify the percentage of the rows that you want it to use.

Since random selection is used to select the rows, the actual number of rows used

may be slightly different than the percent you specify.

 File where information about this project is to be stored – This is a required

field. Specify the name of the project file where DTREG will store parameters

and computed values for the project. DTREG project files are stored with the

type “.dtr” (for example, “Iris.dtr”). You can click the “Browse file” button to

browse for the directory where you want to store the file.

 Notes about this project – This is an optional field. You can enter any notes that

you want to store with the project data.

After you finish filling in these fields, click the “Next” button at the bottom of the screen

to advance to the next screen. The following property pages will be displayed:

 Time series/Regular predictive model (see page 41)

 Variables (see page 41)

New Project Example

To illustrate the process of creating a new project, let’s consider a concrete case. We will

look at the steps involved in setting up a DTREG project to classify species of irises

based on measurements of the plants. The data we will use is from the classic study

devised by R. A. Fisher in 1936 (Fischer, 1936). First, we need to prepare a data file to

be read by DTREG. Such an example data file is provided with the DTREG distribution

and installed in the Examples directory under the DTREG installation directory. The

name of the file is Iris.csv. Here are a few lines from that file:

20

Species,"Sepal length","Sepal width","Petal length","Petal width"

Setosa,5.1,3.5,1.4,0.2

Setosa,4.9,3,1.4,0.2

Setosa,4.7,3.2,1.3,0.2

Versicolor,7,3.2,4.7,1.4

Versicolor,6.4,3.2,4.5,1.5

Versicolor,6.9,3.1,4.9,1.5

Virginica,6.3,3.3,6,2.5

Virginica,5.8,2.7,5.1,1.9

Virginica,7.1,3,5.9,2.1

The first line of the file has the names of the variables separated by whatever character

you selected as the column delimiter (by default it is a comma). In this case, there are 5

variables: Species, Sepal length, Sepal width, Petal length and Petal width. Variable

names and values that contain spaces or the column separator character should be

enclosed in quote marks. The records following this are the actual data observations (one

per plant). There is one value for each of the five variables. See page 36 for additional

information about the format of data files.

In this example, we are trying to predict the species of iris, so “Species” is a categorical

target variable. The other four variables are continuous predictor variables.

21

Here is the first screen we set up for this project:

22

On the second screen specify whether this is a time series analysis or a regular predictive

model. Also, select the type of model to build (single tree, TreeBoost, neural network,

etc.)

23

On the third screen, specify information about the variables:

Species is the target variable, and it is categorical. The other four variables are

continuous predictor variables.

After you finish the last setup screen for the project, DTREG asks if you want to save the

settings for the project:

We will click “Yes” and save the project settings in a file named Iris.dtr.

24

Opening an Existing Project

All of the information about a DTREG project is stored in a project database. This

includes parameters that control the analysis, information about variables, the name of the

data input file, the generated report, and information required to construct and display the

generated predictive model. These project files have the file type “.dtr”. You can open

project files, examine the report, modify parameters and rerun the analysis.

The actual input data is not stored in the project file but remains in the original comma

separated value (CSV) file. The project file stores only the name of the input data file.

To open an existing project file, click the icon on the toolbar.

If you are reopening a project that was opened recently, you can click the “File” entry on

the main menu line, and select the project from the list of recent projects.

Once you open a project, the last report generated for it will be displayed in the right

panel, and the left panel will show a list of property pages you can select to review and

change option settings.

25

Example Projects Installed With DTREG

The DTREGsetup installation program installs a set of example projects in a folder

named “Examples” under the DTREG installation directory. This is C:\Program

files\DTREG\Examples, unless you selected a different folder during installation. A good

way to get started using DTREG is to browse the examples in that directory and run some

of them. See page 373 for additional information about example analyses.

26

Running an Analysis

Once you have created a new project or opened an existing project, you can tell DTREG

to perform an analysis. To do this, click the icon on the toolbar. You can also click

“Run-analysis” on the main menu.

While an analysis is running, a progress screen similar to this will be displayed:

When the analysis finishes, the new report will be displayed in the main right panel.

27

Viewing the Generated Decision Tree

Once an analysis has been completed, you can view the generated decision tree by

clicking the toolbar icon or by clicking “View-tree” on the main menu. To save the

decision tree in a jpg, png or bmp disk file, click the disk icon. To print the decision tree,

click the printer icon.

Command Line Operation

In production environments it may be useful to operate DTREG in command-line mode

to build models. Model building parameters are stored in a command file and in a

“template project”. DTREG can then be run from the command line or using a batch

(.bat) file to build new models. Command line operation is available only in the

Enterprise Version of DTREG.

In order to use DTREG in command line mode, three things are required: (1) a template

project describing the analysis; (2) a command file providing information about files and

operations; (3) a command line to invoke DTREG.

The Template Project

Because DTREG has many types of models and many options and parameters for each

type of model, it is impractical to have a command language to describe all of these

features. Instead, a Template Project is used to describe the type of model to be created

and to specify options and parameters for the operation. To create a template project, run

28

DTREG in interactive mode, specify a data file with the variables to be analyzed, select

the type of model to build, and select options and parameters. Then save the project in a

standard DTREG project file (.dtr file).

The Command File

The command file is a text file that contains commands that control the model building

process. You can use Notepad, Wordpad or any other text editor to create the command

file. The suggested file type is .cmd, but you can use any extension you wish.

The following commands may be placed in a command file. Some commands are

required, and some are optional.

FOLDER (optional) – Specifies a default folder where all of the files are specified. If the

FOLDER command is not specified, you must specify the folder as part of the file

specification on each command.

Syntax: FOLDER device_and_folder

Example: FOLDER C:\Work\Campaign1

PROJECT (required) – Specifies the name of the file with the template project.

Syntax: PROJECT file_name

Example: PROJECT C:\Campaign1\AdModel.dtr

OUTPUT (optional) – Specifies the name of the file where the generated model is to be

written. If no OUTPUT command is specified, then the model is not saved. If you

simply want to use the template project to score data, it is not necessary to specify an

OUTPUT command.

Syntax: OUTPUT file_name

Example: OUTPUT C:\Campaign1\AdTreeBoost.dtr

DATA (optional) – Specifies the name of the data file that will be used to train the model.

If you are just performing scoring and not building a model, then you can omit the DATA

command.

Syntax: DATA file_name

Example: DATA C:\Campaign1\Tennessee.csv

29

REPORT (optional) – Specifies the name of the file where the analysis report is to be

written. If you do not use a REPORT command, then the analysis report is not saved.

Syntax: REPORT file_name

Example: REPORT C:\Campaign1\TennesseeLog.txt

SCOREINPUT (optional) – Specifies the name of a data file is to be used as input for

scoring by the generated model. If you want scoring done, you must specify both a

SCOREINPUT and a SCOREOUTPUT command. Omit the SCOREINPUT and

SCOREOUTPUT commands if you are building a model and do not want scoring done.

Syntax: SCOREINPUT file_name

Example: SCOREINPUT C:\Campaign1\Nashville.csv

SCOREOUTPUT (optional) – Specifies the name of the data file where output from the

scoring function (with predicted target values) is to be written.

Syntax: SCOREOUTPUT file_name

Example: SCOREOUTPUT C:\Campaign1\NashvillePredict.csv

BUILDMODEL (optional) – Specify this command if you want DTREG to build a new

predictive. If you only want to use the template project to do scoring, you should omit

the BUILDMODEL command.

Syntax: BUILDMODEL

TRANSLATE (optional) – Specifies that DTREG is to convert the model to C source
code and write it to the specified file. This option is available only in the Enterprise
Version of DTREG.

Syntax TRANSLATE file_name

Example: TRANSLATE C:\Campaign1\NeuralCode.c

REM (optional) – Comment line.

Example: REM Analysis of Tennessee data

30

Example Command Files

This is an example command file to build a model:

REM Build a new model whose name is NewProject.dtr
FOLDER C:\Campaign1
PROJECT OriginalProject.dtr
OUTPUT NewProject.dtr
DATA TrainingData.csv
BUILDMODEL

This is an example file that does scoring using an existing project but which does not

build a new project:

REM Score the Tennessee.csv file
FOLDER C:\Campaign1
PROJECT ResponseModel.dtr
SCOREINPUT Tennessee.csv
SCOREOUTPUT TennesseeScore.csv

The Command Line

The command file to start DTREG in command line mode is:

DTREG /cmd=”command_file” [/options]

The /cmd=”command_file” switch specifies the name of the command file that is to be

executed. You should provide a full file specification including device and folder. For

example:

DTREG /cmd=”C:\Campaign1\BuildModel.cmd”

Options:

The following optional switches may be specified:

/MINIMIZE – Start DTREG in minimized mode so that it does not display its screen.

/HIDE – Do not display the execution screen at all.

31

Specifying Properties for a Model

You can specify properties for a model when you create it initially or you can change the

properties for a project you have already created. The properties for a model display in

the left panel and correspond to the project property screens.

To specify properties for a model, click one of the items shown under “Model” in the left

panel:

The Model screen displays with tabs for each property, similar to the one shown below:

32

Each property page is described below.

33

Design Property Page

The Design property page specifies general information about the model.

Title of project – Specify a descriptive title for the project. This is simply

commentary information and may be omitted if you wish.

Write a report of the analysis to a project_Log.txt disk file – If this box is

checked, DTREG will generate an analysis log file named project_Log.txt where project

is the name of the DTREG project file. The log file contains the same information that is

displayed in the analysis output panel.

Type of model to build – Select the type of model that DTREG should build.

34

How to categorize continuous variables – The values of continuous predictor

variables are grouped into categories before they are used to build a decision tree.

Specify in this field the maximum number of categories that are to be used to group

continuous predictor variable values. The more categories you allow, the smaller and

more precise the category ranges will be. However, as you increase the number of

categories, the computation time also increases. If you allow up to 100 categories, then

each category will be 1% of the range of the values.

Decision tree cluster analysis control – This value tells DTREG when to

switch from an exhaustive search of predictor categories to a faster but slightly less

accurate clustering method. This control is enabled only when building a classification

tree. When the target variable is categorical and a predictor variable is also categorical,

an exhaustive search would require DTREG to evaluate a potential split for every

possible combination of categories of the predictor variable. The number of splits is

equal to 2
(k-1)

-1 where k is the number of categories of the predictor variable. For

example, if there are 5 predictor categories, 15 splits are tried; if there are 10 categories,

511 splits are tried; if there are 16 categories, 32767 splits are tried. Because of this

exponential growth, the computational time makes it impractical to do an exhaustive

search for more than about 12 predictor categories. To handle this situation, DTREG will

switch to a faster but slightly less accurate method when the number of categories of a

predictor variable exceeds the value you specify for this parameter. This allows DTREG

to build classification trees even when a categorical predictor has hundreds or even

thousands of categories.

Tree fitting algorithm – This parameter applies to single decision tree models.

Select which algorithm you want DTREG to use to split nodes in the tree. TreeBoost

models are always built using an algorithm that minimizes misclassification costs, so the

algorithm selection boxes will be disabled for TreeBoost models. Here are the choices:

 Gini -- The Gini splitting method is the default and recommended method for

classification trees. Each split is chosen to maximize the heterogeneity of the

categories of the target variable in the child nodes.

 Entropy – The Entropy splitting method is an alternate method that can be

selected for classification trees. Experiments have shown that entropy and Gini

generally yield similar trees after pruning.

 Misclassification cost -- This method causes DTREG to use the split that

minimizes the misclassification cost among the child nodes.

 Variance -- The variance splitting method is always used for regression trees. It

causes DTREG to use the split that minimizes the sum of variance (i.e. sum of

squared errors) in the child nodes.

35

Bins for Lift/Gain – Specify how many “bins” to use when computing and displaying

the table of lift and gain values (see page 201).

Notes about this project – This is a free-form text field where you can enter any

notes you want to save regarding the project.

Analysis report log file – If you wish, you can direct DTREG to write a copy of the

analysis report (show in the right portion of the screen) to a log file.

Analysis report XML file – If you enable this option, DTREG will create an

analysis report in XML format so that it can be read by other programs. This feature is

available only in the Enterprise Version of DTREG.

36

Data Property Page

The Data Property Page allows you to select the data file you want to use for the project.

Data File Format

The data file must be a text (ASCII) file with the values for one row (case) per line. Most

database and spreadsheet programs such as Access and Excel can generate Comma

Separated Value (CSV) formatted files that you can use as input to DTREG.

Data Subsetting – If you wish, you can tell DTREG to use only a subset of the records in

the data file for the analysis. This speeds up the analysis and is useful when

experimenting with different model settings. If you tell DTREG to use a subset of the

data, specify the percentage of the rows that you want it to use. Since random selection is

used to select the rows, the actual number of rows used may be slightly different than the

percent you specify.

37

Balance Target Categories – When there is a large imbalance between the number of

data rows with different target categories, model training tends to give priority to

minimizing the error on the categories with more rows. The result is that the popular

categories have low misclassification rates, but the categories with fewer training rows

have a high level of misclassification error. DTREG provides three ways to mitigate the

problems with target category imbalance:

1. Weight rows of minority categories – If you check this box, DTREG will

increase the weight (importance) of data rows that have minority categories of the

target variable. The weights are adjusted so that the sum of the weights for the

rows with each target category are the same. This option may be used with cross-

validation and leave-one-out validation.

2. Subset popular categories – If you check this box, DTREG will attempt to

balance the number of data rows having each category of the target variable by

selecting only a subset of the records that have target categories with excessive

rows. This option causes DTREG to select only a subset of the rows with the

most popular categories so that the data used for training will have approximately

the same number of rows for all target categories as the least popular category

has. Note that using this option means that rows with popular categories will not

be included in the analysis.

3. Replicate rows in minority categories – If you check this box then DTREG will

replicate (duplicate) data rows in the input file that are members of minority target

categories (i.e., categories with fewer rows than the most popular category). The

result will be that each target category will have approximately the same number

of rows as the category with the maximum number of rows in the input file. If

you use this option, then you cannot rely on cross-validation to validate the

model, because the hold-out rows in validation folds may be replicated copies of

rows that are used to train the model. The only way to do legitimate validation

with this option is to split the data file outside of DTREG, then build the model

with some of the data and run the held-out portion through the Score function (see

page 163) to measure the misclassification error.

Write validation hold-back records to a file – If you check this box, you can specify a

file where DTREG will write the records held back for validation. This is useful when

you want to use the records selected for validation for your own, external tests. Note that

this option is effective only when you specify that validation is to be done by holding

back a percentage of the input dataset.

Set PCA transform – If you click this button, DTREG will prompt you for an auxiliary

project file containing a PCA transformation function created by a previous analysis. The

PCA transformation will be bound to this project, and new variables with names PCn will

be created for the PCA transformed values. See page 352 for detailed information about

using this feature. This feature is available only in the Enterprise Version of DTREG.

38

There are four selections related to the format of the input data file:

1. Character used for a decimal point in the input data file – Select whether a

period or a comma will be used to indicate the decimal point in numeric values in

the input data file. The American standard decimal point marker is a period while

the European standard is a comma. This setting affects only data read from the

input file; a period always is used as the decimal point marker in the generated

report.

2. Character used to separate columns – Select the character that will be used to

separate columns in the input file. The default separator is a comma, but you may

select any character you wish to use.

3. Custom missing value indicator – Specify the character that will be used to

indicate missing values in the data file. If a data field is entirely blank or consists

only of the question mark character (“?”) DTREG treats it as a missing value. If

wish to specify a character to denote missing values in addition to question mark,

check this box and specify the character in the associated edit box.

4. Convert missing predictor values to category – Normally, when the value of a

predictor variable is missing (not specified or specified as ‘.’ or ‘?’), it is treated

internally with a special missing value code that means no information is

available. DTREG has a number of techniques for imputing the estimated values

of missing values including surrogate splitters and surrogate variables. However,

some analyses may need to treat a missing value like another category of a

variable rather than as an unknown value. If you check this option and a missing

value is encountered for a categorical predictor variable, then the missing value is

converted to the specified category label, and it is handled just as if the category

label string had been specified in the data file. The replacement of missing values

with a category label is done only for predictor variables (not target variables) that

are declared to be categorical. Missing values for continuous predictor variables

are always treated as missing (unknown) values.

The first row in the file must contain the names of the variables. If a variable name

contains commas, you must enclose it in quote marks. You may enclose variable names

in quotes even if they do not contain commas. If a variable name or a data value contains

a quote character (“) you must enclose the value in quote marks and specify a double

quote mark to represent each single quote mark in the value. For example a value Toys

“R” Us would be specified “Toys “”R”” Us”.

39

Here is an example of a data file. Note that the third variable, “Gross income” is

enclosed in quotes.

Age, Sex, “Gross income”

20,Male,25000

30,Female,42000

55,Male,76000

43,Male,44000

50,Female,82000

Specifying Variable Attributes in the Data File

You can optionally follow the name of a variable by a set of attributes enclosed in curly

braces. Here is an example of such a data line:

Age{Continuous,Predictor}, Sex{Categorical,Predictor}, “Gross income”{Continuous,Target}

20,Male,25000

30,Female,42000

55,Male,76000

43,Male,44000

50,Female,82000

Note that the attributes are in curly braces, they go immediately after the name of the

variable and before the character that separates variables. If multiple attributes are

specified, they are separated by commas in the list. If the name of a variable is in quote

marks, the attributes follow the closing quote mark. Here are the available attributes:

Target This is the target variable

Predictor This is a predictor variable

Weight This is the weight variable

Unused This variable is not used (default)

Categorical Variable has categorical values

Continuous Variable has continuous values (default)

Character Variable is to be treated as a character string

The more common way to set variable attributes is using the Variable Property Page

described on page 41.

40

Continuing Data Lines

Long data lines can be continued to the following line by placing a backslash (‘\’)

character as the last character on the line being continued. For example, the following

continued line:

Age, Sex,\

“Gross income”

is equivalent to:

Age, Sex, “Gross income”

Specifying Missing Values in Data Files

To indicate a missing value in a dataset, use the following:

 A field that is entirely empty (nothing between the commas).

 The question mark character (‘?’)

 A single period (‘.’).

 A character you specify using the “Custom missing value indicator” specification.

For example, in the following data set the value of Age is missing in the first row, the

value of Sex is missing in the second row, and the value of Gross income is missing in

the third row.

Age, Sex, “Gross income”

.,Male,25000

30,,42000

55,Male,?

43,Male,44000

50,Female,82000

41

Variables Property Page

The Variables property page is used to specify the class and category of each variable.

The list will show the name of each variable as was found on the first row of the data file

for the project (see description of the Data property screen on page 36).

The following columns are shown next to the variable names. Click on a box in a column

to turn a property on or off for a variable.

 Target – If this box is checked, the selected variable is the target variable for the

model. One and only one variable may be designated as the target variable.

 Predictor – If this box is checked, the selected variable will be used as a predictor

variable when creating the model. You must select at least one predictor variable,

and you may select many predictor variables.

 Weight – If this box is checked, the selected variable will be used as the weight

variable. If a weight variable is selected, its values will be used to weight the

rows of the data. If no weight variable is selected, all rows receive the same

weight.

42

 Categorical – Check this box if the variable is categorical (nominal). Leave the

box unchecked if the variable is continuous or ordinal. Categorical variables may

have either numeric or text (e.g. “Male” or “Female”) values in the data file.

Continuous variables must have numeric values.

 Character – Check this box if the values of the variable can have general

character values such as “Male”, “Female”, “Yes”, “No”, etc. Leave the box

unchecked if the values of the variable are strictly numeric. Only categorical

variables can store character values; continuous variables store only numeric

values. The default setting for categorical variables is character type. Note: the

setting of this attribute only affects the code generated by the Translate function

(see page 169). It does not affect the building of the model or the operation of the

Score function. C and C++ code generated for variables declared to have

character values are defined with char[nnn] declarations. Numeric variables are

defined as type long. SAS
®
 code initializes character or numeric variables

depending on this setting. It is legal to declare a categorical variable to be of type

character even if it has only numeric values.

Several buttons are shown at the right side of the list:

 Predictor range – If you have a lot of variables and want to set all of the

variables in a range to be predictor variables or not to be predictor variables, then

click this button. It will display a screen where you can select the first and last

variables in the range that you want to designate as being (or not being)

predictors. This is often a lot easier and faster than clicking hundreds of boxes.

 All predictors – Click this button to check the predictor boxes for all variables.

Note, you must then select one of the variables as the target variable.

43

 Predictor coverage – If you click this button, the following screen will be

displayed:

These procedures can be used to reduce the number of predictor variables when

there are many missing values in the data or when the distribution of rows for a

categorical variable are highly unbalanced. There are two procedures:

Predictor coverage – If you use this procedure, DTREG will scan the data rows

and remove any predictor variables (set them to unused) if the percentage of data

rows with missing values for a variable exceeds the specified value.

Predictor category balance – If you use this procedure, DTREG will check each

categorical predictor variable and compute the “balance” which is the ratio of the

number of rows with the most popular category and the number of rows with the

least popular category. If the ratio exceeds the specified value, then the variable

is removed as a predictor. .

44

 Type range – Click this button if you want to set the type of a range of variables

to be categorical or continuous. It will display a screen where you can select the

first and last variables in the range whose type is to be set.

 All continuous – Click this button to uncheck the categorical checkboxes for all

variables (i.e. to set the class of all variables to be continuous).

 All numeric – Click this button to uncheck all of the character checkboxes for all

variables (i.e., set all variables to hold only numeric values). The boxes for

variables that are known to have non-numeric values will remain checked.

 All character – Click this button to check the character attribute boxes for all

variables. Continuous variables can never store character values, so only

categorical variables are affected.

 All reset – Click this button to reset (uncheck) all boxes.

 Search – If there are a large number of variables, you can click Search to locate a

variable whose name contains a specified string. The list of variables will be

scrolled so the matching variable is visible, but it may not be displayed at the top

of the screen. Often, the variable located will be positioned near the bottom of the

screen.

There are three category distribution report options available at the bottom of the page:

 Report category statistics for categorical variables – If selected, a Summary of

Categories report will be generated with information about the categories for all

categorical predictor and target variables. For additional information, please see

page 181.

 Report category statistics for continuous variables – If selected, a report will

be generated with information about the categories for all continuous predictor

and target variables.

 Report min., max., mean for continuous variables – If selected, DTREG will

report the minimum, maximum, mean and standard deviation for each continuous

predictor variable.

Surrogate Variables

This section of the page is used to set parameters for surrogate variables. Please see page

358 for detailed information about surrogate variables.

 Number of surrogates to store – This is the maximum number of surrogate

variables that DTREG will store for each predictor variable. Fewer surrogates

may be stored if no significant associations are found.

45

 Minimum surrogate association – The association computed for each potential

surrogate is compared to this value. If the association is smaller than this, then

the surrogate is excluded.

 Maximum polynomial order – This controls whether linear, quadratic, or cubic

functions are used for surrogate associations. If a polynomial order greater than 1

is specified, DTREG computes the association for all polynomials up to that

order, and it only uses the higher order polynomials if they provide superior fit

(association) over lower-order polynomials.

 Report surrogate variables – If this option is checked, then DTREG adds a table

to the analysis report showing which surrogate variables were stored for each

predictor along with the polynomial coefficients and the association. See page

182 for an example of the surrogate variable report.

Validation Property Page

The Validation Property Page is used to select variables to control hold-out validation

and cross-validation. .

Cross-validation Control Variable

Normally when cross validation is used to evaluate the quality of a model, DTREG

assigns a random set of rows to each validation fold after stratifying on the target

variable. If you wish, you can select a variable whose values will determine which cross

validation fold each row will be placed in rather than using random selection. If a

variable is used, it must be a categorical variable; there will be one fold for each category

of the variable.

46

A cross validation control variable is useful for a situation where you have a number of

similar observations that are clustered in a small number of groups. If the observations

within a cluster are very similar (i.e., cohorts), then performing cross validation where

observations from the same cluster are both used to build a validation model and evaluate

it will result in overly optimistic results. In this case, it would be proper to use the cluster

number to control the cross validation folds so nearly similar cases are grouped in a fold.

Validation row selection variable This variable and the associated category selects the

rows that are to be held-out and used for model validation if you select the validation

method “Use variable to select validation rows” on the property page for the model.

Select the variable to control hold-out rows in the upper field, and select the category of

that variable that is to be held out in the lower field. Any rows that have categories other

than the specified category will be used in the training data for the model. Only

categorical variables may be used as hold-out control variables. You can use the DTL

facility (see page 153) to create a selection variable.

Validation data row report file – If you enable this option and specify a file name in the

edit field, then DTREG will write a record to the file showing which rows were used for

validation, and it will show the predicted value for each validation row. Each row in the

file has 4 columns: (1) the data row number (1 based), (2) the actual value of the target

variable, (3) the predicted value of the target variable, and (4) an indication of

correct/incorrect classification or the residual value if doing regression.

47

Time Series Property Page

The Time Series property page is used to specify whether a time series or a regular

predictive model is to be created. You also specify parameters for time series models.

See the chapter beginning on page 139 for additional information about time series

analysis.

Time series or normal predictive model – Select whether you wish to build a

time series model or a normal predictive model to predict a target variable from predictor

variables.

Type of model to build – Select which type of model you want DTREG to build for

the time series. The following types of models may be used: (1) Single tree, (2)

TreeBoost, (3) SVM, (4) Gene expression programming, (5) Multilayer perceptron neural

48

network, (6) GRNN neural network, (7) GMDH polynomial network, (8) RBF neural

network, (9) cascade correlation. While single trees may be used, they are not

recommended because they do a poor job of predicting continuous values. Gene

expression programming models work well, because they can generate very general

functions. GRNN neural networks also often work well.

Range of lag values to generate – Time series models normally use lagged

values of the target variable as predictor variables. A lag variable has the value of the

target variable that occurred a specified number of periods ago. Specify the minimum

and maximum periods for which you want DTREG to generate lag variables.

Automatic removal of trend – Usually it is easier to build accurate time series

models if the series is stable over time. If a series has a linear or exponential growth

trend, DTREG can remove the trend by fitting a linear or exponential function to the

series and then subtracting that function from the time series values. There are several

choices:

 None – Do not attempt to remove a trend from the series.

 Linear – Fit a linear function to the series and use it to remove the trend.

 Exponential – Fit an exponential function to the series.

 Automatic – Try both linear and exponential functions and use the best one.

 Stabilize variance – If the variance (amplitude) of the series is increasing or

decreasing regularly over time, this option causes DTREG to attempt to stabilize

it so that the variance is constant. Note: about 20% of the time variance

stabilization improves models and 80% it hurts them, so try it both ways and

compare the results. See page 143 for additional information.

Generated variables – In this section you can select if you want DTREG to generate lag

or other types of variables. For a time series, lag variables are almost always generated

for the target variable. If there are additional predictor variables you can optionally

instruct DTREG to generate lag variables for them too. Several types of variables can be

generated:

 Lag – A lag variable is the value of a variable that occurred the specified number

of observations in the past. For example, if Y[100] is the current value of the Y

variable, then a lag variable with a lag setting of 10 would have the value of

Y[90].

 SMA – Simple moving average. This is the average value of the variable over the

number of preceding observations equal to the specified lag. The values receive

equal weight when averaging.

49

 LMA – Linearly weighted moving average. This is a moving average computed

using a linear weighting with the observations closest to the current observation

receiving more weight than older observations.

 EMA – Exponentially weighted moving average. This is a moving average

computed using an exponential weighting function with the observations closest

to the current observation receiving more weight than older observations.

 Delta – This is the difference between the value of the variable one step before

the current observation and the value (lag+1) steps behind. For example, if the

lag is set to 10, then delta for Y[100] = Y[99] – Y[89].

 LTrend – This is the value of an observation predicted by a linear equation fitted

through the number of points preceding the point. The lag value controls how

many points before the current point are used for the fitted line.

 Slope – This is the slope of a linear equation fitted through the number of points

preceding the point. The lag value controls how many points before the current

point are used for the fitted line.

Variables generated by DTREG are available for selection as predictor variables on the

Variables property page. Here is an example of variables generated for the Passengers

variable with a lag of 2:

50

Note that you can select which of the lag variables you wish to use as predictors.

Validation of forward predictions – If you enable this option, DTREG will use

the specified number of observations at the end of the series to validate (check) the

predictions of the model. The model will be built using only the observations before

those being held out for validation, and then the model will be used to generate predicted

values for the held-out validation observations, and they will be compared. Statistics on

the quality of the fit will be written to the analysis report, and the Time Series chart can

be used to view the predicted and actual values. See page 145 for additional information.

Print validation values and forecasts – If this option is selected, DTREG will

include the values of the validation rows and the predicted forecast values in the analysis

report.

Forecast future values – If this option is selected, then DTREG will use the time

series model to generate forecasts for future observations beyond the end of the series.

The forecast values are written to the analysis report, and the Time Series chart can be

used to view them.

Print future forecast values – If this option is selected, DTREG will display in the

analysis report forecast values for the specified number of periods.

Write forecast to file – If you check this box, you can specify where the forecast

values are to be written.

51

Single Tree Model Property Page

The Single Tree property page is used to specify parameters for single tree models.

Type of model to build – Select the type of model that DTREG should build. The

controls on this screen are disabled for any type of model other than single tree.

Minimum rows in a node – This specifies the minimum number of rows that may

fall in a node after splitting. A split will not be allowed if either of the resulting child

nodes had fewer than this number of rows.

Minimum size node to split – This specifies that a node (group) should never be

split if it contains fewer rows than the specified value.

Maximum tree levels – Specify the maximum number of levels in the tree that you

want DTREG to construct when it is building the tree. It is best to let DTREG initially

build a large tree with many levels and then allow the pruning phase of the analysis to

remove levels. See page 366 for information about how pruning is done.

52

Generate report of tree splits – If you check this box DTREG will write a report

of each node split to the analysis log. If the tree is large, this report will be large.

Method for validating and pruning the tree – select the method to be used by

DTREG to test the tree that it builds.

No validation, use full tree – If you check this button, DTREG will build the full

decision tree for the model and will do no testing or pruning. A full, unpruned tree is

sometimes called an “exploratory tree”.

V-Fold cross-validation – If you check this button, DTREG will use V-fold cross-

validation to determine the statistically optimal tree size. You may specify how many

“folds” (cross-validation trees) are to be used for the validation; a value of 10 is

recommended. Specifying a larger value increases the computation time and rarely

results in a more optimal tree. For a detailed description of V-fold cross validation,

please see page 369.

Random percent of rows – If you check this button, DTREG will hold back from the

model building process the specified percent of the data rows. The rows are selected

randomly from the full dataset, but they are chosen so as to stratify the values of the

target variable. Once the model is built, the rows that were held back are run through the

tree and the misclassification rate is reported. If you enable tree pruning, the tree will be

pruned to the size that optimizes the fit to the random test rows. The advantage of this

method over V-fold cross-validation is speed – only one tree has to be created rather than

(V+1) trees that are required for V-fold cross-validation. The disadvantage is that the

random rows that are held back do not contribute to the model as it is constructed, so the

model may be an inferior representation of the training data. Generally, V-fold cross-

validation is the recommended method for small to medium size data sets where

computation time is not significant, and random-holdback validation can be used for

large datasets where the time required to build (V+1) trees would be excessive.

Use variable to select validation rows – If you check this button, DTREG uses the hold-

out control variable specified on the Validation Property Page (see page 45) to control

which variables are held-out during model training and used to test the model. Rows

with the specified category on the control variable are held out and used for testing; rows

with any other category are used to train the model. This option is enabled only if a hold-

out variable has been selected on the Validation Property Page.

Fixed number of terminal nodes – If you check this button, DTREG will prune the tree

to the specified number of terminal nodes. The cost-complexity values computed for the

tree are used to guide the pruning so that the least significant nodes are pruned to reduce

the tree to the specified size. When this option is selected, cross-validation trees are not

generated, so it is much faster than doing full cross-validation on large trees; however,

there is no assurance that the generated tree has the optimal number of nodes. This

option is useful when you are generating exploratory trees.

53

Smooth minimum spikes – If you check this button, DTREG will smooth out

fluctuations in the error rate for various size models by averaging the misclassification

rates for neighboring tree sizes. During the pruning process, DTREG must identify the

tree size that produces the minimum misclassification error (residual) for the validation

data; this is the optimal size to which the tree will be pruned. Sometimes the error rate

fluctuates as the tree size increases, and an anomalous minimum “spike” may occur in a

region where the surrounding error rates are much higher. This happens more often when

using random-row-holdback validation than when using V-fold cross-validation which

tends to average out error rate values. If you enable smoothing of minimum spikes,

DTREG averages each error-rate/tree-size value with its neighboring values. The effect

is to cause DTREG to seek regions where the minimum values are consistently low rather

than isolated low values. The generated trees may be larger, but they usually are more

stable when used for scoring. The value associated with this button specifies how many

values are to be averaged for smoothing. For example, a smoothing value of 3 causes

DTREG to compute the average of three points – the center point and the neighboring

points on the left and right.

Tree Pruning Control – Select options in this group to control how DTREG prunes

the tree to the optimal size. Note: You must select V-fold cross validation to enable tree

pruning. For additional information about how tree pruning is performed, please see

page 366.

Prune to minimal cross-validated error – If you select this option, DTREG will prune

the tree to the number of nodes that produce the minimal error in the cross-validation

trees. This is the theoretically optimal tree size, but it may be only marginally better than

a smaller tree with a slightly larger error value. For additional information, please see

page 371.

Allow one standard error from minimum – If you select this option, DTREG will be

allowed to prune the tree to a smaller number of nodes such that the cross-validated error

cost of the smaller tree is no more than one standard error from the minimal cross-

validated error value. The advantage of selecting this option is that DTREG generates a

smaller and simpler tree; however, the tree may not be quite as good at predicting future

values as the larger, optimal tree. Research has shown that the misclassification cost

values tend to decrease to a valley as the tree size is pruned and then increase gradually

once the pruned tree size passes the optimal size. Typically, the decrease is not smooth

and there is some roughness in the cost values around the optimal point; so, allowing

pruning to a smaller, slightly less optimal tree is probably not statistically significant, and

you end up with a smaller, simpler model.

Allow this many S.E. from min. – If you check this box, you can specify an exact

number of standard error intervals to allow the pruning to select a smaller tree. If you

specify 1 for the standard error interval, then this option is equivalent to selecting “Allow

one standard error from minimum”.

54

Do not prune the tree – Select this option if you want DTREG to perform cross-

validation but not prune the tree. You will get the cross-validation statistics, but the full,

unpruned tree will be generated.

TreeBoost Property Page

TreeBoost models often can provide greater predictive accuracy than single-tree models,

but they have the disadvantage that you cannot visualize them the way you can a single

tree; TreeBoost models are more of a “black box”.

For more technical information about TreeBoost, please see the chapter starting on page

245.

When you select the TreeBoost property page, you will see a screen like this:

55

Type of model to build: Select the type of model you want DTREG to build. If you

select a type of model other than TreeBoost, the other controls on this screen will be

disabled.

Maximum number of trees in series: Specify how many trees you want DTREG to

generate in the TreeBoost series. If you select the appropriate options in the right panel,

DTREG will prune (truncate) a series to the optimal size after building it. You can click

Charts on the main menu followed by Model Size to view a chart that shows how the

error rates vary with the number of trees in the series.

Depth of individual trees: Specify how many levels of splits each tree in the TreeBoost

series should have. The number of terminal nodes in a tree is equal to 2
k
 where k is the

number of levels. So, for example, a tree with a depth of 1 has two terminal nodes, a tree

with a depth of 2 has 4 terminal nodes, and a tree with a depth of 3 has 8 terminal nodes.

Because many trees contribute to the model generated by TreeBoost, usually it is not

necessary for individual trees to be very large. Experiments have shown that trees with 4

to 8 levels generally perform well, but if there are a large number of predictor variables

or there are many categories for the predictors, you should try increasing the tree depth to

10 or 12. The depth should be at least as large as the number of variable interactions. If

you have a categorical predictor variable with many classes (for example, postal zip

code) it may be necessary to increase the tree depth to allow DTREG to partition the data

into more groups. If the predictions from a TreeBoost model are not as accurate as those

from the corresponding single-tree model, try increasing the depth of the TreeBoost trees.

Minimum size node to split – This specifies that a node should never be split if it

contains fewer rows than the specified value.

Proportion of rows in each tree: Research has shown (Friedman, 1999b) that

TreeBoost generates the most accurate models with minimum over fitting if only a

portion of the data rows are used to build each tree in the series. Specify for this

parameter the proportion of rows that are to be used to build each tree in the series; a

value of 0.5 is recommended (i.e., half of the rows). The specified proportion of the rows

are chosen randomly from the full set of rows. (This is the stochastic part of stochastic

gradient boosting.)

Huber’s quantile cutoff: The TreeBoost algorithm uses Huber’s M-regression loss

function to evaluate error measurements for regression models (Huber, 1964). This loss

function is a hybrid of ordinary least-squares (OLS) and least absolute deviation (LAD).

For residuals less than a cutoff point, the squared error values are used. For residuals

greater than the cutoff point, absolute values are used. The virtue of this method is that

small to medium residuals receive the traditional least-squares treatment, but large

residuals (which may be anomalous cases, mismeasurements or incorrectly coded values)

do not excessively perturb the function. After the residuals are calculated, they are sorted

by absolute value and the ones below the specified quantile cutoff point are then squared

while those in the quantile above the cutoff point are used as absolute values. The

recommended value is 0.9 which causes the smaller 90% of the residuals to be squared

56

and the most extreme 10% to be used as absolute values. Huber’s quantile cutoff

parameter is used only for regression analyses and not for classification analyses.

Influence trimming factor: This parameter is strictly for speed optimization; in most

cases it has little or no effect on the final TreeBoost model. When building a TreeBoost

model, the residual values from the existing tree series are used as the input data for the

next tree in the series. As the series grows, the existing model may do an excellent job of

fitting many of the data rows, and the new trees being constructed are only dealing with

the unusual cases. “Influence trimming” allows DTREG to exclude from the next tree

build process rows whose residual values are very small. The default parameter setting

of 0.1 excludes rows whose total residual represent only 10% of the total residual weight.

In some case, a small minority of the rows represent most of the residual weight, so most

of the rows can be excluded from the next tree build. Influence trimming is only used

when building classification models.

Shrinkage factor: Research has shown (Friedman, 2001) that the predictive accuracy of

a TreeBoost series can be improved by apply a weighting coefficient that is less than 1 (0

< v < 1) to each tree as the series is constructed. This coefficient is called the “shrinkage

factor”. The effect is to retard the learning rate of the series, so the series has to be longer

to compensate for the shrinkage, but its accuracy is better. Tests have shown that small

shrinkage factors in the range of 0.1 yield dramatic improvements over TreeBoost series

built with no shrinkage (v = 1). The tradeoff in using a small shrinkage factor is that the

TreeBoost series is longer and the computational time increases.

If “Auto” shrinkage factor is selected, the shrinkage factor is calculated by DTREG based

on the number of data rows in the training data set.

Let NumRows = the number of data rows in the training data set.

Then, ShrinkFactor = max(0.01, 0.1 * min(1.0, NumRows/10000))

If you prefer, you can select the “Fixed” option and specify a shrinkage factor.

If you experience significant over fitting of the TreeBoost model (much better fit on

training data than test data), try decreasing the shrinkage factor. Note that “Auto” mode

will never use a shrinkage factor less than 0.1. If over fitting is a problem, try switching

to the “fixed” setting and specify values in the range of 0.05.

Limit max. nodes per tree: If you enable this option, DTREG will build each tree in the

TreeBoost series to the maximum depth and then prune it by removing the least

significant nodes so that it has no more than the specified number of terminal (leaf)

nodes. It is recommended that you leave this box unchecked and limit the size of trees by

setting the maximum tree depth. The main reason for pruning trees in the series is to

reduce the amount of memory space required by very large models.

57

Pruning Methods for TreeBoost Series

TreeBoost series are less prone to problems with over fitting than single-tree models, but

they can benefit from validation and pruning to the optimal size to minimize the error on

a test dataset. In the case of a TreeBoost series, “pruning” consists of truncating the

series to the optimal number of trees.

No validation, use full tree series: All of the data rows are used to “train” the

TreeBoost series. No validation or pruning is performed.

Use variable to select validation rows – If you check this button, DTREG uses the hold-

out control variable specified on the Validation Property Page (see page 45) to control

which variables are held-out during model training and used to test the model. Rows

with the specified category on the control variable are held out and used for testing; rows

with any other category are used to train the model. This option is enabled only if a hold-

out variable has been selected on the Validation Property Page.

Random percent of rows – If you check this button, DTREG will hold back from the

model building process the specified percent of the data rows. The rows are selected

randomly from the full dataset, but they are chosen so as to stratify the values of the

target variable. Once the model is built, the rows that were held back are run through the

tree and the misclassification rate is reported. If you enable tree pruning, the tree will be

pruned to the size that optimizes the fit to the random test rows. The advantage of this

method over V-fold cross-validation is speed – only one TreeBoost series has to be

created rather than (V+1) tree series that are required for V-fold cross-validation. The

disadvantage is that the random rows that are held back do not contribute to the model as

it is constructed, so the model may be an inferior representation of the training data.

Generally, V-fold cross-validation is the recommended method for small to medium size

data sets where computation time is not significant, and random-holdback validation can

be used for large datasets where the time required to build (V+1) tree series would be

excessive.

V-Fold cross-validation – If you check this button, DTREG will use V-fold cross-

validation to determine the statistically optimal size for the TreeBoost series. You may

specify how many “folds” (cross-validation trees) are to be used for the validation; a

value in the range 3 to 10 is recommended. Specifying a larger value increases the

computation time and rarely results in a more optimal tree. For additional information

about V-fold cross validation, please see page 369.

58

This is the process used for cross validation of a TreeBoost series:

First, a primary series is created using all of the data rows. This series is grown to the

maximum allowable length.

The data rows are randomly divided into V sets, where V is the number of folds. Hence,

each set has 1/V of the total rows.

A TreeBoost series is created for each of the V folds (i.e., V TreeBoost series are created).

The nth series is built using all of the row data sets except for the nth data set. In other

words, one set of data (1/V rows) is excluded (held back) from each series, and it is a

different set of rows that is held back each time.

After the nth series is created using all data rows except for those in the nth set, the rows

in the nth set that were held back are used to compute the misclassification rate for the

series. The misclassification rate is computed for the series using only the first tree, then

the first two trees in the series, then the first three, up to the total length of the series. The

error rate is stored for each possible number of trees in the series.

One the V cross-validation series have been created and their error rates have been

computed using the held-back rows, the error rates for each length of series is averaged

across the V series and the length with the minimum error average is used.

If pruning was requested, the primary series that was created using all data rows is then

pruned to the length with the minimum error rate as determined by cross validation.

Smooth minimum spikes – If you check this button, DTREG will smooth out

fluctuations in the error rate for various size models by averaging the misclassification

rates for neighboring tree series sizes. Sometimes, the error rate fluctuates as the tree size

increases, and an anomalous minimum “spike” may occur in a region where the

surrounding error rates are much higher. This happens more often when using random-

row-holdback validation than when using V-fold cross-validation which tends to average

out error rate values. If you enable smoothing of minimum spikes, DTREG averages

each error-rate/tree-size value with its neighboring values. The effect is to cause DTREG

to seek regions where the minimum values are consistently low rather than isolated low

values. The generated TreeBoost series may be longer, but they usually are more stable

when used for scoring. The value associated with this button specifies how many values

are to be averaged for smoothing. For example, a smoothing value of 3 causes DTREG

to compute the average of three points – the center point and the neighboring points on

the left and right.

Minimum trees in series – If you check this box, you can specify the minimum number

of trees in the series after pruning. DTREG will not prune the series to a length shorter

than the specified value. Some TreeBoost series have erratic behavior with small

numbers of trees. Sometimes the error rate is very low with series consisting of one or

two trees, then the error rate jumps up and gradually declines. In cases like this, the short

59

series is unreliable, and it is undesirable to prune to that length even if the minimum error

occurs with one or two trees. By specifying the minimum number of trees in the series,

you can guarantee that pruning will not truncate the series below a specified length.

Prune (truncate) series to minimum error: If this box is checked, DTREG will

truncate the TreeBoost series at the length that has the minimum validation error as

determined by the validation method selected above. If this box is not checked, then

DTREG will use the validation method to measure the error rate, but the full series will

be retained.

Prune tolerance percent: Check this box to allow DTREG to prune the series to a

smaller number of trees than the minimum validation point. In many cases, the

improvement from adding trees to a series may be small, and the error rate will decline

slowly with a long, nearly-horizontal “tail” on the model-size chart. In cases like this, it

is possible to prune many trees from the series with only a small increase in the error rate.

If you enable this option, then DTREG will prune the series to a smaller size than the

absolute minimum as long as the error rate does not increase by more than the percentage

factor that you specify. For example, if the minimum error point in the series has an error

(misclassification) rate of 20% and you specify a pruning tolerance factor of 10%, then

DTREG will be allowed to prune the series to a shorter length as long as the error rate

does not exceed 22% (20 + 0.10*20).

Cross validate after pruning: If this box is checked and V-fold cross validation is

selected, DTREG will recomputed the cross-validated error rate after pruning the series

so that the validation error accurately reflects the truncated series. This doubles the time

required for cross validation. If this box is not checked, the error rate for the full, un-

truncated TreeBoost series is used for validation statistics.

Cross validation variable importance: If you check this option, then DTREG will

compute the importance of variables for each cross validation fold, it will calculate the

geometric mean of the importance across folds, and it will provide a separate report of the

variables showing the mean cross-validation importance. This is an alternate way to

compute variable importance that minimizes the importance of variables that are

relatively unimportant on any cross validation fold. It may give a more accurate message

or variable importance when some variables are sensitive to specific data values.

Predictor variable selection: In some cases, it may be possible to improve the quality

of a TreeBoost model by considering only a random subset of the predictors for each split

rather than all predictors. This is somewhat similar to the predictor selection method

used by Decision Tree Forest Models. However, most of the time it is better to allow all

predictors to be considered for each split, so you should always try building the model

that way.

60

Decision Tree Forest Property Page

Decision tree forest models often can provide greater predictive accuracy than single-tree

models, but they have the disadvantage that you cannot visualize them the way you can a

single tree; decision tree forest models are more of a “black box”.

For more technical information about decision tree forests, please see the chapter starting

on page 249.

When you select the decision tree forest property page, you will see a screen like this:

Type of model to build: Select the type of model you want DTREG to build. If you

select a model type other than decision tree forest, all of the other controls on this screen

will be disabled.

61

Forest size controls

Generally, the larger a decision tree forest is, the more accurate the prediction. There are

two types of size controls available (1) the number of trees in the forest and (2) the size of

each individual tree.

Number of trees in forest -- This specifies how many trees are to be constructed in the

decision tree forest. It is recommended that a minimum value of 100 be used.

Minimum size node to split – A node in a tree in the forest will not be split if it has

fewer than this number of rows in it.

Maximum tree levels – Specify the maximum number of levels (depth) that each tree in

the forest may be grown to. Some research indicates that it is best to grow very large

trees, so the maximum levels should be set large and the minimum node size control

would limit the size of the trees.

Random Predictor Control

When a tree is constructed in a decision tree forest, a random subset of the predictor

variables are selected as candidate splitters for each node. The controls in this group set

how many candidate predictors are considered as splitters for each node.

Square root of total predictors – If you select this option, DTREG will use the square

root of the number of total predictor variables as the candidates for each node split. Leo

Breiman recommends this as a default setting.

Search using trial forests – If you select this option, DTREG will built a set of trial

decision tree forests using a different numbers of predictors and determine the optimal

number of predictors to minimize the misclassification error. When doing the search,

DTREG starts with 2 predictors and checks each possible number of predictors in steps of

2 up to but not including the total number of predictors. Once the optimal number of

predictors is determined from the trial runs, that number is used to build the final decision

tree forest. Clearly this method involves more computation than the other methods since

multiple decision tree forests must be constructed. To save time, you can specify in the

box on the option line a smaller number of trees in the trial forest than in the final forest.

Once the optimal number of predictors is determined, it is shown as the value with “Fixed

number of predictors”, so you can select that option for subsequent runs without having

to repeat the search.

Fixed number of predictors – If you select this option, you can specify exactly how

many predictors you want DTREG to use as candidates for each node split.

62

How to Handle Missing Values

Surrogate splitters – If this option is selected, DTREG will compute the association

between the primary splitter selected for a node and all other predictors including

predictors not considered as candidates for the split. If the value of the primary predictor

variable is missing for a row, DTREG will use the best surrogate splitter whose value is

known for the row. Use the Missing Data property page (see page 133) to control

whether DTREG always computes surrogate splitters or only computes them when there

are missing values in a node. See the chapter starting on page 357 for additional

information about handling missing values.

Use median value – If this option is selected, DTREG replaces missing values for

predictor variables with the median value of the variable over all data rows. While this

option is less exact than using surrogate splitters, it is much faster than computing

surrogates, and it often yields very good results if there aren’t a lot of missing values; so

it is the recommended option when building exploratory models.

How to Compute Variable Importance

DTREG offers three methods for computing the importance of predictor variables:

Use split information – DTREG calculates the importance of each variable by adding up

the improvement in classification gained by each split that used the predictor. This is the

same method used to compute the importance for single-tree and TreeBoost models.

Generally, this method produces good results, and it can be calculated quickly.

Type 1 margins – DTREG first calculates the misclassification rate for the model using

the actual data values for all predictors. Then for each predictor, it randomly permutes

(rearranges) the values of the predictor and computes the misclassification rate for the

model using the permuted values. The difference between the misclassification rate with

the correctly ordered values and the misclassification rate for the permuted values is used

as the measure of importance of the predictor. This method of calculating variable

importance often is more accurate than calculating the importance from split information,

but it takes much longer to compute because of the time required to permute the rows for

each predictor.

Type 1 + 2 margins – DTREG first calculates the importance using type 1 margins as

described above. It then examines each data row and determines how many trees in the

forest correctly voted for the row with the original data minus the number of trees that

correctly voted for the row using the permuted data. The two measures of importance are

then averaged. This is usually the most accurate measure of importance, but it is also the

slowest to compute. In the case of a regression tree forest (i.e., continuous target

variable), this method is the same as the “Type 1 margins” method.

63

Multilayer Perceptron Neural Networks (MLP) Property Page

A Multilayer Perceptron Neural Network (MLP) (also known as a Multilayer Feed-

Forward neural network) is a model developed to simulate the function of neurons in a

nervous system.

For additional information about multilayer perceptron networks, please see the chapter

starting on page 253.

When you select the Multilayer Perceptron property page, you will see a screen like this:

Type of model to build: Select the type of model you want DTREG to build. If you

select a model type other than multilayer perceptron neural network, all of the other

controls on this screen will be disabled.

Number of network layers: Specify whether you want to create a neural network model

with 3 total layers (one input, one hidden and one output) or with 4 layers (one input, two

hidden and one output). It is rare to find a problem that requires more than 3 layers, so a

3 layer model is recommended.

64

Number of neurons

One of the basic parameters of a neural network is the number of neurons in the hidden

layer(s). DTREG allows you to specify a fixed number of neurons, or you can allow

allow it to search for the optimal number of neurons.

Automatically optimize hidden layer 1: One of the challenges in building multilayer

perceptron neural networks is deciding how many neurons to use for the hidden layer(s).

If you select too few neurons, the model may not be adequate to model complex data. If

you select too many neurons, it may over-fit the data and result in poor generalization to

new data. If you check this box, DTREG will try building multiple networks with

different numbers of neurons in hidden layer 1 and evaluate how well they fit by using

cross validation or a hold-out sample. This automatic selection only applies to hidden

layer 1. If you elect to build a model with two hidden layers, you will have to manually

select the number of neurons in hidden layer 2. If you enable automatic neuron

optimization, you can view the Model Size chart to see how the error varies with different

numbers of neurons (see page 209).

Minimum, Maximum and Step size for automatic search: If you enable the automatic

search for the optimal number of neurons, specify in these fields the minimum and

maximum number of neurons to try. Also specify how many neurons should be added

for each trial.

Max. steps without change: When DTREG is performing the search for the optimal

number of neurons, it builds models starting with the minimum specified number of

neurons working up to the maximum. It evaluates the error of each model before

increasing the number of neurons. If it builds the number of models specified by this

value without seeing any improvement, it assumes it has passed the optimal size and

stops the search.

% rows to use for search: You can tell DTREG to use only a random subset of the

rows when performing the search for the optimal number of neurons. If you have a lot of

training data, this can speed up the search.

Cross validate folds: If you want DTREG to evaluate the quality of each model during

the search by using cross validation, check this box and specify the number of cross

validation folds to use.

Hold-out sample %: If you want DTREG to hold out a portion of the data records from

each trial model and then use the held-out rows to evaluate the model, specify the percent

of rows to hold out in this field.

Use training data: If you select this option, then DTREG will evaluate the fit of the

neural network using the same data that is uses to build the network. This is not a good

65

choice if you are trying to construct a network to be applied to new data that is not part of

the training data. However, there are cases where the training data covers the entire set of

possible values, and this option is appropriate. For example, if you are trying to build a

neural network to model an exclusive OR (XOR) logic circuit, and the training data

consists of all possible inputs and outputs, then it makes sense to look for the optimal

network that models the training data.

Number of neurons for hidden layers: If you don’t enable the automatic search for the

optimal number of neurons, you can manually specify the number of neurons for each

hidden layer in these fields. If you enable the automatic search, the optimal number of

neurons found by the search will be shown in the Layer 1 field after the search is

completed.

Over fitting Detection and Prevention

“Over fitting” occurs when the parameters of a model are tuned so tightly that the model

fits the training data well but has poor accuracy on separate data not used for training.

Multilayer perceptrons are subject to over fitting as are most other types of models.

DTREG has two methods for dealing with over fitting: (1) by selecting the optimal

number of neurons as described below, and (2) by evaluating the model as the parameters

are being tuned and stopping the tuning when over fitting is detected. This is known as

“early stopping”.

Use test data to detect over fitting: If you enable this option, DTREG holds out a

specified percentage of the training rows and uses them to check for over fitting as model

tuning is performed. The tuning process uses the training data to search for optimal

parameter values. But as this process is running, the model is evaluated on the hold-out

test rows, and the error from that test is compared with the error computed using previous

parameter values. If the error on the test rows does not decrease after a specified number

of iterations then DTREG stops the training and uses the parameters which produced the

lowest error on the test data.

Percent training rows to hold out: Specify the percentage of the training rows that are

held out and used to test for over fitting. Note, since these rows are held out, they do not

contribute to the parameter optimization process.

Max. steps without change: If the error computed using the test error does not decrease

(or if it increases) for this many iterations, then the training process is stopped, and the

best parameters found are used for the model.

66

Activation Functions

Hidden layer activation function: You can select whether you want DTREG to use a

linear or logistic (sigmoid) activation function for the hidden layers. A logistic function

is recommended. Here is a plot of a logistic activation function:

Output layer activation function: You can select what type of activation function you

want DTREG to use for the output layer. The choices are (1) a logistic (sigmoid)

activation function, (2) a linear activation function or (3) a Softmax activation function.

Softmax activation functions can be used only for classification analyses. Softmax

produces more accurate probability estimates than the other types of activation functions,

but it is slower to compute.

Model testing and validation

Select how you want DTREG to evaluate the neural network model once it has been

created. You have five choices: (1) don’t do any validation of the model (fast, but not

recommended), (2) hold out a random percent of the rows during the model build and

then run them through the model to evaluate its error, (3) use a control variable specified

on the Validation Property Page to select which rows are held out for model validation,

(4) perform cross validation with a specified number of folds, (5) perform cross

validation with one row left out of each model build.

How to handle missing predictor variable values: If a row contains missing values for

any of the predictor variables you can specify whether you want DTREG to (1) exclude

the row from the model building process, (2) replace the missing values with the median

value of the predictor variable, or (3) use surrogate variables. See page 358 for

information about surrogate variables.

67

Compute importance of variables: If this box is checked, DTREG will compute and

display the relative importance of each predictor variable. The calculation is performed

using sensitivity analysis where the values of each variable are randomized and the effect

on the quality of the model is measured.

Write neuron weights to a file: If this box is checked and a file name is entered in the

field below it, DTREG will create a comma separated value file containing the values of

the weights for each neuron. Here is an example of a weight file:

Layer,Neuron,Input,Offset,Weight,Function

1,N[1.1],"Time",5400.0000000,-0.0003555,Logistic

1,N[1.1],"1.0",0.0,-3.5025324,Logistic

2,N[2.1],"N[1.1]",0.0,4.6004631,Linear

2,N[2.1],"1.0",0.0,0.0970731,Linear

Conjugate gradient parameters

DTREG uses the conjugate gradient method to find the optimal network weights. For

additional information about the conjugate gradient algorithm, see page 258.

Number of convergence tries – Specify how many sets of random starting values

DTREG should use when trying to find the optimal set of network parameters. For each

try, DTREG will create a set of random starting parameter values within the range

specified by the Nguyen-Widrow algorithm and then use conjugate gradient to optimize

them. Since there is no guarantee that conjugate gradient will converge to the global

minimum, it is useful to try multiple, different random starting values. The network

training time is directly proportional to the number of tries allowed.

Convergence tolerance: The conjugate gradient algorithm will iterate until the specified

convergence tolerance is reached or it is stopped for another reason such as reaching the

maximum allowed number of iterations. The convergence tolerance value specifies the

proportion of residual unexplained variance that is left. That is, the convergence

tolerance value specifies the remaining R
2
 variance. For example, if a tolerance factor of

0.001 is specified, then the algorithm iterates until residual, unexplained R
2
 reaches 0.001

which means the explained R
2
 reaches 0.999 (99.9%).

Maximum iterations: Specify the maximum iterations you will allow DTREG to

perform during the conjugate gradient optimization.

Iterations without improvement: After each iteration, DTREG measures the residual

error of the model using the weight values calculated by the iteration. If the error does

not improve after this many consecutive iterations, DTREG assumes the weights have

converged to the optimal values, and it stops the conjugate gradient process.

Minimum improvement delta: This is the amount of improvement in the residual

model error required for DTREG to count an iteration as having improved the model. If

68

the error is improved by less than this amount (or not at all), then no improvement is

counted.

Min. gradient: If the largest weight gradient value is less than this parameter, DTREG

assumes it has reached an optimal (flat) section of the error space and stops the conjugate

gradient process. A gradient value measures the change in the model error relative to a

change in a weight value, so a small gradient indicates that little improvement can be

made by changing the weight value.

Max. minutes execution time: If this value is non-zero, DTREG will stop the conjugate

gradient process after the specified number of minutes of run time and use the resulting

weights as the final ones for the model.

Training method: Specify whether you want DTREG to use the (1) scaled conjugate

gradient or (2) traditional conjugate gradient algorithm. Usually, scaled conjugate

gradient is faster than traditional conjugate gradient and produces results as least as good.

For additional information about the conjugate gradient algorithms, see page 258258.

Write progress report to project log: If this box is checked, DTREG will write a report

showing the improvement in the model after each conjugate gradient iteration.

69

RBF Neural Networks Property Page

A Radial Basis Function (RBF) neural network models data by fitting Gaussian functions

to the training data. For more information about RBF networks, see the chapter

beginning on page 261.

When you select the RBF Network property page, you will see a screen like this:

Type of model to build: Select the type of model you want DTREG to build. If you

select a model type other than RBF Network, all of the other controls on this screen will

be disabled.

Network Parameters

Maximum neurons: Specify the maximum number of neurons you allow to be used in

the model. The RBF training algorithm stops adding neurons when it detects that over

fitting may occur, so usually models will have fewer than the maximum allowed number

of neurons.

70

Absolute tolerance: If the residual mean squared error (MSE) is reduced to this value,

the training stops.

Relative tolerance: If the residual error is reduced by less than this amount by adding

another neuron, the training stops.

Minimum radius: The minimum radius (spread) for neurons.

Maximum radius: The maximum radius (spread) for neurons. This parameter provides

guidance for the maximum radius, but it is not an absolute limit. The training process

may determine that a larger radius is required. If the validation error is significantly

worse than the training error, try increasing the value of the maximum radius. If the

training and validation errors are close but larger than you want, try decreasing the

maximum radius.

Minimum lambda: This is the minimum value of the Lambda regularization parameter

that will be used while computing weights as neurons are added to the network. If over

fitting is indicated by the validation error being much larger than the training error, try

increasing the minimum lambda.

Maximum lambda: This is the maximum value of the Lambda regularization parameter

that will be used wile computing weights are neurons are added to the network.

Neuron Tuning Parameters

Population size: Part of the algorithm used by DTREG to build neural networks uses an

evolutionary method called Repeating Weighted Boosting Search (RWBS). During the

first part of this search, a population of candidate neurons is created with random centers

and spreads (limited by the minimum and maximum specified radius). The population

size parameter controls how many candidate neurons are created. It is advisable to

increase the population if there are many predictor variables. A reasonable minimum

population size is two times the number of predictor variables. Increasing the population

size also may help the algorithm avoid local minima and find the optimal global solution.

Max. generations: This parameter controls the maximum number of generations of

candidate neurons to be created by the RWBS evolutionary algorithm. Each generation

uses a combination of the best neurons from the previous generation and new random

neurons. The evolutionary process stops when the maximum number of generations is

reached or no improvements are gained.

Max. gen. flat: If the RWBS evolutionary algorithm advances through this many

consecutive generations without improvement, it stops.

Boosting tolerance: During each RWBS generation, candidate neurons are “mated” and

the improvement in estimated leave-one-out error is computed. If the estimated error is

71

less than the boosting tolerance parameter, the boosting operation stops and the next

generation begins.

Model Testing and Validation Parameters

No validation: The mode is trained but no validation is performed. This is fast, but it is

not recommended because there is no way to measure how well the model is likely to

generalize to new data.

Random percent: If this option is selected, a random percentage of the rows are held

out during the validation training, then those held-out rows are run through the model and

their error is reported as the validation error.

Use variable to select validation rows – If you check this button, DTREG uses the hold-

out control variable specified on the Validation Property Page (see page 45) to control

which variables are held-out during model training and used to test the model. Rows

with the specified category on the control variable are held out and used for testing; rows

with any other category are used to train the model. This option is enabled only if a hold-

out variable has been selected on the Validation Property Page.

V-fold cross validation: If this option is selected, V SVM models will be constructed

with (V-1)/V proportion of the rows being used in each model. The remaining rows are

then used to measure the accuracy of the model. The final model is built using all data

rows. This method has the advantage of using all data rows in the final model, but the

validation is performed in separately constructed models so there is some possibility that

the misclassification rate for the final model may be different than the validation models.

Missing Value Parameters

How to handle missing predictor values: DTREG offers three choices for dealing with

predictor variables that have missing values. You can (1) exclude those rows from the

analysis, (2) replace the missing values with the median or mode values for the variable,

or (3) use surrogate variables. See page 357 for additional information about handling

missing values and the use of surrogate variables.

Prior Probability Parameters

Prior probabilities for target categories: Select the assumed prior probability

distribution for the target variable categories. Traditionally (and in most benchmarks) the

distribution in the training data set is used. If you wish to specify a custom set of prior

probabilities, select the option “Use priors on category weight page”, and set the values

of the priors on the Category weight property page (see page 128).

72

Miscellaneous Options
Compute importance of variables: If this box is checked, DTREG will compute and

display the relative importance of each predictor variable. The calculation is performed

using sensitivity analysis where the values of each variable are randomized and the effect

on the quality of the model is measured.

Write neuron information to an external file: If this box is checked and a file name is

entered below it, then DTREG will write information about each RBF neuron to the

specified file. This information includes the center, width, and weight of each neuron.

The generated file is a .csv Comma Separated Value file.

73

GMDH Polynomial Neural Networks Property Page

A GMDH polynomial neural network models data by fitting a network of polynomial

functions to the training data. For more information about GMDH polynomial networks,

see the chapter beginning on page 269.

When you select the GMDH Network property page, you will see a screen like this:

Type of model to build: Select the type of model you want DTREG to build. If you

select a model type other than GMDH Polynomial Network, all of the other controls on

this screen will be disabled.

Network Parameters

Maximum network layers: Specify the maximum number of layers in the neural

network that the model may contain. The model may actually be created with fewer

layers if the building process discovers that adding layers would harm or not improve the

accuracy of the model.

Maximum polynomial order: Specify the highest power of a variable that a polynomial

may contain. If the GMDH network is built using quadratic polynomials, then the order

of the polynomials doubles on each layer.

74

Convergence tolerance: The training algorithm will add layers to the network until the

specified convergence tolerance is reached or it is stopped for another reason such as

reaching the maximum allowed number of layers or it detects that adding a layer will not

improve the model. The convergence tolerance value specifies the proportion of residual

unexplained variance that is left. That is, the convergence tolerance value specifies the

remaining R
2
 variance. For example, if a tolerance factor of 0.001 is specified, then the

algorithm iterates until residual, unexplained R
2
 reaches 0.001 which means the

explained R
2
 reaches 0.999 (99.9%).

Number of neurons per layer: This is the number of neurons that will be held in each

layer of the network. You can specify an exact number, or you can select the option to

use the same number of neurons as exist in the input layer.

Network layer connections: This parameter controls how neurons in the network are

connected together. There are three choices:

1. Connect only to previous layer – This option tells DTREG that the inputs to one

layer may come only from outputs generated by the next lower layer.

2. Previous layer and the input variables – This allows inputs to a layer to be

connected to outputs from the previous layer and also to the original predictor

variables.

3. Any layer and original input variables – This option allows DTREG to connect

inputs to neurons in one layer to outputs from any lower level layer and also the

input variables. Selecting this option usually results in slow training because the

number of possible inputs increases as layers are added.

Model Testing and Validation Parameters

No validation: The mode is trained but no validation is performed. This is fast, but it is

not recommended because there is no way to measure how well the model is likely to

generalize to new data.

Random percent: If this option is selected, a random percentage of the rows are held

out during the validation training, then those held-out rows are run through the model and

their error is reported as the validation error.

Use variable to select validation rows – If you check this button, DTREG uses the hold-

out control variable specified on the Validation Property Page (see page 45) to control

which variables are held-out during model training and used to test the model. Rows

with the specified category on the control variable are held out and used for testing; rows

with any other category are used to train the model. This option is enabled only if a hold-

out variable has been selected on the Validation Property Page.

V-fold cross validation: If this option is selected, V SVM models will be constructed

with (V-1)/V proportion of the rows being used in each model. The remaining rows are

then used to measure the accuracy of the model. The final model is built using all data

75

rows. This method has the advantage of using all data rows in the final model, but the

validation is performed in separately constructed models so there is some possibility that

the misclassification rate for the final model may be different than the validation models.

Missing Value Parameters
How to handle missing predictor values: DTREG offers three choices for dealing with

predictor variables that have missing values. You can (1) exclude those rows from the

analysis, (2) replace the missing values with the median or mode values for the variable,

or (3) use surrogate variables. See page 357 for additional information about handling

missing values and the use of surrogate variables.

Over fitting Protection Control
Holdout sample percent: Specify the percent of the training rows that are to be used as

the control data to detect model over fitting. See the description of the GMDH training

algorithm on page 270 for information about how the control data is used.

Miscellaneous Options
Standardize Predictor Variable Values: If this box is checked, DTREG standardizes

the values of continuous predictor variables by subtracting the mean and dividing by the

standard deviation. The target variable values are not standardized.

Compute importance of variables: If this box is checked, DTREG will compute and

display the relative importance of each predictor variable. The calculation is performed

using sensitivity analysis where the values of each variable are randomized and the effect

on the quality of the model is measured.

Functions to Use in the GMDH Network
Check which functions you wish to enable DTREG to use in the network. Traditional

GMDH polynomial networks use only quadratic polynomials of two variables.

76

Cascade Correlation Neural Networks Property Page

 A Cascade Correlation neural network is a type of self-organizing neural network. That

is, it grows and adds neurons to the architecture as necessary to accurately model the

data. For additional information about Cascade Correlation networks, please see the

chapter beginning on page 273.

When you select the Cascade Correlation property page, you will see a screen like this:

Type of model to build: Select the type of model you want DTREG to build. If you

select a model type other than Cascade Correlation, all of the other controls on this screen

will be disabled.

Hidden layer kernel functions: Select the type of kernel functions that you want the

model to be able to use in the hidden layer. The choices are (1) Sigmoid only, (2)

Gaussian only, and (3) both Sigmoid and Gaussian functions. Generally it is best to

allow the network to consider both sigmoid and Gaussian kernel functions and use

whichever is best.

Minimum and Maximum Neurons: Specify the minimum and maximum number of

neurons that may be used for the hidden layer. It is recommended that the minimum

77

number of neurons be set to 0 (zero). There are a surprising number of problems that can

be solved best with just the output layer and no hidden neurons.

Candidate neurons: Specify how many candidate neurons are to be considered for each

addition to the hidden layer. During the training process, DTREG generates a set of

candidate neurons for each step. These candidate neurons have random weight values

within the range specified by the Weight Range parameter. The candidate neurons will

have either sigmoid, Gaussian or a mixture of kernel functions. Increasing the number of

candidate neurons may reduce the number of neurons used in the hidden layer, but it will

increase the training time.

Candidate epochs: This is the maximum number of iterative cycles that will be used to

compute the weights for candidate neurons being considered for inclusion in the model.

Output epochs: This is the maximum number of iterative cycles that will be used to

compute the weights for the output neurons.

Weight range: When candidate neurons are created, they are initially assigned weights

whose values range from the negative of this value up to the positive of this value.

Usually training is insensitive to the starting random values, so the range is no important.

Maximum steps without improvement: These two parameters specify how many

neurons can be added without any reduction in the error. Each time a candidate neuron is

added to the hidden layer, the model is re-trained and the error is computed. If the error

is not reduced, a count is incremented. When validation is performed to find the optimal

size of the network, a separate no-improvement count is kept for it. If the no-

improvement counts reach the specified values, then training is terminated. Training also

is terminated if the error on the training rows reaches zero.

Model testing and validation: Select how you want DTREG to evaluate the neural

network model once it has been created. You have four choices: (1) don’t do any

validation of the model (fast, but not recommended), (2) hold out a random percent of the

rows during the model build and then run them through the model to evaluate its error,

(3) perform cross validation with a specified number of folds, (4) perform cross

validation with one row left out of each model build.

How to handle missing predictor variable values: DTREG offers three choices for

dealing with predictor variables that have missing values. You can (1) exclude those

rows from the analysis, (2) replace the missing values with the median or mode values for

the variable, or (3) use surrogate variables. See page 357 for additional information

about handling missing values and the use of surrogate variables.

78

Over fitting Protection Control

Because cascade correlation networks add hidden-layer neurons during the training

process, there is a serious risk of the model becoming so complex that it fits the training

data very well but does not generalize well to new, unseen data; this is called over fitting.

To prevent over fitting, DTREG tests the accuracy of the model using validation data

after each neuron is added. It stops the building when over fitting is detected because the

validation error reaches a minimum and starts to increase. You can view the Model Size

chart (see page 209) to view how the error changes as neurons are added. The Model

Size section of the analysis report also provides this information.

Validate model as it grows: Check this box to enable over fitting prevention. If you

don’t check this box, then the model will grow without restraint as it attempts to perfectly

fit the training data.

Hold out sample percent or Cross-validation folds: Select whether you want the over

fitting detection performed by using a hold-out set of rows or by using cross validation.

Cross validation is recommended, but it slower than using a hold-out sample.

Use variable to select validation rows – If you check this button, DTREG uses the hold-

out control variable specified on the Validation Property Page (see page 45) to control

which variables are held-out during model training and used to test the model. Rows

with the specified category on the control variable are held out and used for testing; rows

with any other category are used to train the model. This option is enabled only if a hold-

out variable has been selected on the Validation Property Page.

Prune model to optimal size: If this box is checked, DTREG will prune the size of the

model back to the number of neurons that generated the lowest error on the validation

rows (i.e., the hold-out rows or the cross-validation error).

Compute importance of variables: If this box is checked, DTREG will compute and

display the relative importance of each predictor variable. The calculation is performed

using sensitivity analysis where the values of each variable are randomized and the effect

on the quality of the model is measured.

79

Advanced Cascade Correlation Parameters

If you click the “Advanced Parameters” button, the following screen will be displayed:

Usually it is not necessary to change the parameters on this screen. The default values

work well for most problems.

There are two sets of parameters, “Candidate” and “Output”. The first set is used

during the training of the weights of candidate neurons for the hidden layer. The second

set is used when training the weights for the output layer neurons.

Weight decay: This is a regularization parameter that encourages weight values to

remain close to zero. The larger the weight decay, the more tightly the parameters are

forced toward zero. If you encounter a situation where weights seem to be going wild

and the model error is getting worse rather than better, try using a weight decay value in

the range of 0.001.

Epsilon and mu: These two parameters are used by the quickprop training algorithm.

Here are suggestions for these parameters posted by Scott E. Fahlman, the co-inventor of

Cascade Correlation:

Epsilon: “This is the tricky one. It can vary over many orders of magnitude, depending

on the problem (i.e. from 1000 to 0.01 or so). I've tried a number of kinds of

normalization to keep this in a single range for all problems, but haven't found the magic

bullet yet. Basically, you want to see steady improvement in the error measure or score.

 You'll occasionally see an epoch or two in which the score retreats from the best

obtained so far, but if the lost ground isn't made up in the next few epochs, you're

probably in the chaotic region and need to reduce the epsilon that is relevant to the

current learning phase. If you see steady but weak convergence, especially near the end

of the training phase, you want to turn it up.”

80

Mu: “Set them at 2.0 and leave them there. If the training seems determined to oscillate,

turn it down to 1.75 or 1.5. I think I've only gone higher than 2.0 for a few odd problems

like XOR.”

Probabilistic and General Regression Neural Networks Property Page

Probabilistic and General Regression Neural Networks are another type of neural

network. For additional information about these networks, please see the chapter starting

on page 279.

When you select the PNN/GRNN property page, you will see a screen like this:

81

The same parameter screen is used for probabilistic and general regression neural

networks. If a classification analysis is being performed (with a categorical target

variable), then a probabilistic neural network (PNN) is created. If a regression analysis is

being performed (with a continuous target variable), then a general regression neural

network (GRNN) is created.

Type of model to build: Select the type of model you want DTREG to build. If you

select a model type other than PNN/GRNN, all of the other controls on this screen will be

disabled.

Sigma values for model: The sigma values control the radius of influence of each point

in the model. DTREG provides three types of sigma values:

1. Single sigma for whole model. This is the simplest type of model; it uses a

single sigma value for all points. This type of model is faster to build than the

other types but usually is less accurate.

2. Sigma for each variable. This calculates a separate sigma value for each

predictor variable in the model. This allows the influence of each variable on

neighboring points to differ. This is the default and recommended choice because

it is a good compromise between having a single sigma and allowing a separate

sigma for each target category.

3. Sigma for each variable and class. This creates a separate sigma value for each

predictor variable and for each target category. Usually there is little (if any)

improvement over using a sigma for each variable, and in some cases the

accuracy of the model suffers. This option is only available if the target variable

is categorical

Report sigma values: If this box is checked, DTREG will show the computed sigma

values in the project report.

Starting sigma search control: These parameters control the range of sigma values

used during the initial search. Once the conjugate gradient method begins, the sigma

values are allowed to move outside the range.

Constrain minimum sigma values: If you check this box then the sigma values will be

constrained so that they cannot go smaller than the “Min. Sigma” parameter. Usually it is

better to leave this box unchecked so that the optimization is free to select the best sigma

values even if they are small. However, very small sigma values can sometimes result in

a model that is “brittle”: small changes in input predictor values cause large swings in the

predicted target value.

Model testing and validation: Select how you want DTREG to evaluate the neural

network model once it has been created. You have five choices: (1) don’t do any

validation of the model (fast, but not recommended), (2) hold out a random percent of the

rows during the model build and then run them through the model to evaluate its error,

(4) use a hold-out control variable specified on the Validation Property Page to select

82

which rows will be held out for testing, (4) perform cross validation with a specified

number of folds, (5) perform cross validation with one row left out of each model build.

How to handle missing predictor variable values: DTREG offers three choices for

dealing with predictor variables that have missing values. You can (1) exclude those

rows from the analysis, (2) replace the missing values with the median or mode values for

the variable, or (3) use surrogate variables. See page 357 for additional information

about handling missing values and the use of surrogate variables.

Type of kernel function: The kernel function controls how the influence of a point

declines as the radius from the point increases. DTREG supports two types of kernel

functions:

1. Gaussian: A Gaussian function causes the influence of a point to decline

according to the value (height) of a Gaussian distribution centered on the point.

Gaussian functions are almost always the best kernel. The equation of the

Gaussian function is:

2

2

2

2

1
)(

x

exg

2. Reciprocal: The influence of the point decreases as a linear function of the

distance from the point.

Prior probabilities for target categories: Select the assumed prior probability

distribution for the target variable categories. Traditionally (and in most benchmarks) the

distribution in the training data set is used. If you wish to specify a custom set of prior

probabilities, select the option “Use priors on category weight page”, and set the values

of the priors on the Category weight property page (see page 128).

Compute importance of variables: If this box is checked, DTREG will compute and

display the relative importance of each predictor variable. The calculation is performed

using sensitivity analysis where the values of each variable are randomized and the effect

on the quality of the model is measured.

Remove unnecessary neurons: If this box is checked, DTREG will optimize the

PNN/GRNN model by removing neurons that are unnecessary. If this box is not

checked, then all of the training rows will be retained in the model.

Removing unnecessary neurons has three benefits:

1. The size of the stored model is reduced.

2. The time required to apply the model during scoring is reduced.

3. Removing neurons often improves the accuracy of the model.

The process of removing unnecessary neurons is a slow, iterative process because the

model must be evaluated with each remaining neuron to find the best one to remove. For

models with more than 1000 training rows, the neuron removal process may become

impractically slow. If you have a multi-CPU computer, you can speed up the process by

83

allowing DTREG to use multiple CPU’s for the process. See page 16 for information

about how to control CPU usage.

When unnecessary neurons are removed, the “Model Size” section of the analysis report

shows how the error changes with different numbers of neurons. You can see a graphical

chart of this by clicking Chart/Model size (see page 209).

There are three criteria that can be selected to guide the removal of neurons:

 Minimize error – If this option is selected, then DTREG removes neurons as

long as the leave-one-out error remains constant or decreases. It stops when it

finds a neuron whose removal would cause the error to increase above the

minimum found.

 Minimize neurons – If this option is selected, DTREG removes neurons until the

leave-one-out error would exceed the error for the model with all neurons.

 # of neurons – If this option is selected, DTREG reduces the least significant

neurons until only the specified number of neurons remain.

Retrain after removing neurons: If this box is checked, DTREG will retrain the

network (i.e., compute new Sigma values) using only the neurons left after the

unnecessary neurons are removed. Sometimes this improves the quality of the model. If

retraining does not improve the quality, the original Sigma values are used; so there is no

harm in trying to retrain other than the retraining time. The Model Size report shows

whether retraining improved the model.

Advanced options: Click this button to open the screen where you can set parameters

for the conjugate gradient optimization process:

84

Maximum total iterations: Specify the maximum iterations you will allow DTREG to

perform during the conjugate gradient optimization.

Iterations without improvement: After each iteration, DTREG measures the residual

error of the model using the weight values calculated by the iteration. If the error does

not improve after this many consecutive iterations, DTREG assumes the weights have

converged to the optimal values, and it stops the conjugate gradient process.

Minimum improvement delta: This is the amount of improvement in the residual

model error required for DTREG to count an iteration as having improved the model. If

the error is improved by less than this amount (or not at all), then no improvement is

counted.

Absolute convergence tolerance: If the residual error of the model is less than this

parameter, DTREG assumes it has converged and stops the conjugate process.

Relative convergence tolerance: If the error declines by less than this amount during an

iteration, DTREG will assume it has reached the optimal point and stop the process.

Max. minutes execution time: If this value is non-zero, DTREG will stop the conjugate

gradient process after the specified number of minutes of run time and use the resulting

weights as the final ones for the model.

Write progress report to project log: If this box is checked, DTREG will write a report

showing the improvement in the model after each conjugate gradient iteration.

85

Support Vector Machine (SVM) Property Page

A Support Vector Machine (SVM) is a relatively new modeling method that has shown

great promise at generating accurate models for a variety of problems. SVM seems to be

particularly good at pattern recognition, but it also applicable to all other types of

modeling applications. For more technical information about support vector machine

models, please see the chapter starting on page 289.

When you select the SVM property page, you will see a screen like this:

86

Type of model to build: Select the type of model you want DTREG to build. If you

select a model type other than support vector machine, all of the other controls on this

screen will be disabled.

Type of SVM model – DTREG offers several types of SVM models. For classification

models with a categorical target variable, you can select either C-SVC or ν-SVC models.

For regression models with a continuous target variable, you can select either ε-SVR or

ν-SVR models. For most applications, the results generated by the different models are

quite similar. There is no way to predict in advance which method will perform better for

a particular problem, so it is best to try each one.

Kernel function – SVM models are built around a kernel function that transforms the

input data into an n-dimensional space where a hyperplane can be constructed to partition

the data. DTREG provides four kernel functions, Linear, Polynomial, Radial Basis

Function (RBF) and Sigmoid (S-shaped). There is no way in advance to know which

kernel function will be best for an application, but the RBF function has been found to do

best job in the majority of cases.

Linear: u’*v

87

Polynomial: (gamma*u’*v + coef0)^degree

See the following figure from Kecman, 2004.

88

Radial basis function: exp(-gamma*|u-v|^2)

A Radial Basis Function (RBF) is the default and recommended kernel function. The

RBF kernel non-linearly maps samples into a higher dimensional space, so it can handle

nonlinear relationships between target categories and predictor attributes; a linear basis

function cannot do this. Furthermore, the linear kernel is a special case of the RBF. A

sigmoid kernel behaves the same as a RBF kernel for certain parameters. The RBF

function has fewer parameters to tune than a polynomial kernel, and the RBF kernel has

less numerical difficulties. The following chart fromYang, 2003 illustrates RBF

mapping.

An SVM model using a radial basis function kernel has the architecture of an RBF

network. However, the method for determining the number of nodes and their centers is

different from standard RBF networks with the centers of the RBF notes on the support

vectors (see the figure below from C. Campbell).

89

Sigmoid: tanh(gamma*u’*v + coef0)

Stopping criteria (Epsilon) – This is a tolerance factor that controls when DTREG stops

the iterative optimization process. The default value usually works well; you can reduce

the tolerance to generate a more accurate model or increase the value to reduce the

computation time. This parameter is called the Epsilon value in some other

implementations of SVM.

Cache size – DTREG uses a cache to store truncated rows of the reordered kernel matrix.

This cache avoids recomputing components of the kernel matrix and can speed up the

90

computation by a significant amount in some cases. The cache size value is specified in

units of mega-bytes (MB). The default value is 256 (MB). Research has shown that on

machines with lots of memory increasing the cache size up to 512 (MB) or even 1000 (1

GB) can improve performance.

Use shrinking heuristics – A SVM model is formed by selecting a hyperplane that

partitions the data with maximum margin between the feature vectors that define points

near overlap. Shrinking improves performance by allowing DTREG to ignore points that

are far from overlapping and which are unlikely to influence the choice of the optimal

separating hyperplane. Essentially, shrinking eliminates outlying vectors from

consideration. Enabling shrinking heuristics can significantly speed up performance

when the training data set is large; it is recommended that shrinking be enabled.

Calculate importance of variables – If this option is selected, DTREG will analyze the

generated SVM model and generate a report on the relative significance of predictor

variables.

Compute probability estimates – If this option is selected, DTREG generates an SVM

model that is capable of estimating the probability for each target category rather than

simply predicting the most likely category. This option is especially useful for problems

with only two target categories because you can use the probability threshold features in

DTREG to adjust the proportion of cases assigned each category. Note: when this option

is selected, a different type of model is constructed, and the misclassification rate for the

model may be different than for a model without probability calculations.

Model testing and validation – DTREG offers two methods for validating an SVM

model:

Random percent holdback – If this option is selected, DTREG will select a random set

of data rows and hold them out of the model building process. These rows will then be

run through the generated model and the misclassification error rate will be reported.

Use variable to select validation rows – If you check this button, DTREG uses the hold-

out control variable specified on the Validation Property Page (see page 45) to control

which variables are held-out during model training and used to test the model. Rows

with the specified category on the control variable are held out and used for testing; rows

with any other category are used to train the model. This option is enabled only if a hold-

out variable has been selected on the Validation Property Page.

V-fold cross validation – If this option is selected, V SVM models will be constructed

with (V-1)/V proportion of the rows being used in each model. The remaining rows are

then used to measure the accuracy of the model. The final model is built using all data

rows. This method has the advantage of using all data rows in the final model, but the

validation is performed in separately constructed models so there is some possibility that

the misclassification rate for the final model may be different than the validation models.

91

How to handle missing predictor values – DTREG offers three choices for dealing with

predictor variables that have missing values. You can (1) exclude those rows from the

analysis, (2) replace the missing values with the median or mode values for the variable,

or (3) use surrogate variables. See page 357 for additional information about handling

missing values and the use of surrogate variables.

Parameter optimization search control – The accuracy of an SVM model is largely

dependent on the selection of the model parameters such as C, Gamma, P, etc. DTREG

provides two methods for finding optimal parameter values, a grid search and a pattern

search. A grid search tries values of each parameter across the specified search range

using geometric steps. A pattern search (also known as a “compass search” or a “line

search”) starts at the center of the search range and makes trial steps in each direction for

each parameter. If the fit of the model improves, the search center moves to the new

point and the process is repeated. If no improvement is found, the step size is reduced

and the search is tried again. The pattern search stops when the search step size is

reduced to a specified tolerance.

Grid searches are computationally expensive because the model must be evaluated at

many points within the grid for each parameter. For example, if a grid search is used

with 10 search intervals and an RBF kernel function is used with two parameters (C and

Gamma), then the model must be evaluated at 10*10 = 100 grid points. An Epsilon-SVR

analysis has three parameters (C, Gamma and P) so a grid search with 10 intervals would

require 10*10*10 = 1000 model evaluations. If cross-validation is used for each model

evaluation, the number of actual SVM calculations would be further multiplied by the

number of cross-validation folds (typically 4 to 10). For large models, this approach may

be computationally infeasible.

A pattern search generally requires far fewer evaluations of the model than a grid search.

Beginning at the geometric center of the search range, a pattern search makes trial steps

with positive and negative step values for each parameter. If a step is found that

improves the model, the center of the search is moved to that point. If no step improves

the model, the step size is reduced and the process is repeated. The search terminates

when the step size is reduced to a specified tolerance. The weakness of a pattern search

is that it may find a local rather than global optimal point for the parameters. If the value

of the model within the parameter space has ridges rather than being purely convex, the

pattern search may get trapped in a local valley and miss the globally optimal point.

DTREG allows you to use both a grid search and a pattern search. When you check both

boxes the grid search is performed first. Once the grid search finishes, a pattern search is

performed over a narrow search range surrounding the best point found by the grid

search. Hopefully, the grid search will find a region near the global optimum point and

the pattern search will then find the global optimum by starting in the right region.

Do grid search for optimal parameters – If this option is selected, DTREG will

perform a grid search to try to determine the optimal parameter values. For each relevant

parameter, you can specify the lower and upper range to be searched. DTREG will try

92

values in the range using geometric steps and use cross validation to measure how well

the model fits the data. SVM models are among the most accurate, but their performance

is highly dependent on the parameters you specify, so a grid search is recommended.

Generally, the search gets slower as the value of the C parameter gets larger, so it is best

to restrict it to a reasonable range. For classification problems, the optimal value of C

typically is in the range of 1 to 100. For regression problems, the optimal value of C may

be much larger – a million or more.

The grid search Intervals value specifies how many values will be tried between the low

and high values (including those values). The value specified in the field to the right of

intervals is the refinement iteration value. Once DTREG has identified the best set of

parameter values using the initial grid search, it will then perform smaller grid searches in

the vicinity of the optimal point to further refine the optimal values. A refinement value

of 1 (the default) does only the primary grid search. A value of 2 would do the grid

search and then one finer-level search. You can specify large refinement values to

increase the number of searches. Caution: the time required to do a grid search is

proportional to the number of parameters times the number of intervals times the number

of refinement steps; this can add up to a lot of time.

Do pattern search for optimal parameters – If this option is selected, DTREG will

perform a pattern search to try to determine the optimal parameter values.

The pattern search Intervals value controls the starting step size. The first step will be

set so that the number of steps required to cross the entire search range equals the

specified number of intervals. The pattern search Tolerance value controls when the

pattern search terminates. The search stops when the value of all parameters divided by

the step size is less than the tolerance value.

Percent rows to use for search specifies what percent of the training rows are to be used

for the search operation. Since a search operation is a very computationally expensive

procedure, you can select a subset of the full training rows to use for the search.

Cross validate; folds Specifies if V-fold cross-validation is to be used by the search to

calculate the optimal parameter values. If this option is selected, DTREG will perform

cross validation when it is performing the search to determine the optimal parameters. If

this option is not selected, DTREG searches for the optimal parameters using the error

computed for the training data. For the most accurate parameter calculations it is best to

use cross validation, but this will increase the time required to do the search.

Search optimization criterion – When performing a search for optimal parameters, you

can select which criterion is to be used to determine the optimum function value:

 Minimize total error – The total misclassification error (or mean square error for

regression) is minimized. This is the only available option for regression

analyses.

93

 Minimize weighted error – The misclassification errors are weighted by

multiplying errors by a factor to compensate for differences in the frequencies of

the target categories. Misclassifications of categories with low frequencies

receive more weight to help balance them compared to categories with higher

frequencies.

 Maximize AUC – The parameter search finds the point that maximizes the area

under the ROC curve (AUC). This option is only available for classification

analyses where the target variable has two categories. Maximizing the AUC

tends to balance the misclassifications between the classes and improves the

discrimination. Note, AUC is also known as the “C-statistic”.

 Maximize sensitivity & specificity – The parameters are optimized to produce

the maximum geometric mean of sensitivity and specificity. This option is

available only for classification analyses where the target variable has two

categories.

Model parameters – There are a number of parameters such as C, Nu, Gamma that

apply to the SVM model and the selected kernel function. Selecting the optimal values

can significantly impact the accuracy of the model. DTREG will enable the appropriate

parameter value boxes depending on the type of SVM model and kernel function that is

selected. If a grid or pattern search is enabled, then additional boxes will be enabled

where you can specify the lower and upper range of the search interval.

Write Support Vectors to a File – Click this button to open a dialog box where you can

specify a file where the support vectors for the generated model should be written. This

button is enabled only if a model has been built and support vectors have been found.

94

Gene Expression Programming (GEP) Property Pages

Gene Expression Programming is an algorithm for performing Symbolic Regression to

try to a mathematical function that fits a set of data. Unlike traditional linear and non-

linear regression, symbolic regression does not require the form of the function to be

specified in advance. Using a genetic, evolution algorithm, symbolic regression finds a

function to fit the data. For more detailed information about gene expression

programming models, please see the chapter starting on page305.

Because of the number of parameters associated with gene expression programming,

there are five property pages for GEP: General, Functions, Evolution, Linking and

Constants.

95

GEP General Property Page

When you select the GEP General property page, you will see a screen like this:

Model Building Parameters

Type of model to build: Select the type of model you want DTREG to build. If you

select a model type other than gene expression programming, all of the other controls on

this screen will be disabled.

Population size: This is the number of chromosomes in the population being evolved.

Usually a population size in the range of 30 to 80 chromosomes works well.

96

Maximum tries for initial population: The first step in the GEP model building

process is to create an initial population with a random set of functions and terminals. If

the initial population contains no viable members, then a new population is tried with a

different set of functions and terminals. This process is repeated until a population is

found that has at least one viable member or the number of attempts specified by this

parameter is reached.

Genes per chromosome: A chromosome is composed of one or more genes joined by a

linking function. Usually one to ten genes per chromosome works well. More complex

functions require more genes.

Gene head length: This specifies the number of symbols (variables, constants and

functions) in the head section of each gene. Typically a head length in the range of two

to sixteen works well. More complex functions require longer heads to allow for more

variables and functions.

Maximum generations: This is the maximum number of generations that will be

produced during the evolution process. There is no way to know how many generations

will be required other than experimentation.

Generations without improvement: During the evolution process, DTREG notes when

the model is improved because a new chromosome is found that is better than any

previous one. If the number of generations specified by this parameter elapse without

finding any improvement, the evolution process stops.

Stop if fitness reaches: If the fitness score of the best chromosome equals or exceeds

the value of this parameter, the evolution process is stopped. The maximum possible

fitness is 1.0.

Maximum minutes for training: Specify the maximum number of minutes of execution

time you will allow DTREG spend on the training process. If the time limit is reached,

the evolution process stops. If this field is left blank then no time limit is imposed.

97

Fitness Function Parameters

Fitness function: Select which function you want to be used to compute the fitness

score. All fitness functions compute fitness scores that range from 0.0 to 1.0. A fitness

of 0.0 means the model fits very poorly – it is worthless or not viable. A fitness score of

1.0 means the model fits the data perfectly.

Mean squared error (MSE) [classification and regression] – This is the mean value of

the squared difference between the actual target value and the predicted target value. The

formula is:

 ∑()

Where Pi is the predicted value for row i and Ti is the actual target value; N is the number

of rows in the training data set.

Explained variance R^2 [regression] – This is the proportion of the initial variance in

the training data that is explained by the GEP model.

Where initialvariance is the variance for the training data set using the mean value of the

target variable as the predicted value for all rows:

 ∑(̅)

Variance is computed as shown in the previous section.

Root relative squared error [regression] – This is based on the square root of the

residual variance of the fitted model divided by the initial variance. This is the

recommended fitness function for regression problems.

 √

Number of hits and Number of hits with precision [classification and regression] –

This is the proportion of training rows whose predicted values fall within a specified

98

tolerance of the actual target value. For regression problems, Number of hits and

Number of hits with precision are calculated the same way:

 (

)∑ (| |)

Where precision is the “Precision (hit tolerance)” parameter on the property page.

For classification problems with a categorical target variable, the Number of hits fitness

function is the proportion of the cases that have the correct predicted target value after

rounding from the predicted numeric value to the closest category. Number of hits with

precision is computed the same for classification as for regression.

Number of hits with penalty [classification] – This fitness function measures the

number of correct classifications and penalizes the situation where there are no correct

classifications for some target categories. Experiments have shown this fitness function

to be highly effective; it is recommended for classification problems.

This fitness function it is based on the true positive (TP), true negative (TN), false

positive (FP) and false negative (FN) counts. If a predicted value is 1 (true) and the

actual class is also 1, then a TP prediction is counted. Similarly true negative (TN)

predictions occur when both classes are 0. False positive and false negative predictions

occur as shown in the following table:

Actual class Predicted class

 True False

True TP FN

False FP TN

With TP, TN, FP and FN being the sum of the counts for the training data, the fitness is

calculated as:

 ()

Where N is the total number of training cases and is equal to TP+TN+FP+FN. So if

there are some correctly classified positive and negative cases the fitness is the proportion

of correctly classified cases, but if there are no correct classifications for either the

positive or negative cases, then the fitness is zero (i.e., the expression is unviable).

Sensitivity and specificity [classification] – In a medical context, an ideal diagnostic test

would identify all patients with a suspected disease, and it would not falsely identify

anyone who did not have the disease. Thus there are two types of errors: (1) failing to

99

identify someone with the disease and (2) incorrectly identifying someone who does not

have the disease. The sensitivity of a test is the proportion of the people with the disease

who are identified by the test. The specificity of the test is the proportion of the people

who do not have the disease who are correctly identified as being disease-free by the test.

Ideally, sensitivity and specificity would both be 1.0.

The Sensitivity and Specificity fitness function computes the fitness by multiplying the

sensitivity and specificity values. This fitness function is a good choice for data with

highly unbalanced distributions of target categories. Using the definitions of TP, TN, FP

and FN given above, this fitness function is calculated as:

Absolute selection range [classification and regression] – This is computed by:

 | |

 (

) ∑ () ()

Where precision is the “Precision (hit tolerance)” parameter on the property page, and R

is the “Selection range” parameter.

Relative selection range [classification and regression] – This is computed by:

 | |

 (

) ∑ () (

| |
)

Precision and Selection Range: These two parameters are used for the fitness functions

Number of Hits with Precision and Absolute Selection Range.

100

Expression Simplification Parameters

Do algebraic simplification: If this box is checked, DTREG will perform automatic

simplification of the final expression. See page 319 for additional information about

algebraic simplification.

Parsimony pressure: This parameter gives a preference to simpler expressions over

more complex expressions during the evolutionary process. While simpler expressions

are desirable, using parsimony pressure sometimes hinders the evolution process so that

the best possible expression is not found. If you use this feature, it is best to also create a

model with parsimony pressure turned off and then compare the overall quality of the fit.

When parsimony pressure is used, the fitness value computed for a function is modified

so that the complexity of the expression affects the fitness as follows:

 ()

 ()

Where fitness’ is the modified fitness score, fitness is the original fitness score, PP is the

parsimony pressure value, NumGenes is the number of genes in the chromosome,

HeadLen and TailLen are the length of the head and tail sections of genes, and complexity

is a count of the number of symbols in the function. See page 318 for additional

information about parsimony pressure.

Try to simplify after training: If you check this box, DTREG will perform additional

evolution steps after the primary training in an attempt to find a simpler function that fits

the data as well or better than the function found during the primary training. During the

simplification process, a simpler function will be selected over a more complex one that

has the same fitness. However, quality of fit still takes priority, so if DTREG discovers a

function that provides higher fitness than the function used during the primary training it

will adopt that function even if it is more complex than the original function. It is

recommended that this option be used, because it never results in a loss of accuracy, and

it may discover a more accurate and simpler function.

Simplification generations: This is the maximum number of generations that will be

evolved during the simplification process.

Generations without improvement: If the specified number of generations are evolved

with no improvement in the fitness or simplicity of the function, the simplification

process will stop.

101

Maximum minutes simplifying: Specify the maximum number of minutes of execution

time that you will allow DTREG to spend on the simplification process. If this field is

left blank then no time limit is imposed.

Model Testing and Validation Parameters

No validation: The mode is trained but no validation is performed. This is fast, but it is

not recommended because there is no way to measure how well the model is likely to

generalize to new data.

Random percent: If this option is selected, a random percentage of the rows are held

out during the validation training, then those held-out rows are run through the model and

their error is reported as the validation error.

Use variable to select validation rows – If you check this button, DTREG uses the hold-

out control variable specified on the Validation Property Page (see page 45) to control

which variables are held-out during model training and used to test the model. Rows

with the specified category on the control variable are held out and used for testing; rows

with any other category are used to train the model. This option is enabled only if a hold-

out variable has been selected on the Validation Property Page.

V-fold cross validation: If this option is selected, V GEP models will be constructed

with (V-1)/V proportion of the rows being used in each model. The remaining rows are

then used to measure the accuracy of the model. The final model is built using all data

rows. This method has the advantage of using all data rows in the final model, but the

validation is performed in separately constructed models so there is some possibility that

the misclassification rate for the final model may be different than the validation models.

Leave-one-out validation: This option is like the V-fold cross validation option except

that N models are built where N is the number of rows in the training data set. (N-1) rows

are used to build each model and the N
th

 remaining row is used to test the model.

Because so many models are built, this option is appropriate only for small training sets.

Missing Value Parameters

How to handle missing predictor values: DTREG offers three choices for dealing with

predictor variables that have missing values. You can (1) exclude those rows from the

analysis, (2) replace the missing values with the median or mode values for the variable,

or (3) use surrogate variables. See page 357 for additional information about handling

missing values and the use of surrogate variables.

102

Miscellaneous Options

Compute importance of variables: If this box is checked, DTREG will compute and

display the relative importance of each predictor variable. The calculation is performed

using sensitivity analysis where the values of each variable are randomized and the effect

on the quality of the model is measured.

Expression Simplifier

If you click the “Expression simplifier” button, DTREG will display a screen where you

can experiment with its automatic algebraic simplification.

Enter an algebraic expression in the upper window, and click the Simplify button to see

how DTREG can simplify the expression. In this screen you can use any variable name

that begins with a letter; it is not necessary for the variable to be in the data set for the

model. Note that if you check the option box “Do algebraic simplification” DTREG will

perform automatic simplification of the functions it generates, so it is not necessary to

manually simplify them.

103

GEP Functions Property Page

The Functions property page is used to select which functions will be tried in the model

during the evolution process. Check boxes next to the functions you want to include.

Note that DTREG provides both mathematical functions (+,-,*,/, sqrt, sin, etc.) and

logical functions (AND, OR, NOT, etc.).

104

GEP Evolution Property Page

The Evolution property page contains parameters that control evolution operations such

as mutation and recombination.

Mutation and inversion rates

Mutation rate – This is the probability that a symbol (variable, function or constant) in a

gene will be mutated during each generation. Symbols in the head of a gene can be

replaced by variables, functions and constants (if constants are used); symbols in the tail

of the gene can be replaced only by variables and constants.

Inversion rate – This is the probability that the inversion operation will be performed on

a chromosome. Inversion selects a random starting symbol in a gene and a random

ending symbol. All of the symbols between the starting and ending points are then

reversed in order.

105

Transposition rates

Transposition is the process of moving a sequence of symbols in a gene from one

location to another. Some types of transposition allow sequences of symbols to be

moved from one gene to another gene in the same chromosome.

IS transposition rate – This is probability that Insertion Sequence Transposition will be

applied to a chromosome. Source and destination genes are selected in the chromosome;

the source gene may be the same as the destination. Starting and ending symbol positions

are selected in the source gene. The starting point may be in the head or tail section of

the gene, and the selected section may span the head and tail. The destination, insertion

point is selected in the head of the destination gene, but it is not allowed to be the first

(root) symbol of the gene, and the selection length is restricted so that it will remain

entirely in the head of the destination gene. The selected sequence of symbols is then

inserted into the destination gene, and any symbols following the insertion point that are

in the head of the destination gene are moved right to make room of the insertion.

Symbols shifted out of the head by the insertion are discarded.

RIS transposition rate – This is probability that Root Insertion Sequence Transposition

will be applied to a chromosome. A random scan point is selected in the head of a gene

beyond the first (root) symbol of the gene. The process then scans forward looking for a

function symbol. If no function is found, RIS transposition does nothing. If a function is

found, a random ending point is selected beyond the starting point but in the head of the

gene. The symbols in the selected range are then inserted at the beginning (root) of the

gene. Symbols pushed out of the head by the insertion are discarded.

Gene transposition rate – This is probability that Gene Transposition will be applied to

a chromosome. A random gene that is not the first gene of a chromosome is selected.

This gene is then inserted as the first gene of the chromosome. The gene being inserted is

removed from its original location, and the genes preceding it are moved over to make

room for the insertion at the head of the chromosome. So the length of the chromosome

is not changed.

Recombination rates

During Recombination, two chromosomes are randomly selected, and genetic material is

exchanged between them to produce two new chromosomes. It is analogous to the

process that occurs when two individuals are bred, and the offspring share genetic

material from both parents.

One-point rate – This is probability that one-point recombination will be applied to a

chromosome. Two parent chromosomes are randomly selected and paired together. A

split point is selected anywhere in the chromosomes (any gene and any position in a gene

– head or tail). The symbols in the parents from the split point to the ends of the

106

chromosomes are then exchanged between the parents. Note that all chromosomes have

the same number of symbols, so no symbols are lost during the exchange.

Two-point rate – This is probability that two-point recombination will be applied to a

chromosome. Two parent chromosomes are randomly selected and paired together. Two

recombination points are selected in the chromosomes. The symbols between the starting

and ending recombination points are then exchanged between the parent genes.

Gene recombination rate – This is probability that gene recombination will be applied

to a chromosome. Two parent chromosomes are randomly selected and paired together.

A random gene is selected and exchanged between the parent chromosomes.

GEP Linking Property Page

The Linking property page contains parameters that control how genes in a chromosome

are linked together. See page 312 for additional information about linking.

107

If a chromosome has more than one gene, the expressions described by the genes must be

linked together to form the full function representing the chromosome. This linking is

done using a linking function (or operator) that has two or more arguments such as

addition, logical AND and OR.

DTREG allows you to use either a static linking function or homeotic genes which are

genes with linking functions that evolve. If homeotic genes are used, then different

functions may be used to link different genes, and these functions are selected through

evolution. See page 312 for additional information about linking functions.

How to link subexpression genes

Use the same linking function for all genes – If this option is selected, then you must

select which linking function is to be used, and that function will be used to link all

genes. The linking function is selected from the “Link function” dropdown list shown on

the right of the screen. That list will be enabled when this option is selected.

Evolve the linking functions – If this option is selected, then a homeotic gene will be

added to the chromosomes to represent the linking functions. The homeotic gene (and

the linking functions it represents) will evolve in a similar manner to other genes.

Evolving (linking) homeotic genes

These parameters are only enabled if you select evolving linking functions.

Linking gene head length – This is the number of symbols in the head of the homeotic,

linking gene.

Mutation, inversion, transposition and crossover rates – These are the rates for

mutation, inversion, transposition and crossover for the homeotic gene. The operations

are performed in the same manner as the primary genes for the chromosome. See the

descriptions above for the actions performed by each of these operations.

Linking functions to use with evolution

Check the boxes next to the functions that you want to allow to be considered as linking

functions.

108

GEP Constants Property Page

The Constants property page contains parameters that control whether constants are to be

used in the GEP functions.

The DTREG implementation of gene expression programming allows the creation of

expressions with no explicit constants, with a fixed set of user-specified constants and

with random constants that mutate during the evolutionary process.

Note that even if explicit constants are not enabled, constants may be developed

implicitly during the evolutionary process. For example, a function may be evolved such

as:

 () √

Which, of course, simplifies to

109

Constants per gene – This parameter specifies how many random constant values are to

be included in each gene. Note that the inclusion of the constant values in a gene does

not necessarily mean that they will actually be used in the coding region of a gene where

they would be part of the expression. Just as with variables and functions, constants are

moved into the functional (coding) part of a gene through mutation and selection.

Minimum value – This is the minimum value for randomly generated constants.

Maximum value – This is the maximum value for randomly generated constants.

Type of random constants – Select whether you want to generate integer or real random

constants.

Mutate random constants – Check this box and specify a mutation rate if you want the

values of the random constants to mutate during the evolutionary process.

Use nonlinear regression to refine the values of random constants – If this option is

enabled, DTREG uses a sophisticated nonlinear regression algorithm to refine the values

of the random constants. This optimization is performed after evolution has developed

the functional form and linking and simplification have been performed. DTREG uses a

model/trust-region technique along with an adaptive choice of the model Hessian. The

algorithm is essentially a combination of Gauss-Newton and Levenberg-Marquardt

methods; however, the adaptive algorithm often works much better than either of these

methods alone.

Maximum iterations – This parameter controls the maximum iterations that will be

performed by the nonlinear regression algorithm as it refines the constants.

Convergence tolerance – This parameter specifies an accuracy goal used by the

nonlinear regression algorithm as it refines the constants.

Use fixed constants – If you wish to specify a fixed, non-evolving set of constants to be

considered in the functions, check this box and list the constants in the screen below.

Separate the constants by spaces or put them on separate lines.

110

K-Means Clustering Property page

Developed between 1975 and 1977 by J. A. Hartigan and M. A. Wong (Hartigan and

Wong, 1979), K-Means clustering is one of the oldest predictive modeling methods. K-

Means Clustering is a relatively fast modeling method, but it is also among the least

accurate models that DTREG offers.

For additional information about K-Means clustering, please see the chapter starting on

page 321.

When you select the K-Means clustering property page, you will see a screen like this:

111

Type of model to build: Select the type of model you want DTREG to build. If you

select a model type other than K-Means Clustering, all of the other controls on this screen

will be disabled.

Search for optimal number of clusters: Check this box to cause DTREG to try

building models with a varying number of clusters. If you don’t check this box, then

specify a fixed number of clusters in the “Number of clusters” field below.

Min, Max, Step: Specify the minimum number of clusters to try, the maximum and the

number of clusters to add between each step.

Maximum steps without change: As DTREG builds models with progressively larger

numbers of clusters it checks the validated accuracy of each model. If it tries the number

of models specified by this parameter without improving the accuracy, the search stops.

% rows to use for search: If you wish, you can restrict the number of data rows used

during the search process. Once the optimal size is found, the final model will be built

using all data rows.

Cross validate folds, Hold out sample %, Use training data: These parameters control

the method used to evaluate the accuracy of the model for each step. You can use cross-

validation and specify the number of validation folds, you can hold out a certain

percentage of the data and use the validation, or you can simply just the same data to train

and test the model. It is highly recommended that you use either cross-validation or a

hold-out sample.

Fixed number of clusters: If you do not check the box “Search for the optimal number

of clusters”, then specify the number of clusters to use for the model here.

Standardize predictor values: If this box is checked, the values of continuous predictor

variables are standardized by subtracting the mean and dividing by the standard

deviation. Selecting this option often reduces the quality of the model, so always try

building a model with this option turned off.

Compute importance of variables: If this option is selected, DTREG will provide an

estimate of the relative importance of each predictor variable. This is usually a fairly fast

procedure unless there are a very large number of predictor variables and a lot of data.

Include position of cluster centers in analysis report: Check this option to cause

DTREG to report the position of cluster centers in the analysis report.

Write positions of cluster centers to a disk file: Check this option to cause DTREG to

write information about the positions of cluster centers to the specified disk file.

Testing and validation parameters – Select the type of validation you want DTREG to

use to test the model. V-fold cross-validation is recommended.

112

Missing value controls – DTREG offers three choices for dealing with predictor

variables that have missing values. You can (1) exclude those rows from the analysis, (2)

replace the missing values with the median or mode values for the variable, or (3) use

surrogate variables. See page 357 for additional information about handling missing

values and the use of surrogate variables.

113

Discriminant Analysis Property page

Discriminant analysis is a classical method of classification that usually is able to build

models that rival the more sophisticated models for accuracy.

For additional information about discriminant analysis, please see the chapter starting on

page 305.

When you select the discriminant analysis property page, you will see a screen like this:

Type of model to build: Select the type of model you want DTREG to build. If you

select a model type other than discriminant analysis, all of the other controls on this

screen will be disabled.

Prior probabilities for target categories: Select the assumed prior probability

distribution for the target variable categories. Traditionally (and in most benchmarks) the

distribution in the training data set is used. If you wish to specify a custom set of prior

probabilities, select the option “Use priors on category weight page”, and set the values

of the priors on the Category weight property page (see page 128).

Compute importance of variables: If this option is selected, DTREG will provide an

estimate of the relative importance of each predictor variable. This is usually a fairly fast

procedure unless there are a very large number of predictor variables and a lot of data.

Model testing and validation: Select which procedure (if any) is to be used to validate

the model. The recommended method is 10-fold cross validation which builds 10 models

using 90% of the data for each model and 10% for validation.

How to handle missing predictor variable values: DTREG offers three choices for

dealing with predictor variables that have missing values. You can (1) exclude those

114

rows from the analysis, (2) replace the missing values with the median or mode values for

the variable, or (3) use surrogate variables. See page 357 for additional information

about handling missing values and the use of surrogate variables.

115

Linear Regression Property Page

Linear regression is one of the most widely used modeling methods. For more technical

information about linear regression, please see the chapter starting on page 331.

When you select the linear regression property page, you will see a screen like this:

Type of model to build: Select the type of model you want DTREG to build. If you

select a model type other than linear regression, all of the other controls on this screen

will be disabled.

Testing and validation parameters – Select the type of validation you want DTREG to

use to test the model. V-fold cross-validation is recommended.

Missing value controls – DTREG offers three choices for dealing with predictor

variables that have missing values. You can (1) exclude those rows from the analysis, (2)

replace the missing values with the median or mode values for the variable, or (3) use

surrogate variables. See page 357 for additional information about handling missing

values and the use of surrogate variables.

116

Include constant (intercept) term – If you select this option, DTREG includes a

constant value (β0) in the model. If you don’t select this option, then there is no constant,

and the model consists of just computed coefficients multiplied by the predictor

variables.

Compute importance of variables – If you select this option, DTREG will compute the

relative importance of each predictor variable and display it in the analysis report.

Confidence interval percent – In addition to computing the maximum likelihood values

of the parameters, confidence intervals also are calculated. You can specify the percent

confidence to be computed. For example, specifying a value of 95 for this parameter will

cause the confidence intervals to span a range that is 95% likely to cover the true values.

117

Logistic Regression Property Page

Logistic regression is a popular method for modeling data that has a categorical target

variable with two categories.

For more technical information about logistic regression, please see the chapter starting

on page 337.

When you select the logistic regression property page, you will see a screen like this:

Type of model to build: Select the type of model you want DTREG to build. If you

select a model type other than logistic regression, all of the other controls on this screen

will be disabled.

Convergence criteria – An iterative (Newton-Raphson) algorithm is used to compute the

maximum likelihood values of the logistic regression parameters. Two parameters are

available to control the algorithm. The tolerance factor is used to decide when the

parameter values have converged to acceptable tolerance. If the absolute value of the

maximum change of any parameter during the last iteration is less than the convergence

118

tolerance, then convergence is achieved. The maximum iteration parameter specifies a

safety stop for the algorithm if convergence is not reached.

Confidence interval percent – In addition to computing the maximum likelihood values

of the parameters, confidence intervals also are calculated. You can specify the percent

confidence to be computed. For example, specifying a value of 95 for this parameter will

cause the confidence intervals to span a range that is 95% likely to cover the true values.

Testing and validation parameters – Select the type of validation you want DTREG to

use to test the model. V-fold cross-validation is recommended.

Missing value controls – DTREG offers three choices for dealing with predictor

variables that have missing values. You can (1) exclude those rows from the analysis, (2)

replace the missing values with the median or mode values for the variable, or (3) use

surrogate variables. See page 357 for additional information about handling missing

values and the use of surrogate variables.

Include constant (intercept) term – Check this box to include a constant term in the

logistic regression equation. Generally, this box should be checked because regression

models that contain a constant term are more accurate than those that don’t.

Use Firth’s procedure – Check this box to cause “Firth’s procedure” to be used in the

calculation of the maximum likelihood parameter values. Enabling Firth’s procedure has

three effects: (1) it may make it possible to converge to a solution when convergence

cannot be achieved otherwise; (2) it reduces the bias of the computed parameters; (3) it

significantly increases the computation time. Since the bias-correct parameter values

computed using Firth’s procedure may be different than those computed without Firth’s

procedure, be careful about comparing the parameter values with those computed by

another program not using Firth’s procedure. Generally, it is recommended that you do

not enable Firth’s procedure unless parameter convergence cannot be achieved without it.

Compute likelihood ratio significance tests – Check this box to request that likelihood

ratio significance tests be computed for the parameters. Likelihood ratio significance

tests are a more accurate method of accessing which parameters are significant in the

model than the usual Wald significance tests. The likelihood ratio significance test for an

individual parameter is computed by comparing the deviance of the model including the

parameter with the deviance excluding the parameter. Since the model must be

recomputed with each parameter excluded, the computation time increases in direct

proportion to the number of predictor variables. In the case of a predictor variable with

multiple categories, the likelihood ratio is computed with the predictor included and

removed rather than testing each possible category of the predictor.

Compute importance of variables – If you select this option, DTREG will compute the

relative importance of each predictor variable and display it in the analysis report.

119

Correlation, Factor Analysis, and Principal Components Property Page

Correlation, Factor Analysis and Principal Components Analysis are exploratory analysis

procedures that provide useful information about the relationship between variables. For

more technical information about these procedures, please see the chapter starting on

page 345.

When you select the Correlation/Factor Analysis property page, you will see a screen like

this:

Type of analysis to perform – Select Correlation, PCA & Factor Analysis to enable the

features on this screen.

120

Method for continuous variables – Two correlation methods are provided for

continuous variables: (1) Pearson product moment, and (2) Spearman rank-order.

Usually when the term “correlation” is used without qualification, it is referring to

Pearson product moment correlation. Spearman rank-order replaces the values of the

variables by their rank (sorted position order) and performs the correlation using the rank

order values. This has the advantage of allowing Spearman correlation to work better

with nonlinear correlations. See page 345 for more information about the types of

correlation.

Method for categorical variables – Most correlation programs provide procedures only

for computing correlation between continuous variables. Because DTREG allows both

continuous and categorical variables, correlation becomes more complex. See page

345345 for information about the various type of correlation DTREG performs when the

variables are categorical.

Include target variable – If this box is checked, the target variable is included in the

analysis. If the box is not checked, only predictor variables are included.

Decompose categorical variables into dichotomous variables – Specifies that multi-

category categorical variables should be decomposed into individual dichotomous

variables. For example, a multi-category variable such as MaritalStatus with categorical

values 0 for Single, 1 for Married, and 2 for Divorced would be converted to three

dichotomous variables: MaritalStatus{0}, MaritalStatus{1}, and MaritalStatus{2}. The

value of MaritalStatus{0} is 1 if the value of MaritalStatus is 0, and its value is 0 if

MaritalStatus is 1 or 2. Similarly, MaritalStatus{1} is 1 if MaritalStatus is 1, and its

value is 0 if MaritalStatus is 0 or 2.

Print correlation matrix in the analysis report – Check this box to cause the

correlation matrix to be printed. If you have many variables so the matrix would be large

and you are only interested in the Factor Analysis results, you can uncheck this box.

Sort the variable names in the correlation matrix – Check this box to cause DTREG

to sort the names of the variables alphabetically in the correlation matrix. If the box is

not checked, the variables are listed in the order in which they occur in the data file.

Input data is a correlation matrix – Check this box if the input data file contains a

correlation matrix rather than raw data to be correlated. The correlation matrix can be

provided as a full matrix, for example:

 V1 V2 V3

1.00 0.56 0.39

0.56 1.00 0.67

0.39 0.67 1.00

Or as a lower-triangular matrix like this:

121

 V1 V2 V3

1.00

0.56 1.00

0.39 0.67 1.00

Basis for calculations – Select whether you want principal components or factors to be

based on a correlation matrix of the variables or a covariance matrix. Since the values in

a covariance matrix are depending on variable units of measure (scale), it is

recommended that use a correlation matrix as the basis.

Perform factor or principal components analysis – Check this box if you want to

perform either factor or principal components analysis. Leave the box unchecked if you

only want to compute correlations.

Factor extraction method – Select which method you want to use to extract the factors:

1. Principal factor analysis – Use this method to perform factor analysis where the

assumption is that the correlations between variables can be explained by a set of

common factors smaller in number than the number of variables. DTREG uses

iterated common factor analysis to estimate the communalities.

2. Principal components analysis – Use this method when you want to transform a

correlation matrix into a factor matrix with as many factors as variables that

explain all of the variance.

Matrix rotation method – After extracting factors, you optionally can allow DTREG to

rotate the factor matrix so that the factor loadings are more clearly delineated by the

factors. DTREG provides two rotation methods:

1. Varimax – This is the most popular rotation method. It performs an orthogonal

rotation of the factor matrix.

2. Promax – This rotation method performs oblique (non-orthogonal) rotations

which allow the resulting factor axes to be correlated.

Initial communalities – When performing factor analysis, a set of initial communalities

must be placed on the diagonal of the correlation matrix. The iterative factor analysis

procedure will then refine these estimates. DTREG provides four ways of setting the

initial communality estimates:

1. Squared multiple correlation – This is the squared value of the multiple

correlation of each variable with all other variables. This is the default and

recommended method.

2. Maximum correlation – The initial communality is set to the maximum

correlation between the variable and any other variable.

3. Average (SMC,MC) – DTREG uses the average of the squared multiple

correlation and the maximum correlation.

4. 1.00 – DTREG sets all initial communality values to 1.00. Note: when

performing principal component analysis, communalities are always set to 1.00.

122

Maximum iterations – This is the maximum allowed number of iterations that the factor

analysis procedure may make while refining the estimates of the communalities. It will

stop before this limit if the communality values converge.

How to limit number of retained factors – Three methods are provided for determining

how many significant factors will be retained. You can check some or all of the boxes.

Whichever limit has the smallest value is used:

1. Maximum factors – Use this option if you want to explicitly specify the

maximum number of factors to retain.

2. Explained variance % -- If this option is selected, enough factors will be

included so that the cumulative variance explained by them matches or exceeds

the specified value.

3. Minimum eigenvalue – If this option is selected, a factor will be included only if

its eigenvalue is at least as large as the specified value.

Print factor matrix in analysis report – Check this box if you want the factor loading

matrix printed in the analysis report.

Print un-rotated factor matrix – If you request that the factor matrix be rotated

(Varimax/Promax), you can check this box to have both the un-rotated and the rotated

factor matrix printed in the analysis report. If the box is not checked, only the rotated

factor matrix is printed.

Print most important variables for each factor – If you check this option, then

DTREG will display a table showing the most important variables (i.e., variables with

largest loading) for each factor. Only variables whose loadings equal or exceed the value

of the parameter “Flag factors greater than equal to” (see below) are listed.

Print eigenvector matrix – If this option is selected, DTREG will include the matrix of

eigenvectors in the analysis report.

Multiply factor loadings by 100 and display as integers – If you check this box,

DTREG will multiply factor loadings by 100 and display them as whole integer values.

So, for example, a factor loading of 0.68 would be displayed as 68. This option makes it

easier to pick out significant loadings in a long list of factor loadings.

Flag factors greater than or equal to – If you check this option, then DTREG will place

an asterisk to the right of any factor loading whose absolute value is equal to or greater

than the specified value. This makes it easy to identify significant factor loadings.

Compute PCA transformation function – If you check this option, DTREG will

compute the function to convert data values into PCA transformed scores, and it will

store it with the project file so that PCA transformations can be used in input data for

future models. See page 352 for additional information about using PCA

transformations.

123

Compute surrogate variables for PCA transformation – If you check this option,

DTREG will compute surrogate variable functions (see page 358) to impute the values of

missing data values. The surrogate variable functions will be stored with the PCA

transformation function so that they can be used for future transformations of data values

into PCA transformed scores.

Write correlation matrix to file – Use this option if you want DTREG to write the

correlation matrix to an external file. The file is created as a comma-separated value file.

Write factor matrix to file – Use this option if you want DTREG to write the factor

loading matrix to an external file. The file is created as a comma-separated value file.

PCA Projected Data – Enable this option if you want DTREG to transform the input

data values into PCA scores. See page 352 for additional information about using PCA

transformations. This feature is available only in the Enterprise Version of DTREG.

PCA Transform Function – Enable this option if you want DTREG to write the

coefficients of the PCA transform functions to a data file. See page 352 for additional

information about PCA transformations. This option is available only in the Enterprise

Version of DTREG.

124

Class Labels Property Page

The Labels property page is used to specify display labels for categorical variables.

Optionally, you can designate a “Focus Category” of the target variable.

The name of each categorical variable will be shown. If you wish to set display labels for

the categories of a variable, select the variable and then click the “Set labels” button. A

screen similar to this will be shown:

125

The first column displays values found in the data file for the categories of the variable.

In this example, the values 1 and 2 occurred in the data file for the variable “Liver

condition”.

In the second column, enter text strings that you want displayed in the generated tree

nodes and in the report, instead of the corresponding actual value. In this example, when

the value of Liver condition is 1, the string “Normal” will be displayed, and when the

value is 2, “Abnormal” will be displayed.

You can assign text labels to categorical variables that have textual values in the data file

as well as those that have numeric values. For example, the values of sex might be coded

as ‘M’ and ‘F’ in the data file, but by assigning labels, you could have the categories

display as “Male” and “Female”.

126

Assigned label strings are used for esthetic purposes only, and they have no effect on the

generation of the model, and class labels are not written to the output file when data is

scored.

Designating a Focus Category

In addition to setting labels for variable categories, you also can designate a “Focus

Category” of the target variable. If a focus category is designated, then DTREG will

collect additional information about the designated category and display them in the

report and charts.

Initial Split Property Page

The Initial Split property page is used to designate a predictor variable that is to be used

for the initial split and predictor variables that are to be preferred for splits.

127

The name of each predictor variable will be shown in the list. Next to the variable names

are two columns:

Initial split – If you check this box, the selected variable will be used for the initial split

even if it is not the best splitting variable. This is useful if you want to force a split so as

to compare the trees generated by the categories of a particular variable. For example, if

sex is one of your predictor variables, you could force an initial split on it and then

compare the trees generated under the male and female categories.

Preferred – If you check this box, then the selected variable will be used in preference to

a non-preferred variable if they generate equally good splits. You may designate more

than one variable as preferred.

128

Category Weights Property Page

The Category Weights property page is used to specify the weights for the categories of

the target variable when you are performing a classification analysis. (Note, category

weights are sometimes referred to as “priors” (a priori) probabilities for the categories of

the target variable.)

The property page for category weights is only available when performing a classification

analysis (i.e., with a categorical target variable). Category weights do not apply to

regression analyses.

The category weights determine how DTREG will attempt to balance the

misclassifications across the categories. The greater the weight given to a category, the

fewer misclassifications it will have. If equal (balanced) category weights are selected,

then DTREG will attempt to build a model so that the proportion of misclassified rows is

approximately equal across the categories. If you tell DTREG to use the frequency

129

distribution in the data set, then categories with a higher frequency of cases will receive

greater weight, and the misclassification proportions for those categories will be lower

than for other, less common categories.

When category weights are set equal, the category assigned to a node is determined by

the proportion of cases having each category in the node compared to the proportion in

the root node. As a result, the assigned category may not be the same as the category

with the most number of cases. For example, if the data from a disease treatment had

80% survival and 20% death (Live/Die target variable), then a node would be classified

as death if the proportion of death cases represents more than 20% of the cases in the

node – even if it is less than 50%. One surprising consequence of this is that the nodes of

a binary category tree may end up with more than 50% misclassified cases.

TreeBoost and Decision Tree Forest models handle category weights by adjusting the

weights of the data rows so that the sums of the weights for the rows with each target

category match the proportions specified for the target category weights. For example, if

equal (balanced) category weights was specified and there are twice as many rows with

the “Yes” category as “No”, then the weights for rows with the “No” category would be

increased so that their combined weight matches the combined weight of the rows with

the “Yes” category.

Category Weight Options

DTREG allows you to select several options for category weights:

Equal (balanced) – If you select this option, DTREG will attempt to build a model with

roughly equal misclassification proportions for the categories. This is the default and

recommended setting for category weights.

Use frequency distribution in data set – If you select this option, DTREG will compute

the distribution of the categories of the target variable in the training dataset and use

those proportions as the category weights. If the training sample was drawn at random

from the whole population, and the category distributions are reflective of the whole

population, then this is a good option to use.

Mix (average data frequency and equal) – If you select this option, DTREG sets the

category weights to an average of the equal proportions and the data frequency

proportions.

Use category weights specified below – If you select this option, a matrix will be

displayed in the lower portion of the screen where you can enter custom category

weights. Each category of the target variable will be displayed in the first column. You

can enter weight values in the second column. At the beginning of an analysis, DTREG

scales the category weights so their sum is 1.0; hence, only the relative values specified

for each category matter.

130

Misclassification Cost Property Page

The Misclassification Cost property page is used to specify how much weight (cost) to

give to misclassifications of categories of the target variable. It is only available when

generating classification trees with categorical target variables.

In some cases, it may be more costly to misclassify some categories of the target variable

than others. For example, consider a decision tree that will be used to diagnose heart

attacks in patients arriving at an emergency room. Assume the target variable

(Diagnosis) has several categories including heart attack, indigestion, pneumonia, bruised

rib and several other possible causes of chest pain. When creating the tree, the researcher

might want to assign a higher misclassification cost value to the heart attack category

than the other categories, because misclassifying a heart attack is much more serious than

misclassifying indigestion.

131

Misclassification cost and probability threshold options

You have several choices for assigning misclassification costs or selecting probability

thresholds:

Use equal (unitary) misclassification costs for all categories – If you select this option,

DTREG will use the same misclassification costs (1.00) for all categories.

Select threshold to minimize total (unweighted) errors – If this option is selected,

DTREG will use a probability threshold that minimizes the total error rate for all cases.

This may result in the error rates for each category being very different. This option is

only available when creating a model with two target categories.

Select threshold to minimize weighted errors – If this option is selected, DTREG will

use the probability threshold that minimizes the weighted misclassification errors. The

weighted misclassification error is computed by multiplying the misclassification rate for

each target category by a factor that corrects for the relative frequency of cases with that

category in the data. Target categories that occur infrequently in the data receive a

greater weight to prevent them from being overwhelmed by frequently occurring

categories. This option is only available when creating a model with two target

categories.

Select threshold to balance misclassification percents – If this option is selected,

DTREG will use the probability threshold that approximately balances the

misclassification error proportion for the target categories. This option is only available

when creating a model with two target categories.

Use probability threshold to predict category – This option is enabled only if the target

variable has two categories and you are creating a type of model that predicts probability

scores. If you select this option, then the probability threshold section of this screen will

be enabled.

132

Select which category of the target variable you are trying to predict and specify a

probability threshold value that must be reached for a case to get assigned that category.

If the probability of a case is lower than the specified threshold, then it is assigned the

other category. For example, if the two target categories are Yes and No and the

corresponding predicted probabilities are Pyes and Pno, then if you select Yes as the

target category on this section and specify 0.60 as the threshold, a case will be assigned

the Yes category if Pyes is greater than or equal to 0.60. Otherwise it will be assigned

the No category. Note: Selecting Yes as the category and specifying a threshold of 0.60

is exactly the same as selecting No as the category and specifying a threshold of 0.40

The Probability Threshold Chart described on page 223 and the Probability Threshold

Report described on page 197 can be used to determine how a probability threshold will

affect the predictions.

Positive Target Category – Some statistics such as Sensitivity and Specificity (see page

192) use the concept of the “positive” category of the target variable. The positive target

category is specified in this field.

Use the misclassification costs specified below – If you select this option, a matrix will

be displayed in the lower portion of the screen (see the example screen on the previous

page). The categories of the target variable will be shown in the left column and in the

top row. An entry in a specified row/column position is the cost of misclassifying the

category in the selected column as the category in the selected row. The diagonal

elements of the matrix are the cost of correctly classifying a category; their values are

usually 0.00 since there is no misclassification cost for a correct classification.

DTREG uses the altered priors method to convert the specified misclassification costs

into values of category weights (prior probabilities) that perform the misclassification

weighting. See Breiman, Friedman, Olshen and Stone (1984) for information about the

use of altered priors.

133

Missing Data Property Page

The Missing Data property page tells DTREG how to handle missing data values.

Missing values are an unfortunate but common occurrence in surveys and research

projects: subjects refuse (or forget) to answer some questions, forms are redesigned

adding or dropping questions, and subjects sometimes drop out of studies (or die) before

all of the information can be collected.

If the value of the target variable or the weight variable is missing, the entire row (case) is

dropped. Obviously, if all of the predictor variable values are missing, the row also must

be dropped. However, if the value of the target variable is known and some of the

predictor variables are available, then it is desirable to use that data rather than dropping

the entire row.

134

Missing Data Options

DTREG offers two methods for salvaging rows with missing values on the predictor

variable used for splitting a group. You may check either or both of the boxes

corresponding to the methods you want DTREG to use.

DTREG attempts to use the methods in the following order. Once a method is found that

can classify the row, the process stops at that point. If the row cannot be classified by

any enabled method, the row is not assigned to either child group, and the last node the

row ends up in becomes its terminal node.

1. Use surrogate splits – If this option is selected, DTREG attempts to classify rows by

using “surrogate” splitter variables.

Surrogate splitters provide the most accurate classification of rows with missing values.

This is the default and recommended method.

Surrogate splitter variables are predictor variables that are not as good at splitting a group

as the primary splitter but which yield similar splits. DTREG compares which rows are

sent to the left and right child groups by the primary splitter with the rows sent to the

corresponding child groups by every other predictor variable. The predictors whose

splits most closely mimic the split by the primary splitter are the surrogate splitters.

The association between the primary splitter and each alternate predictor is computed as

a function of how closely the alternate predictor matches the primary splitter. (This

roughly corresponds to a count of how many rows each predictor sends left and right, but

the actual calculation is more complex.) The surrogate splitter variables are ranked in

decreasing order of association.

When a row is encountered that has a missing value on the primary splitter, DTREG

searches the list of surrogate splitters and uses the one with the highest association to the

primary splitter that has a non-missing value for the row.

For additional information about surrogate splitters, please see page 364.

2. Put rows in the most probable group – If the value of the splitting variable is

missing, the row is put into whichever child group has the greatest likelihood of receiving

an unknown, random case. When this method of used, none of the predictor values for

the row contribute to its classification; it is simply dumped into whichever child group

has the larger probability of picking up random cases. Usually, the “most probable”

group is the group with the largest number of rows assigned to it. However, the most

probable group may not necessarily be the largest group if the distribution of categories is

not uniform or if unequal category weight values are specified.

Always compute surrogate predictors – If you check this box, DTREG always will

compute the association between the primary splitter and all other potential surrogate

splitters. If you don’t check this box, DTREG will only determine surrogate splitters if

135

they are needed because rows in a group that is being split have missing values on the

primary splitter variable.

Leaving this box unchecked can significantly speed up the generation of the tree, but it

has several disadvantages:

1. If you later use the generated tree to “score” a dataset that has missing values, and

surrogate splitters were not generated when the tree was built, they will not be available

to guide scoring of rows with missing values on splitters. If you do not plan to use the

generated tree to score data, then this is not a factor.

2. The association values assigned to surrogate predictors are used as a component in

calculating the overall importance of variables. So if surrogate splitters are not

calculated, the overall importance scores will be less accurate.

Check all predictor variables (for surrogates) – If you check this button, then DTREG

will check every predictor variable to see how well it functions as a surrogate splitter for

the primary splitter. If there are many predictor variables, this is a time-consuming

operation, but it guarantees that the best surrogate predictors will be found.

Check only competitor splitters – If you check this button, DTREG will check only the

five predictors that were the best “competitors” (runners up) to the primary splitter to see

how well they function as surrogates. In about 80% of the cases, predictors that are good

surrogates for the primary splitter are also good competitors to the primary splitter.

Selecting this operation can dramatically speed up many analyses with minimal loss of

accuracy. For example, if there are 100 predictor variables, selecting this operation

would reduce the number of surrogate checks from 100 to 5. However, in some cases,

predictor variables may be good surrogates without being good competitors; so it is

recommended that for the final, definitive tree build, you select the option to check all

predictor variables as surrogates.

136

Variable Weights Property Page

The Variable Weights property page allows you to assign weights to predictor variables

so that the improvements derived by splitting on variables are not treated equally.

The left column of this screen shows the names of all predictor variables. The right

column shows the weight values. You can assign values between 0 and 100 for weights.

If the weight values are not equal, then the improvement value computed by potentially

splitting a group on a predictor is multiplied by the proportion of its weight before being

compared with the possible improvements from splitting on other predictors. By

reducing the weighting for a variable, you can cause it to be used as a splitter only if its

improvement is better than other predictors with higher weights. Hence, DTREG is less

likely to use the predictor for splitting.

Reasons for Weighting Variables

There are several reasons why you might want to use weighting to reduce the likelihood

of splitting on a variable:

137

1. The variable may be difficult or expensive to obtain, so you don’t want to have it enter

the model too early. For example, the variable might correspond to the result of some

unpleasant or expensive invasive medical test that you don’t want to use unless it is very

significant.

2. The variable may correlate with the target variable in such a way that its value tends to

dominate over other predictors too much. For example, if you are analyzing sales data,

the quantity of an item sold to a customer might be the target variable, and predictor

variables might include the size of the customer’s company, their type of business, the

area of the country, etc. Since large companies tend to buy more than small companies,

the company size predictor may dominate. However, it may be harder to sell to large

companies than smaller ones; so, you may want to discount the value of the company size

predictor so that other factors such as geographic region and company type play a more

significant role in the model.

Miscellaneous Property Page

The Miscellaneous property page currently contains settings for random number seeds.

Random Number Starting Seeds

Random numbers are used for a number of stochastic processes in DTREG. If you want

to test whether the random number seeds (starting values) affect the generated model, you

can specify the seed values on this screen.

Model build – This is the primary random number generator used for model building.

For example, it is used to select the rows and variables used for each tree in a decision

tree forest.

Subset rows – This random number generator is used to select rows when a subset of the

rows is being used to train the model.

138

Validation – This random number generator is used to select the rows that go into cross

validation folds. It also controls which rows are held out of the model if holdout

sampling is used.

Variable importance – This random number generator is used when sensitivity analysis

is being performed to estimate the relative importance of variables.

139

Time Series Modeling and Forecasting

 “Predicting the future is hard, especially if it hasn’t happened yet.”

 – Yogi Berra

Introduction to time series analysis

A time series is a chronological sequence of observations on a particular variable.

Usually the observations are taken at regular intervals (days, months, years), but the

sampling could be irregular. Common examples of time series are the Dow Jones

Industrial Average, Gross Domestic Product, unemployment rate, and airline passenger

loads. A time series analysis consists of two steps: (1) building a model that represents a

time series, and (2) using the model to predict (forecast) future values.

If a time series has a regular pattern, then a value of the series should be a function of

previous values. If Y is the target value that we are trying to model and predict, and Yt is

the value of Y at time t, then the goal is to create a model of the form:

 Yt = f(Yt-1, Yt-2, Yt-3, …, Yt-n) + et

Where Yt-1 is the value of Y for the previous observation, Yt-2 is the value two

observations ago, etc., and et represents noise that does not follow a predictable pattern

(this is called a random shock). Values of variables occurring prior to the current

observation are called lag values. If a time series follows a repeating pattern, then the

value of Yt is usually highly correlated with Yt-cycle where cycle is the number of

140

observations in the regular cycle. For example, monthly observations with an annual

cycle often can be modeled by Yt = f(Yt-12).

The goal of building a time series model is the same as the goal for other types of

predictive models which is to create a model such that the error between the predicted

value of the target variable and the actual value is as small as possible. The primary

difference between time series models and other types of models is that lag values of the

target variable are used as predictor variables, whereas traditional models use other

variables as predictors, and the concept of a lag value doesn’t apply because the

observations don’t represent a chronological sequence.

ARMA and modern types of models

Traditional time series analysis uses Box-Jenkins ARMA (Auto-Regressive Moving

Average) models. An ARMA model predicts the value of the target variable as a linear

function of lag values (this is the auto-regressive part) plus an effect from recent random

shock values (this is the moving average part). While ARMA models are widely used,

they are limited by the linear basis function.

In contrast to ARMA models, DTREG can create models for time series using neural

networks, gene expression programs, support vector machines and other types of

functions that can model nonlinear relationships. So, with a DTREG model, the function

f(.) in

 Yt = f(Yt-1, Yt-2, Yt-3, …, Yt-n) + et

can be a neural network, gene expression program or other type of general model. This

makes it possible for DTREG to model time series that cannot be handled well by ARMA

models.

Setting up a time series analysis

Input variables

When building a normal (not time series) model, the input must consist of values for one

target variable and one or more predictor variables. When building a time series model,

the input can consist of values for only a single variable – the target variable whose

values are to be modeled and forecast. Here is an example of an input data set:

Passengers

112.

118.

132.

129.

121.

141

The time between observations must be constant (a day, month, year, etc.). If there are

missing values, you must provide a row with a missing value indicator for the target

variable like this:

Passengers

112.

118.

?

129.

121.

For financial data like the DJIA where there are never any values for weekend days, it is

not necessary to provide missing values for weekend days. However, if there are odd

missing days such as holidays, then those days must be specified as missing values. It is

also desirable to put in missing values for February 29 on non-leap years so that all years

have 366 observations.

Lag variables

A lag variable has the value of some other variable as it occurred some number of

periods earlier. For example, here is a set of values for a variable Y, its first lag and its

second lag:

Y Y_Lag_1 Y_Lag_2

3 ? ?

5 3 ?

8 5 3

6 8 5

Notice that lag values for observations before the beginning of the series are unknown.

DTREG provides automatic generation of lag variables. On the Time Series Property

page (see page 47) you can select which variables are to have lag variables generated and

how far back the lag values are to run. You can also create variables for moving

averages, linear trends and slopes of previous observations. Here is an example of a

Variables Property Page showing lag variables generated for Passengers:

142

On this screen, you can select which generated variables you want to use as predictors for

the model. While it is tempting to generate lots of variables and use all of them in the

model, sometimes better models can be generated using only lag values that are multiples

of the series’ cycle period. The autocorrelation table (see page 147) provides information

that helps to determine how many lag values are needed. Moving average, trend and

slope variables may detract from the model, so you should always try building a model

using only lag variables.

Intervention variables

An exceptional event occurring during a time series is known as an intervention.

Examples of interventions are a change in interest rates, a terrorist act or a labor strike.

Such events perturb the time series in ways that cannot be explained by previous (lag)

observations.

DTREG allows you to specify additional predictor variables other than the target

variable. You could have a variable for the interest rate, the gross domestic product,

inflation rate, etc. You also could provide a variable with values of 0 for all rows up to

the start of a labor strike, then 1 for rows during a strike, then decreasing values

following the end of a strike. These variables are called intervention variables; they are

specified and used as ordinary predictor variables. DTREG can generate lag values for

intervention variables just as for the target variable.

143

Trend removal and stationary time series

A time series is said to be stationary if both its mean (the value about which it is

oscillating), and its variance (amplitude) remain constant through time. Classical Box-

Jenkins ARMA models only work satisfactorily with stationary time series, so for those

types of models it is essential to perform transformations on the series to make it

stationary. The models developed by DTREG are less sensitive to non-stationary time

series than ARMA models, but they usually benefit by making the series stationary

before building the model. DTREG includes facilities for removing trends from time

series and adjusting the amplitude.

Consider this time series which has both increasing mean and variance:

If the trend removal option is enabled on the Time Series property page (see page 47),

then DTREG uses regression to fit either a linear or exponential function to the data. In

this example, an exponential function worked best, and it is shown as the blue line

running through the middle of the data points. Once the function has been fitted, DTREG

subtracts it from the data values producing a new set of values that look like this:

144

The trend has been removed, but the variance (amplitude) is still increasing with time. If

the option is enabled to stabilize variance, then the variance is adjusted to produce this

series:

This transformed series is much closer to being stable. The transformed values are then

used to build the model. A reverse transformation is applied by DTREG when making

forecasts using the model.

Important note: Trend removal is almost always beneficial. However, experiments show

that variance stabilization (amplitude adjustment) is beneficial about 20% of the time and

145

harmful about 80% of the time. So you should try it both ways and use whichever is

better.

Selecting the type of model for a time series

DTREG allows you to use the following types of models for time series: (1) Decision

tree, (2) TreeBoost, (3) Multilayer perceptron neural network, (4) General regression

neural network (GRNN), (5) RBF neural network, (6) Cascade correlation network, (7)

Support vector machine (SVM), (8) Gene expression programming, (9) GMDH neural

networks.

Experiments have shown that decision trees usually do not work well because they do a

poor job of predicting continuous values. Gene expression programming (GEP) is an

excellent method for time series because the functions generated are very general, and

they can account for trends and variance changes. General regression neural networks

(GRNN) and GMDH neural networks also perform very well in tests. Multilayer

perceptrons sometimes work very well, but they are more temperamental to train. So the

best recommendation is to always try GEP and GRNN models, and then try other types of

models if you have time. If you use a GEP model, it is best to enable the feature to allow

it to evolve numeric constants (see page 108).

Evaluating the forecasting accuracy of a model

Before you bet your life savings on the forecasts of a model, it is nice to do some tests to

evaluate the predictive accuracy of the model. DTREG includes a built-in validation

system that builds a model using the first observations in the series and then evaluates

(validates) the model by comparing its forecast to the remaining observations at the end

of the series.

Time series validation is enabled on the Time Series property page (see page 47).

Specify the number of observations at the end of the series that you want to use for the

validation. DTREG will build a model using only the observations prior to these held-out

observations. It will then use that model to forecast values for the observations that were

held out, and it will produce a report and chart showing the quality of the forecast. Here

is an example of a chart showing the actual values with black squares and the validation

forecast values with open circles:

146

Validation also generates a table of actual and predicted values:

 --- Validation Time Series Values ---

 Row Actual Predicted Error Error %

----- --------- --------- ---------- --------

 133 417.00000 396.65452 20.345480 4.879

 134 391.00000 377.05068 13.949323 3.568

 135 419.00000 446.66871 -27.668706 6.604

 136 461.00000 435.56485 25.435146 5.517

 137 472.00000 462.14325 9.856747 2.088

 138 535.00000 517.45376 17.546240 3.280

 139 622.00000 599.82994 22.170064 3.564

 140 606.00000 611.68442 -5.684423 0.938

 141 508.00000 507.37890 0.621100 0.122

 142 461.00000 447.01704 13.982962 3.033

 143 390.00000 398.09507 -8.095074 2.076

 144 432.00000 444.67910 -12.679105 2.935

If you compare validation results from DTREG with other programs, you need to check

how the other programs compute the predicted values. Some programs use actual

(known) lag values when generating the predictions; this gives an unrealistically accurate

prediction. DTREG uses the lag values for predicted values when forecasting: this makes

validation operate like real forecasting where lag values must be based on predicted

values rather than known values.

147

Time series model statistics report

After a model is created, DTREG produces a section in the analysis report with statistics

about the model.

Hurst Exponent

The Hurst Exponent is a measure of pattern (long term memory) in a time series. In

particular, it measures the relative tendency of a time series either to regress strongly to

the mean or to cluster in a direction. See the description of the Hurst Exponent at

Wikipedia (http://en.wikipedia.org/wiki/Hurst_exponent).

The value of the Hurst Exponent can vary from 0.0 to 1.0. A value of 0.5 indicates the

series has random values. Values between 0.5 and 1.0 indicate positive autocorrelation –

that is, increasing values tend to be followed by more increasing values. A Hurst

Exponent value between 0.0 and 0.5 indicates negative autocorrelation – that is,

increasing values tend to be followed by decreasing values. A value of 0.5 indicates that

there is an equal probability of increasing or decreasing at any point. The Hurst

Exponent for the Dow Jones Industrial Average (DJIA) typically varies between 0.42 and

0.68 over 4 year periods. [Qian & Rasheed, 2004]. Unfortunately, there’s no way to

predict what it will be for the next four years.

There are several methods for computing the Hurst Exponent; they usually produce

similar values. DTREG computes the Hurst Exponent using two methods: (1) the

common Rescaled Range (R/S) method, and (2) the “Dispersional Analysis” method

suggested in a 2000 Ph.D. dissertation by Henrik J. Blok [Blok, 2000].

Autocorrelation and partial autocorrelation

The autocorrelation and partial autocorrelation tables provide important information

about the significance of the lag variables.

Autocorrelation table

 ----------------------------- Autocorrelations ------------------------------

Lag Correlation Std.Err. t -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

 1 0.70865407 0.083333 8.504 | . |************** |

 2 0.23608974 0.117980 2.001 | . |***** |

 3 -0.16207088 0.121217 1.337 | . **| . |

 4 -0.41181655 0.122712 3.356 | *******| . |

 5 -0.46768898 0.131961 3.544 | ********| . |

 6 -0.46501203 0.143009 3.252 | ********| . |

 7 -0.43595197 0.153150 2.847 | ********| . |

 8 -0.36759217 0.161538 2.276 | ******| . |

 9 -0.13341625 0.167246 0.798 | . **| . |

 10 0.20091610 0.167984 1.196 | . |**** . |

 11 0.58898400 0.169644 3.472 | . |************ |

 12 0.82252315 0.183296 4.487 | . |**************** |

 13 0.58265202 0.207349 2.810 | . |************ |

 14 0.17178261 0.218423 0.786 | . |*** . |

 15 -0.16852975 0.219360 0.768 | . **| . |

 16 -0.36938903 0.220257 1.677 | . ******| . |

http://en.wikipedia.org/wiki/Hurst_exponent

148

An autocorrelation is the correlation between the target variable and lag values for the

same variable. Correlation values range from -1 to +1. A value of +1 indicates that the

two variables move together perfectly; a value of -1 indicates that they move in opposite

directions. When building a time series model, it is important to include lag values that

have large, positive autocorrelation values. Sometimes it is also useful to include those

that have large negative autocorrelations. Examining the autocorrelation table shown

above, we see that the highest autocorrelation is +0.82523155 which occurs with a lag of

12. Hence we want to be sure to include lag values up to 12 when building the model. It

is best to experiment with including all lags from 1 to 12 and also ranges such as just 11

through 13.

DTREG computes autocorrelations for the maximum lag range specified on the Time

Series property page, so you may want to set it to a large value initially to get the full

autocorrelation table and then reduce it once you figure out the largest lag needed by the

model.

The second column of the autocorrelation table shows the standard error of the

autocorrelation, this is followed by the t-statistic in the third column.

The right side of the autocorrelation table is a bar chart with asterisks used to indicate

positive or negative correlations right or left of the centerline. The dots shown in the

chart mark the points two standard deviations from zero. If the autocorrelation bar is

longer than the dot marker (that is, it covers it), then the autocorrelation should be

considered significant. In this example, significant autocorrelations occurred for lags 1,

2, 11, 12 and 13.

Partial autocorrelation table

 ------------------------- Partial Autocorrelations --------------------------

Lag Correlation Std.Err. t -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

 1 0.70865407 0.083333 8.504 | . |************** |

 2 -0.53454362 0.083333 6.415 | **********| . |

 3 -0.11250388 0.083333 1.350 | . *| . |

 4 -0.19447876 0.083333 2.334 | ***| . |

 5 -0.04801434 0.083333 0.576 | . | . |

 6 -0.36000273 0.083333 4.320 | ******| . |

 7 -0.23338000 0.083333 2.801 | ****| . |

 8 -0.31680727 0.083333 3.802 | *****| . |

 9 0.14973536 0.083333 1.797 | . |*** |

 10 -0.03381760 0.083333 0.406 | . | . |

 11 0.54592233 0.083333 6.551 | . |*********** |

 12 0.18345454 0.083333 2.201 | . |**** |

 13 -0.45227494 0.083333 5.427 | ********| . |

 14 0.16036757 0.083333 1.924 | . |*** |

The partial autocorrelation is the autocorrelation of time series observations separated by

a lag of k time units with the effects of the intervening observations eliminated.

149

Autocorrelation and partial autocorrelation tables are also provided for the residuals

(errors) between the actual and predicted values of the time series.

Measures of fitting accuracy

DTREG generates a report with several measures of the accuracy of the predicted value.

The first section compares the predicted values with the actual values for the rows use the

train the model. If validation is enabled, a second table is generated showing how well

the predicted validation rows match the actual rows.

 ============ Time Series Statistics ============

Exponential trend: Passengers = -239.952648 + 351.737895*exp(0.005155*row)

Variance explained by trend = 86.166%

 --- Training Data ---

Mean target value for input data = 262.49242

Mean target value for predicted values = 261.24983

Variance in input data = 11282.932

Residual (unexplained) variance after model fit = 254.51416

Proportion of variance explained by model = 0.97744 (97.744%)

Coefficient of variation (CV) = 0.060777

Normalized mean square error (NMSE) = 0.022557

Correlation between actual and predicted = 0.988944

Maximum error = 41.131548

MSE (Mean Squared Error) = 254.51416

MAE (Mean Absolute Error) = 12.726286

MAPE (Mean Absolute Percentage Error) = 5.5055268

If DTREG removes a trend from the time series, the table shows the trend equation, and it

shows how much of the total variance of the time series is explained by the trend.

There are many useful numbers in this table, but two of them are especially important for

evaluating time series predictions:

Proportion of variance explained by model – this is the best single measure of how

well the predicted values match the actual values. If the predicted values exactly match

the actual values, then the model would explain 100% of the variance.

Correlation between actual and predicted – This is the Pearson correlation coefficient

between the actual values and the predicted values; it measures whether the actual and

predicted values move in the same direction. The possible range of values is -1 to +1. A

positive correlation means that the actual and predicted values generally move in the

same direction. A correlation of +1 means that the actual and predicted values are

synchronized; this is the ideal case. A negative correlation means that the actual and

150

predicted values move in opposite directions. A correlation near zero means that the

predicted values are no better than random guesses.

Forecasting future values

Once a model has been created for a time series, DTREG can use it to forecast future

values beyond the end of the series. You enable forecasting on the Time Series property

page (see page 47).

The Time Series chart displays the actual values, validation values (if validation is

requested) and the forecast values.

151

The analysis report also displays a table of forecast values:

 --- Forecast Time Series Values ---

 Row Predicted

----- ---------

 145 457.63942

 146 429.32697

 147 459.64579

 148 506.19975

 149 514.89035

 150 584.91959

153

DTL: Data Transformation Language

The Data Transformation Language (DTL) can be used to transform variables, create new

variables and select which data records should be included in the analysis.

DTL Property Page

154

DTL is a full-featured programming language. The full manual for DTL can be

downloaded from http://www.dtreg.com/DTL.pdf This chapter does not provide a full

reference for DTL, instead it presents some typical uses of DTL with DTREG analyses.

The main() function

Every DTL program must have a main() function that is executed by DTREG for each

data record. The main() function must contain a return statement that signals DTREG

whether the current record is to be used in the analysis or excluded. If the return

statement returns a value of 1, the record is used in the analysis. If the return statement

returns a value of 0 (zero), the record is excluded from the analysis.

Here is a simple main program that accepts all records:

int main()

{

 return(1);

}

Here is an example that accepts records that have a value of “M” for Sex and rejects other

records:

int main()

{

 if (Sex == “M”) {

 return(1);

 } else {

 return(0);

 }

}

Here is an example that accepts records that have a value of “M” for Sex variable and a

value of 65 or greater for Age:

int main()

{

 if (Sex == “M” && Age >= 65) {

 return(1);

 } else {

 return(0);

 }

}

155

Here is a main program that accepts about half of the records and rejects half:

int main()

{

 if (random() > 0.5) {

 return(1);

 } else {

 return(0);

 }

}

Global Variables

A global variable is a variable defined outside the scope of any function; usually, global

variables are defined at the top of the program. Global variables can be accessed by any

function in the DTL program. Global variables may have any of the three data types, int,

double or string. Global variables you define are called explicit global variables.

Global variables defined automatically by DTREG are called implicit global variables.

Implicit Global Variables

DTREG defines implicit global variables for each variable in the input data file. This

includes all data variables, even variables not designated as predictor, target or weight

variables. The implicit global variables are not visible in the DTL source program, but

they can be used by the program.

If a variable is specified as categorical in the DTREG model, the implicit definition has

type string. If the variable is specified as continuous, the implicit definition has type

double. For example, if a data file contains four continuous variables, Age,

BloodPressure, Height, Weight and one categorical variable Sex, then the implicit

definitions (which you will not see) would be:

double Age;

double BloodPressure;

double Height;

double Weight;

string Sex;

The main() function and any other functions in the DTL program can reference these

implicit global variables.

156

In addition to generating a global variable for each variable in the data file, DTREG also

generates several other global variables:

int RECORDNUMBER; /* The number of the current data record */

int DOINGSCORE; /* 1 if scoring, 0 if analysis is being run */

double MISSINGVALUE; /* Value used to indicate missing value */

Any changes your program makes to the values of implicit global variables are not used

in the analysis. If you want to transform variables, you must define your own global

variables as described below and store values into them.

Explicit Global Variables

You can define your own global variables by putting their definitions outside the scope of

any function. It is recommended that they be put at the top of the DTL program before

main().

Any global variable you define in a DTL program that does not have the “static”

declaration will be available as a variable in the DTREG analysis. This is the way you

generate transformed variables. For example, the following program generates a new

variable, Size, which is the product of two input data variables, Height and Weight:

double Size;

int main()

{

 Size = Height * Weight;

 Return(1);

}

With this DTL program defined, the Size variable will be available for use in the DTREG

analysis. The Height and Weight variables also are available.

157

Here is an example that creates a variable called Republican that is 1 if the value of

PartyAffiliation is “R” and 0 if PartyAffiliation is anything else:

double Republican;

int main()

{

 if (PartyAffiliation == “R”) {

 Republican = 1;

 } else {

 Republican = 0;

 }

 return(1);

}

Here is an example that creates a LogAge variable that is the natural logarithm of the Age

variable:

double LogAge;

int main()

{

 LogAge = log(Age);

 return(1);

}

Here is an example that creates a variable named ZIP3 that has the first three digits of a

zip code whose five-digit code is stored in ZIP5. The substring operator, [start:length],
is used to extract the first three characters.

string ZIP3;

int main()

{

 ZIP3 = ZIP5[0:3];

 return(1);

}

158

Here is an example that uses the lag() function to generate variables with values of

StockPrice from 1, 2 and 12 prior periods. Note, the missing value code is returned by the

lag() function when a request is made for a prior value that has not yet been stored.

double StockPriceBack1;

double StockPriceBack2;

double StockPriceBack12;

int main()

{

 StockPriceBack1 = lag(StockPrice,1);

 StockPriceBack2 = lag(StockPrice,2);

 StockPriceBack12 = lag(StockPrice,12);

 return(1);

}

Sometimes missing values for numeric variables are coded with values like “999”.

DTREG uses a special value called “MissingValue” to indicate missing values. Here is

an example DTL program that converts input data values of “999” on an Age variable to

the internal missing value. The new variable with the transformed values is called

NewAge.

double NewAge;

int main()

{

 if (Age == 999) {

 NewAge = MissingValue;

 } else {

 NewAge = Age;

 }

 return(1);

}

159

Static Global Variables

Static global variables are used to store information between calls of the main() function

for each data record. They also can be used to hold information that must be accessed by

multiple functions. Static global variables may not be used as variables in the DTREG

analysis. To declare a static global variable, put the word “static” in front of the

declaration like this:

static int FileNumber;

static int Count;

static double LastAge;

static string LastName;

Using the StoreData() function to generate data records

The main() function is called for each record in the input data file, and it returns 1 to

keep the record or 0 to reject the record. DTL provides a StoreData() function that you

can call to generate additional records. Each time you call StoreData(), the current

values of the global variables are used to generate a new data record which is included in

the analysis. This allows you to generate multiple records from a single input record.

Consider a data set that is to be analyzed using logistic regression. The data set measures

the response of patients to varying dose levels of a drug. There are three variables in the

input data file, Dose (the amount of the drug), Positive (the number of patients with

positive responses) and Negative (the number of patients that did not respond). Hence

the implicit global definitions generated by DTREG for the DTL program are:

double Dose;

double Positive;

double Negative;

The following DTL program defines a new variable, Response, that has the value 1 if

the patient responds positively and 0 if the patient does not respond. The DTL program

uses the StoreData() function to generate a separate record for each patient. After

calling StoreData() the appropriate number of times, it uses the return(0) statement to

reject the original record.

160

double Response; /* Generated variable with 1 or 0 response */

int main()

{

 int count;

 /* Generate the positive response records */

 Response = 1;

 for (count=0; count<Positive; count++) {

 StoreData();

 }

 /* Generate the negative response records */

 Response = 0;

 For (count=0; count<Negative; count++) {

 StoreData();

 }

 /* Reject the original record */

 return(0);

}

The StartRun() and EndRun() Functions

The optional StartRun() and EndRun() functions can be used to perform initialization

and cleanup in a DTL program.

If your DTL program contains a StartRun() function, it is called once at the beginning of

the run before the first data record is processed. It can perform initialization.

If your DTL program contains an EndRun() function, it is called once after the last data

record has been read.

In the following example, the DTL program opens an output file in the StartRun()
function, writes information about each data record in the main() function and closes the

file in the EndRun() function. Note the use of a static global variable to store the file

handle number between iterations.

161

static int FileHandle;

void StartRun()

{

 FileHandle = fopen(“Data.dat”,”wt”);

 return;

}

int main()

{

 fprintf(FileHandle,”%f %f\n”,x,y);

 return(1);

}

void EndRun()

{

 fclose(FileHandle);

 return;

}

163

Scoring Data Values

“Scoring” runs a set of data rows through a generated predictive model and generates a

new data file showing the predicted value of the target variable and other information for

each row.

Scoring Property Page

To score data, select the Scoring property page for the model.

164

Input and output scoring files

Input file whose data is to be scored – This is the name of the data file that is to be read

and scored using the predictive model. This could be the same data file that was used to

generate the model, or (more commonly) it could be some other file for which you wish

to use a model to predict values.

The input data file must have the same format as an input file used to build the model:

 The first row in the file must contain the names of the variables in the file.

 Columns must be separated by the character specified by the “Character used to

separate columns” parameter on the Data property page (see page 36).

 Either a period or a comma may be used as the decimal point indicator. Select

which will be used on the Data property page using the parameter “Character used

for a decimal point in the input data file” (see page 36).

 Missing values must be indicated by empty fields, question marks or periods.

The variables in the file being scored do not have to correspond to the variables in the

data file that was used to build the tree. DTREG uses the first row of the file to

determine which variables are present and which rows they are in. If a predictor variable

is missing from the file being scored, then all of the values of that variable are treated as

missing.

The target variable may be omitted (and often is) since the purpose of scoring is to

predict the target value for each row. If target values are provided, they can be used to

compute residual values for the prediction and misclassified rows.

Output file where scored results are to be written – This is the name of the output file

that will be created by DTREG as it scores the rows in the input file. The generated

output file will have the same format as the input file: the first row will have the names of

the variables in the file.

Variables written to the output scoring file

Variables to be written to the output scoring file – There will be one entry in this table

for each variable that was specified at the time that the tree was built. Select which

variables you want written to the output file. If there are variables in the input scoring

file that were not part of the input file used to construct the tree, they are written to the

output file. Variables can be used to classify rows even if they are not written to the

output file.

Variables DTREG should add to output records – Select which generated variables

you want DTREG to add to the output file. Check the box by each variable you want

DTREG to add, and specify the name of the variable in the associated box.

165

 Predicted target value – This is the predicted value of the target variable for

each data row in the scoring file. The predicted target value is obtained by using

the value of the predictor variables for the row to run the row through the tree

until it reached a terminal node. The value of the target variable in the terminal

node is used as the predicted value of the target variable for the row.

 Residual (Actual – Predicted) – If you are performing a regression analysis (i.e.,

the target variable is continuous), then this output variable is the “residual” value

for the row which is the difference between the actual value of the target variable

for the row and the predicted value. In order to generate this variable, values for

the target variable must be included in the input scoring file.

 Misclassification indicator – If a classification analysis is being performed (i.e.,

the target variable is categorical), then this generated variable has the value 0

(zero) if the predicted value of the target variable matches the actual value. It has

the value 1 (one) if the predicted value is different from the actual value (i.e., the

row was misclassified). Note, in order to generate this variable, values for the

target variable must be included in the input scoring file.

 Row number – If selected, this variable has the number of the row in the input

scoring file. The first row is numbered 1.

 Terminal node number – If selected, this variable will have the number of the

terminal node for the row. That is, the last node the row ended up in after being

run through the tree.

 Probability scores for each category of the target – DTREG computes a

posterior, likelihood probability value for each category of the target variable.

The predicted category for a row is computed by selecting the most likely

category adjusted by the misclassification costs (technically, the category is

selected so as to minimize the misclassification cost). If you select this option,

DTREG will write to the output scoring file the computed probability values for

each target category. The names of the columns have the form Prob_category

where ‘category’ is the value of the category. For example, if the target variable

is Sex, the probability columns might have names of Prob_Male and

Prob_Female.

 Write variable names to the first row of the scoring file – If this box is checked

then DTREG will write the names of the variables in the score file to the first

record of the score file. This makes it possible to import the score file into

programs like Excel that expect the variable names to be in the first row.

Forecast rows for time series – If you are performing a time series analysis, you can

generate forecasts by checking this box and specifying how many observations you want

DTREG to forecast beyond the end of the training data. The data set used as input for

scoring must start with and include the same data that was in the training data; it may

contain additional rows beyond the training data. Note that there also is an option on the

Time Series property page (see page 47) where you can specify that forecast values for

the training data are to be written.

166

Start scoring the data

Once you have specified the input and output files and selected the variables to be

included in the output file, click “Score the data” button to begin the process.

Using scoring for validation with a test dataset

In addition to using scoring to generate predicted values for a dataset, you can use scoring

to test a model against a dataset whose actual target values are known. To do this, use the

normal scoring procedure with a dataset that has the target variable along with the

predictors. When the scoring process finishes, DTREG displays a report showing the

misclassification rate for the model applied to the dataset that was scored.

For classification models, the report looks like this:

Scoring was performed 23-Mar-2004 13:01:40

Input file = C:\DTREG\Test\LiverDisorder.csv

Output file = c:\DTREG\LiverDisorder2.csv

Number of observations scored = 345

 Actual --Misclassified--

 Category Count Count Percent

 -------- -------- -------- -------

 1 145 24 16.552

 2 200 53 26.500

 -------- -------- -------- -------

 Total 345 77 22.319

For regression models, the report looks like this:

Scoring was performed 23-Mar-2004 13:27:44

Input file = C:\DTREG\Test\Boston.csv

Output file = C:\DTREG\TestScore.csv

Number of observations scored = 506

Mean target value for data being scored = 22.532806

Mean target value for predicted target values = 22.532806

Average absolute error after tree fitting = 2.126722

Variance in scored data = 84.419556

Residual (unexplained) variance after tree fitting = 7.806666

Proportion of variance explained = 0.90753 (90.753%)

167

How missing values are handled during scoring

If the value of a predictor variable used at a split is missing, DTREG attempts to use the

surrogate predictors for the split. It tries each surrogate splitter in the order of decreasing

association values until it finds one that has a non-missing value on the row that is being

scored. If it is unable to find a surrogate splitter, then the last node that the row reached

(i.e., the one for which no split could be found) becomes the terminal node for that row,

and the predicted value for the group of rows in that node is used as the predicted value

for the row being scored. For additional information about surrogate splitters, please see

page 364.

If you anticipate scoring data that has missing values, you should select the option

“Always create surrogate splitters” on the Missing Data property page when the tree is

built. (See page 133.) Surrogate splitters cannot be created when scoring is being done;

they must be created at the time that the tree is constructed.

169

Translation: Generating Code for Scoring

“Translation” generates source code that can be compiled with an application program to

perform scoring.

DTREG is capable of generating source code for the C language (this code also can be

used with C++ programs) and SAS
®
. The Translate function can generate code for all

types of models in the C language and for all types of models except for Support Vector

Machine (SVM) in the SAS language. You can use the DTREG.DLL COM library

module to perform scoring for other types of applications. See page 375 for information

about the DTREG.DLL library module. The primary advantage of generated source code

is that it executes faster than using the DLL library.

The Translate function is available only in the Enterprise Version of DTREG.

Here is an overview of the process of generating and using scoring source code:

 1. Use DTREG to build a model.

 2. Use the Translate function to generate source code.

 3. Compile the source code with an application program you have written.

 4. Run the application to read data and call the scoring function generated by DTREG.

170

Translate Property Page

To generate scoring source code, select the Translate property page for the model.

Type of code to generate

Check the button to select whether you want DTREG to generate a C or C++ or SAS
®

source file.

Prefix for global function and variable names in generated code

If you specify a string in this field, it will be added to the front of the names of all

functions and global variables in the source code generated by DTREG. This is useful

when you want to call generated code for two different models from the same application

program. The specified string must be valid as the beginning of a variable and function

name (it must begin with a letter, and it may not contain spaces).

Output file where source code is to be written

Specify the full name including device and directory where you want DTREG to write

the generated source code. If you omit the extension from the file name, DTREG will

add it. In addition to the .c file, DTREG also generates one or more .h header files using

the same base file name. In the case of SAS code generation, DTREG generates a file

named “program.sas” and a header file named “program_header.sas”.

171

Split large files into multiple files

If the predictive model is very large, the generated source code may be too large to

compile as a single unit. This problem occurs most commonly with TreeBoost and

Decision Tree Forest models composed of many trees. If you turn on this option,

DTREG will generate multiple source files that you can compile as separate modules and

link together with the application. When multiple source files are created, DTREG

appends “_nnn” to the end of the file name, where nnn is a sequence number. DTREG

also generates a header file named “basename_Internal.h” that is used to transfer

information between the generated modules; you should not include this header file in

your application. SAS source programs cannot be split.

Maximum allowable file size

If you turn on the option to generate multiple source files, DTREG uses the size you

specify in this field to control when one source file ends and the next one begins. The

size is approximate since DTREG cannot split a function in the middle. The size is

specified in units of K bytes, so a value of 1000 corresponds to 1000 kb which is 1 MB.

The maximum allowable source file size is dependent on the compiler you use. The

Microsoft Visual C++ compiler seems to be able to handle about 1.2 MB in each source

file.

Generate code to check for missing values

If you turn on this option, DTREG will generate code to check for missing data values

and take the appropriate action. If you do not turn on this option, it is your responsibility

to make sure that no missing values are passed to the generated scoring function.

Generate code for surrogate splits

If you turn on this option, DTREG will generate code to use surrogate splits to handle

missing values. In order to use this option, the model must have been created with

surrogate split information, and you must turn on the option to tell DTREG to check for

missing values. See page 364 for additional about surrogate splits.

Add #include “stdafx.h” header line

If you check this box, DTREG will insert the following line in each generated source file:

#include “stdafx.h”

This is necessary when you are using Microsoft Developer’s Studio with the precompiled

header option turned on.

Generate placeholder definitions for unused variables

If you check this box, DTREG will generate variable definitions for variables that are not

used by the model. This makes it possible to select which variables are used as predictors

without having to modify the application program that sets up values for all variables.

172

How to call the scoring function – C and C++ programs

The generated code will consist of one or more .c source files and a .h header file. The

header file will contain prototypes for the generated functions and for the global

variables. You must include the generated header file in the source modules of your

application program that call the generated scoring function.

Generated header file

The values for predictor variables must be set in global variables prior to calling the

function to perform scoring. There will be one global predictor variable for each

predictor variable specified in the model. The generated .h header file contains external

references to these variables. Here is an example header file:

#ifndef Iris_h

#define Iris_h

/*---

 * Scoring header file generated by DTREG (http://www.dtreg.com)

 * This header file should be included in applications calling the

 * generated code.

 * DTREG version 3.5

 * Creation date: 21-Oct-2004 14:01:32

 * Project file: C:\DTREG\Test\Iris.dtr

 * Project title: Iris variety classification

 */

/*

 * Type of model.

 */

#define MODELTYPE_TREEBOOST

/*

 * Values used to represent missing values.

 */

extern double Missing_Continuous; /* Continuous variables */

extern char *Missing_Category; /* Categorical variables */

extern long Missing_Index; /* Category index */

/*

 * Predictor variables.

 */

/* Continuous variables */

extern double Sepal_length;

extern double Sepal_width;

extern double Petal_length;

extern double Petal_width;

173

/*

 * Variable that will receive predicted value of Species.

 */

extern char PredictedValue[200]; /* Gets computed category /*

 * Variables that will receive probability values for the

 * categories of Species.

 */

extern double Prob_Setosa;

extern double Prob_Versicolor;

extern double Prob_Virginica;/*

*/

 * Function prototypes.

 */

void ScoreRecord(void);

/*

 * End of header.

 */

#endif

Type of model

The type of model will be defined by one of the following macros:

MODELTYPE_SINGLETREE, MODELTYPE_TREEBOOST or MODELTYPE_FOREST.

You can use #ifdef macros in your application program to determine which type of model

was generated.

Values used to represent missing values

If you turn on the option to generate code to handle missing values, DTREG will generate

references to Missing_Continuous and Missing_Cateogory. These global variables have

the values that you should use to represent missing values of predictor variables.

Predictor variables

There will be an external reference to each predictor variable. If the predictor variables

were specified with spaces in their names, the spaces will be converted to underscores in

the generated code. Continuous predictor variables are of type double, and categorical

predictor variables are of type char[200]. Note that categorical variables must be

specified as character string values even if all of the values are numeric. If, for example,

you had a predictor variable named sexcode that had values 1 and 2, you could use the

sprintf function to format the value into the global variable:

 sprintf(sex,”%d”,sexcode);

Predicted target variable

The predicted value computed by the scoring function will be returned in a global

variable named PredictedValue. If the target variable is continuous, then PredictedValue

will be of type double. If the target variable is categorical, then PredictedValue will be a

char[200] variable. If the target variable has numeric categorical values, you can use the

atol() function to convert the returned string to a long integer value.

174

Predicted category probabilities

DTREG will generate code to create variables that will have the probability for each

category of the target variable. These variables are named Prob_category where

category is the name of the category of the target variable.

Prototype for the scoring function

The function called to compute the score is named ScoreRecord. Its prototype is as

follows:

void ScoreRecord(void);

Note that there are no arguments and no returned value because the predictor variable

values are set in global variables before it is called, and the predicted target variable value

is returned in a global variable.

Here is an outline of the procedure you should use in your application program:

 1. Read values for the case you want to score.

 2. Set the values of the global predictor variables.

 3. Call the generated ScoreRecord() function.

 4. Get the predicted target value from the PredictedValue global variable.

Generated Source File

Usually, it will not be necessary for you to edit or be concerned with the contents of the

generated .c source file. You can simply compile it as a module of your application. If

you turn on the option to split the source into multiple files, then you must compile each

generated source file as a separate source module.

The top of a generated source file will be similar to this:

/*---

 * Scoring source file generated by DTREG (http://www.dtreg.com)

 * DTREG version 3.5

 * Creation date: 21-Oct-2004 14:44:09

 * Project file: C:\DTREG\Test\Iris.dtr

 * Project title: Iris variety classification

 * Model type: Single-tree

 * Depth of tree: 5

 * Number of terminal nodes: 5

 * Target variable: Species

 * Type of analysis: Classification with 3 target classes

 */

#include <string.h>

#include <math.h>

175

/*

 * Values used to represent missing values.

 */

double Missing_Continuous = -1e+035; /* Continuous variables */

char *Missing_Category = "?"; /* Categorical variables */

long Missing_Index = -1; /* Category index */

/*

 * Global definitions of predictor variables.

 */

/* Continuous variables */

double Sepal_length = -1e+035;

double Sepal_width = -1e+035;

double Petal_length = -1e+035;

double Petal_width = -1e+035;

/*

 * Define variable that will receive predicted value of Species.

 */

char PredictedValue[200] = {0}; /* Gets predicted category */

/*--

 * Call this routine to compute the predicted value.

 */

void ScoreRecord(void)

{

How to call the scoring function – SAS
®
 programs

SAS source code generated by DTREG consists of two parts, a header file named

“program_header.sas” and the model evaluation code named “program.sas”. These

files should be included in the DATA proc of the program that is doing the scoring. The

best way to include the files is to use the SAS %INCLUDE facility to insert the header file

at the top and the evaluation code a the end after a RETURN statement. Here is the

outline of a DATA proc doing this:

176

Data Titanic;

/* Include the generated header file */

%INCLUDE 'Titanic_Header.sas';

/* your statements to set up values for scoring */

length classc $1 agec $1 sexc $1;

classc = left(put(class,best12.));

agec = left(put(age,best12.));

sexc = left(put(sex,best12.));

/*

 * Use LINK to call the scoring code.

 * It will return to the statement after LINK.

 * The predicted value will be in _PredictedValue_.

LINK ScoreRecord;

/* Your statements to process the predicted value.

 * For example:

 */

DidSurvive = _PredictedValue_;

/* Output the values and return */

RETURN;

/* Put the generated scoring code here */

%INCLUDE 'Titanic.sas';

Data types of variables

SAS has two types of variables, numeric and character string. If the “Character”

attribute is set for a variable on the variable property page (see page 41) then DTREG

generates SAS code to treat the variable as a character string. Otherwise, the generated

code treats the variable as a numeric value.

177

Generated header file

Here is an example header file:

/*---

 * Scoring header file generated by DTREG (http://www.dtreg.com)

 * This header file should be included in applications calling

 * the generated code.

 * DTREG version 4.5

 * Creation date: 10-Nov-2005 15:01:50

 * Project file: C:\DTREG\Test\iris.dtr

 * Project title: Iris variety classification

 *

 * To score a record use the statement: LINK ScoreRecord;

 *

 * On return, the predicted value for 'Species' will be

 * in '_PredictedValue_'.

 * The predicted value is returned as a character string.

 * The terminal nodel number is returned in '_Node_'.

 */

/*

 * Declare variables.

 */

 ModelType = 1; /* Single tree */

 length _PredictedValue_ $10;

 PredictedValue = '?';

 Node = 0;

/*

 * --- End of scoring header ---

 */

Type of model

The _ModelType_ variable has a value indicating what type of model was built.

Predicted target variable

The predicted value computed by the scoring function will be returned in a variable

named _PredictedValue_. If the variable was declared to be of type character, then

PredictedValue will be declared as a character string; otherwise, it will be a numeric

variable.

Terminal node number

For single-tree models, the terminal node in which a record ends is returned in the

Node variable. This variable is not generated for other types of models.

Predicted category probabilities

If scoring code is generated for a categorical model, there will be variables that will have

the probability for each category of the target variable. These variables are named

Prob_category where category is the name of the category of the target variable.

178

Generated Model Execution Source File

Usually, it will not be necessary for you to edit or be concerned with the contents of the

generated program.sas source file. You can simply use a %INCLUDE statement to insert

into the end of the DATA proc.

To score a record, use this statement to call the scoring code:

LINK ScoreRecord;

The LINK statement jumps to the ScoreRecord label in the generated code much as a

GOTO statement would do. When the generated code finishes computing the predicted

value, it uses a RETURN statement to return execution control to the line following the

LINK statement. You can then do whatever processing is appropriate for the predicted

value and then use a RETURN statement to terminate the DATA proc execution and write

the record to the output dataset.

The predicted value computed by the scoring code is returned in a variable named

PredictedValue. It will be either a character string value or a numeric value depending

on whether the target variable was declared to be character or numeric.

179

The Output Report Generated by DTREG

Once you run an analysis, DTREG will display in the main right panel a report of the

results.

There are several major sections in the report. You can use the scroll bar to move to

sections, or you can click on of the section names shown under “Analysis report” in the

left panel to scroll instantly to a section.

180

Project Parameters

 ============ Project Parameters ============

Project title: Iris variety classification

Project file: C:\DTREG\Test\iris.dtr

Target variable: Species

Number of predictor variables: 4

Type of tree: Single tree

Maximum splitting levels: 10

Type of analysis: Classification

Splitting algorithm: Gini

Category weights: Equal (Balanced)

Misclassification costs: Equal (unitary)

Variable weights: Equal

Minimum size node to split: 10

Max. categories for continuous predictors: 200

Use surrogate splitters for missing values: Yes

Always compute surrogate splitters: Yes

Tree pruning and validation method: V-fold

Number of folds: 10

Tree pruning criterion: Minimum cost complexity (0.00 S.E.)

The Project Parameters section of the report displays a summary of the options and

parameters you selected on the various property pages for the model.

Input Data

 ============ Input Data ============

Input data file: C:\DTREG\iris.csv

Number of variables (data columns): 5

Number of data rows: 150

Total weight for all rows: 150

Rows with missing target or weight values: 0

Rows with missing predictor values: 0

The Input Data section displays information about the input data file used to construct the

tree. The entry for “Rows with missing target or weight values” indicates the number of

rows that were discarded because these variables had missing values.

181

Summary of Variables

 ============ Summary of Variables ============

 Variable Class Type Missing rows Categories

------------ --------- ----------- ------------ ----------

Species Target Categorical 0 3

Sepal length Predictor Continuous 0 35

Sepal width Predictor Continuous 0 23

Petal length Predictor Continuous 0 43

Petal width Predictor Continuous 0 22

The Summary of Variables section displays information about each variable that was

present in the input dataset. The first column shows the name of the variable, the second

column shows how the variable was used; the possibilities are Target, Predictor, Weight

and Unused. The third column shows whether the variable is categorical or continuous,

the forth column shows how many data rows had missing values on the variable, and the

fifth column shows how many categories (discrete values) the variable has. In the case of

continuous variables, the number of categories will be limited by the value specified for

“Max. categories for predictor variables” on the model design property page.

Summary of Categories

 ============ Summary of Categories ============

 --- Predictors --- | --- Target Variable ---

Class | No | Yes |

 885 40.21% Crew | 673 76% | 212 24% |

 325 14.77% First | 122 38% | 203 62% |

 285 12.95% Second | 167 59% | 118 41% |

 706 32.08% Third | 528 75% | 178 25% |

Age | No | Yes |

 2092 95.05% Adult | 1438 69% | 654 31% |

 109 4.95% Child | 52 48% | 57 52% |

Sex | No | Yes |

 470 21.35% Female | 126 27% | 344 73% |

 1731 78.65% Male | 1364 79% | 367 21% |

Survived | No | Yes |

 1490 67.70% No | 1490 100% | 0 0% |

 711 32.30% Yes | 0 0% | 711 100% |

The Summary of Categories section displays information about the categories of

predictor and target variables. This section is only displayed if you select one or both of

the options on the Variables property page requesting category information (see page 41).

Several items of information are displayed for each category:

182

1. The number of rows in the dataset having the category for the variable.

2. The percent of the rows having the category.

3. The label of the category.

4. If the target variable is categorical, a table showing the distribution of target

categories for the predictor category.

5. If the target variable is continuous, the mean value of the target for the predictor

category.

Surrogate Variable Report

If surrogate variables are used to impute missing predictor values, then a section is

included in the report for the surrogate variables. See page 358 for information about

surrogate variables. Here is an example of a surrogate variable report:

 ============ Surrogate Variables ============

Predictor # Surrogate Association Constant Coeff. 1 Coeff. 2 Coeff. 3

--------- --- --------- ----------- ----------- ----------- ----------- -----------

 Cat2{0} 1 C1{0} 84 0.0000 1.0000 . .

 2 C2{0} 82 1.0000 -1.0000 . .

 3 X1 45 0.4393 0.0256 . .

 4 X2 39 0.3525 0.0277 0.0002 -3.467e-005

 X1 1 X2 100 -1.3338 0.6646 . .

 2 C1{0} 19 -3.3996 7.1541 . .

 3 Cat2{0} 17 -2.8827 6.7654 . .

 4 C2{0} 11 2.9238 -5.4648 . .

 X2 1 X1 100 2.0076 1.5017 . .

 2 C1{0} 17 -2.7628 10.3787 . .

 3 Cat2{0} 15 -1.6381 9.6841 . .

 C1{0} 1 Cat2{0} 84 0.0000 1.0000 . .

 2 C2{0} 66 1.0000 -1.0000 . .

 3 X1 51 0.4762 0.0499 0.0004 -0.0001

 4 X2 49 0.4591 0.0169 . .

 C2{0} 1 Cat2{0} 82 1.0000 -1.0000 . .

 2 C1{0} 66 1.0000 -1.0000 . .

 3 X1 38 0.4966 -0.0205 . .

 4 X2 37 0.5398 -0.0232 -0.0002 2.903e-005

These are the columns in the table:

Predictor – This is the primary predictor for which surrogates are associated.

– This is a sequential number showing which surrogate this line is for. The surrogate

variables are listed in decreasing order of association with the primary variable.

Surrogate – This is the name of the surrogate variable.

Association – This is the association between the surrogate variable and the primary

variable.

Constant – This is the constant term in the function.

Coeff 1, Coeff 2, Coeff 3 – These are the coefficients of the first, second, and third-order

polynomial terms.

183

Tree Size and Validation Statistics

This section of the report is composed of two sub-sections: Tree Size Summary Report

and Validation Statistics Report.

 ============ Tree Size Summary Report ============

The full tree has 5 terminal (leaf) nodes.

The minimal cross-validated relative error occurs with 3 nodes.

The relative error value is 0.0700 with a standard error of 0.0257

You allowed up to 1 standard error for tree size reduction.

With 1.000 S.E. allowance, the optimal tree has 3 nodes.

The tree will be pruned from 5 to 3 terminal nodes.

The Tree Size Summary Report displays information about the maximum size tree that

was built, and it shows summary information about the parameters that were used to

prune the tree.

 ============ Tree Size Summary Report ============

The full tree has 5 terminal (leaf) nodes.

The minimum validation relative error occurs with 5 nodes.

The relative error value is 0.0700 with a standard error of 0.0280

You allowed up to 1 standard error for tree size reduction.

With 1 S.E. allowance, the optimal tree has 3 nodes.

The tree will be pruned from 5 to 3 nodes.

 ------ Validation Statistics ------

Nodes Val cost Val std. err. RS cost Complexity

----- -------- ------------- ------- --------------

 5 0.0700 0.0280 0.0300 0.000000 <-- Min.error

 4 0.0800 0.0297 0.0400 0.006667

 3 0.0700 0.0257 0.0600 0.013333 <-- Pruned size

 2 0.5000 0.0000 0.5000 0.293333

 1 1.0000 0.0000 1.0000 0.333333

In order to create a tree that can be generalized to predict data values other than those in

the learning dataset, DTREG builds an overly-large tree and then prunes it to the optimal

size. For information about how pruning is done, please see page 366.

The Validation Statistics section displays information about the size of the generated

tree and statistics used to prune the tree. There are five columns in the table:

1. Nodes – This is the number of terminal nodes in a particular pruned version of the

tree. It will range from 1 up to the maximum nodes in the largest tree that was

generated. The maximum number of nodes will be limited by the maximum

184

depth of the tree and the minimum node size allowed to be split on the Design

property page for the model.

2. Val cost – This is the validation cost of the tree pruned to the reported number of

nodes. It is the error cost computed using either cross-validation or the random-

row-holdback data. The displayed cost value is the cost relative to the cost for a

tree with one node. See page 369 for a detailed description of the cross-validation

procedure. The validation cost is the best measure of how well the tree will fit an

independent dataset different from the learning dataset. The pruned size with the

minimum validation cost is marked with “Min. validation error” in the margin.

Note, if you enable DTREG to smooth the minimum values by checking the box

labeled “Smooth minimum spikes” on the Validation and Pruning property page

(see page Error! Bookmark not defined.), then the minimum value selected may

not be the absolute minimum.

3. Val std. err. – This is the standard error of the validation cost value. If you wish,

you can allow DTREG to prune to a smaller tree with a larger validation cost

value than the absolute minimum by using a multiple of the validation cost

standard error. See page 371 for information about controlling the pruning point.

If you allow DTREG to prune the tree to a smaller size than the minimum

validation cost size, the pruned size will be indicated by “Pruned size” in the

report.

4. RS cost – This is the resubstitution cost computed by running the learning dataset

through the tree. The displayed resubstitution cost is scaled relative to the cost for

a tree with one node. Since the tree is being evaluated by the same data that was

used to build it, the resubstitution cost does not give an honest estimate of the

predictive accuracy of the tree for other data.

5. Complexity – This is a “Cost Complexity” measure that shows the relative

tradeoff between the number of terminal nodes and the misclassification cost. See

Breiman, Friedman, Olshen and Stone (1984) for information about the

calculation and use of the cost complexity measure.

185

Node Splits

The node splits section provides information about each node in the tree and how it was

split to produce its child nodes. This section of the report is generated only if you check

the box labeled “Generate report of tree splits” on the Single Tree property page (see

page 51).

There are five subsections: (1) the node summary, (2) the distribution of categories of the

target variable in the group; (3) splitting information; (4) competitor splits; (5) surrogate

splits.

Node Summary

 ======================= Group 1 =======================

Number of rows in group: 149

Sum of weights for all rows: 149

Rows with missing values on the splitting variable: 37

Rows with missing values classified using surrogates: 37

Rows with missing values classified using target values: 0

Rows with missing values classified into most probable group: 0

Rows with missing values that stop in this node: 0

Improvement in misclassification from split: 0.251146

Complexity: 0.161633

Category of Species assigned to group: Versicolor

Misclassified rows = 66.44%

Misclassification cost = 0.6667

This section provides information about the node:

 Number of rows in group – This is the total number of rows that made it through

the tree to this node.

 Sum of weights for all rows – This is the sum of the weights for all rows that

made it to this node. If you did not specify a weight variable, all rows get a

weight of 1.00, and the sum of the weights will equal the number of rows.

 Rows with missing values on the splitting variable – This is a count of how

many rows in this node had missing values on the variable that DTREG selected

to split the node. The counts that appear on the following lines show how these

rows were classified.

 Rows with missing values classified using surrogates – This is a count of the

rows that had missing values on the primary splitting variable that DTREG was

able to classify using surrogate splitting variables. See the list of surrogate

splitters that appears later in the node report.

 Rows with missing values classified using target values – This is the number of

rows that could not be classified using surrogate splitters but instead were forced

into the appropriate child group based on the actual value of their target variable.

When the target variable is categorical, this method of assignment is used only if

the actual target category for the row matches the target category assigned to one

of the child rows. If the target variable is continuous (i.e., a regression tree is

186

being built), then the row is put in the child group whose mean value on the target

variable is closest to the row’s target variable value.

 Rows with missing values classified into the most probable group – This is the

number of rows that could not be classified by either of the two methods listed

above but rather were dumped into the child group that is the most probable group

to receive a random row without consideration of any predictor variables.

Usually, this is the child group with the most number of rows, but it could be the

smaller group depending on category weight values and other factors.

 Rows with missing values that stop in this node – This is the number of rows

with missing values on the splitting variable that could not be classified by any

means, so they stopped in this node as their terminal node.

Target Category Distribution

 -- Distribution of categories of target variable in group --

 Category Num. Rows Total Weight Category Wt.

 ---------- --------- ------------ ------------

 Setosa * 50 50 0.3333

 Versicolor 50 50 0.3333

 Virginica 50 50 0.3333

If the target variable is categorical, the next section of the node report is a table showing

information about the categories of the target variable occurring in the node. For each

category, the table displays the category name, the number of rows with that category in

the node, the total weight of the rows, and the weight that was assigned to the category.

This table is not displayed if the target variable is continuous.

Node Split Information

-- Group 1 was split on Petal length --

Left child group = 2. Number of rows = 49

 A case goes left if Petal length <= 2.35

Right child group = 3. Number of rows = 100

 A case goes right if Petal length > 2.35

This section displays information about how the node was split. The first line gives the

number of the node being split and the name of the predictor variable that was selected as

the splitting variable.

The next two parts of this section display information about the left and right child nodes

generated by the split. For each child node, the number of the node is displayed along

with the number of rows that were assigned to that node. In the example above, the

parent node is number 1. It is split into two child nodes; the left node is number 2 and the

right node is number 3.

187

The condition that controls whether rows are sent to the left or right node is displayed. In

the example above, a row is sent to the left child node if its value on the “Petal length”

predictor variable is less than or equal to 2.35. The row is sent to the right node if the

value of “Petal length” is greater than 2.35.

If the predictor variable used for the split is categorical, the categories of the variable

being sent to the left and right child nodes are listed. Here is an example:

Left child group = 2. Number of rows = 17800

 Categories of Relationship going left: {Not-in-family,

 Other-relative, Own-child, Unmarried}

Right child group = 3. Number of rows = 14761

 Categories of Relationship going right: {Husband, Wife}

In this example, the split is being made using the “Relationship” predictor variable.

Rows with values of “Not-in-family”, “Other-relative”, “Own-child” and “Unmarried”

are sent to the left child group. Rows with values of “Husband” or “Wife” are sent to the

right child group.

Competitor Predictor Variables

-- Competitor Splits --

Order Variable Improvement Left Categories

----- ------------ ------------- ---------------

 1 Petal width 0.247 <= 0.8

 2 Sepal length 0.227 <= 5.45

 3 Sepal width 0.124 <= 3.35

For each node being split, DTREG examines all predictor variables and performs the split

using the one that provides the greatest improvement. The competitor split table lists up

to five predictor variables that were the runners-up splitters. They are listed in decreasing

order of improvement.

Surrogate Splitters

-- Surrogate Splits --

Order Variable Assoc Dir Improvement Left Categories

----- ------------ ----- --- ------------- ---------------

 1 Petal width 0.748 + 0.247 <= 0.8

 2 Sepal length 0.665 + 0.227 <= 5.45

 3 Sepal width 0.427 - 0.115 <= 3.25

A surrogate splitter is a predictor variable that mimics the split performed by the primary

splitter. That is, it sends the same rows to the left and right child groups as the primary

188

splitter. Surrogate splitters are used to classify rows when the value of the primary

splitter is missing. For detailed information about surrogate splitters, please see page

364.

The following information is shown for each surrogate splitter:

 Order – This is the order of the surrogate splitters in decreasing order of

association. When attempting to classify a row that has a missing value for the

primary splitter, DTREG will try the surrogate splitters in the order shown until it

finds one that has a non-missing value for the row.

 Variable – This is the name of the predictor variable that will be used for the

surrogate split.

 Association – This is a measure of how well the surrogate split mimics the

primary split. The largest possible association value is 1.0 which means the

surrogate sends exactly the same set of rows to the left and right groups as the

primary splitter. An association value of 0.0 means that the surrogate does no

better at assigning rows than simply putting them in the most probable group.

 Direction – This indicates whether the split generated by the surrogate splitter

assigns rows to the same or opposite child group as the primary splitter. This is

roughly equivalent to variables that have a negative correlation – you can predict

the value of one by going in the opposite direction on the other.

 Improvement – This is the improvement in misclassification that would be

gained by using the surrogate split. Note that surrogate splits are not ranked by

improvement but rather by association with the primary splitter.

 Left categories – This shows what values of the surrogate predictor send rows to

the left child group. The other values of the predictor send rows to the right child

group.

Note that if a predictor is listed as both a competitor and as a surrogate, the split

categories and improvement values may be different. The reason for this is that when

evaluated as a competitor, the split point is chosen so as to maximize the improvement,

just as is done for the primary splitter. But when evaluated as a surrogate, the split point

is chosen not to maximize the improvement, but rather to maximize the association

between the surrogate and the primary splitter.

189

Analysis of Variance

The analysis of variance summary table is displayed when the target variable is

continuous and a regression tree is being constructed. The variance explained by the

generated tree is the best measure of how well the tree fits the data.

 ============ Analysis of Variance ============

Variance in initial data sample = 84.419556

Residual (unexplained) variance after tree fitting = 7.806666

Proportion of variance explained = 0.90753 (90.753%)

Correlation between actual and predicted = 0.999610

The following items are displayed in the summary:

 Variance in initial data sample – This is the variance in the entire learning

dataset before any splits have been made. The following algorithm is used to

compute variance: (1) Compute the mean value of the target variable for all rows.

(2) For each row, subtract the row’s target value from the mean target value,

square the difference and sum the squared differences. The difference between

the target value of a row and the mean value of the target value is called the

residual value for the row. The sum of the squared residuals is the variance.

 Residual (unexplained) variance after tree fitting – This is the remaining

variance after the tree is applied to the data to predict the target values. This is

computed by (1) computing the mean value of the target variable for all rows in a

terminal node; (2) use this mean to compute the residual for each row in the node;

(3) add the residuals to compute the variance within the node; (4) add the variance

for all nodes. If the tree perfectly predicted the dataset, the residual variance

would be 0.0.

 Proportion of variance explained – This is the proportion of the initial, total

variance explained by the fitted tree. The larger the value, the better the tree fits

and explains the data. If the tree perfectly fitted the data and exactly predicted the

target value for every row, the explained variance proportion would be 1.0

(100%).

 Correlation between actual and predicted – This is the Pearson correlation

coefficient between the actual values and the predicted values; it measures

whether the actual and predicted values move in the same direction. The possible

range of values is -1 to +1. A positive correlation means that the actual and

predicted values generally move in the same direction. A correlation of +1 means

that the actual and predicted values are synchronized; this is the ideal case. A

negative correlation means that the actual and predicted values move in opposite

directions. A correlation near zero means that the predicted values are no better

than random guesses.

190

Misclassification Summary Table

If the target variable is categorical and you are building a classification tree, then a

misclassification summary table is displayed.

 ============ Misclassification Tables ============

 --- Training Data ---

 --------Actual-------- -------------Misclassified-------------

 Category Count Weight Count Weight Percent Cost

 ---------- -------- ------------ -------- ------------ ------- ------

 Setosa 50 50 0 0 0.000 0.000

 Versicolor 50 50 3 3 6.000 0.060

 Virginica 50 50 0 0 0.000 0.000

 ---------- -------- ------------ -------- ------------ ------- ------

 Total 150 150 3 3 2.000 0.020

 --- Validation Data ---

 --------Actual-------- -------------Misclassified-------------

 Category Count Weight Count Weight Percent Cost

 ---------- -------- ------------ -------- ------------ ------- ------

 Setosa 50 50 0 0 0.000 0.000

 Versicolor 50 50 2 2 4.000 0.040

 Virginica 50 50 5 5 10.000 0.100

 ---------- -------- ------------ -------- ------------ ------- ------

 Total 150 150 7 7 4.667 0.047

There are two sections to the table – one for the misclassifications for the training dataset

and one for the misclassification for the validation data (either cross-validation or

random-holdback rows). See page 369 for information about how cross-validation is

done.

Each category of the target variable is listed along with the following items of

information:

 Category – The target category.

 Actual count – The number of rows that have this target category.

 Actual weight – The sum of the weights for the rows with this category.

 Misclassified count – The number of rows with this category that were

misclassified by the tree.

 Misclassified weight – The sum of the weights for the rows with this category

that were misclassified.

 Misclassified percent – The percent of the rows with this category that were

misclassified.

 Cost – The misclassification cost for the rows with this category.

191

Confusion Matrix

A “Confusion Matrix” provides detailed information about how data rows are classified

by the model. The matrix has a row and column for each category of the target variable.

The categories shown in the first column are the actual categories of the target variable.

The categories shown across the top of the table are the predicted categories. The

numbers in the cells are the weights of the data rows with the actual category of the row

and the predicted category of the column. Here is an example confusion matrix:

 ============ Confusion Matrix ============

 -------- Training Data --------

 Actual : -------Predicted Category-------

 Category : Setosa Versicolor Virginica

----------: ---------- ---------- ----------

 Setosa: 50 0 0

Versicolor: 0 47 3

 Virginica: 0 0 50

The numbers in the diagonal cells are the weights for the correctly classified cases where

the actual category matches the predicted category. The off-diagonal cells have

misclassified row weights. For example, the Versicolor category was misclassified as

Virginica three times.

192

Sensitivity and Specificity Report

The Sensitivity and Specificity report is generated only for classification problems

(categorical target variable). One category of the target variable is called the “positive”

category, and the other is called the “negative” category. It is up to you to decide which

category is positive and which is negative. You select the positive category on the

Misclassification Property Page (see page 130). For example, if you are creating a model

to predict if a patient has a disease, you would probably want to select the Disease

category as the positive category and the No-Disease category as the negative category.

If the target variable has more than two categories, DTREG reports the sensitivity and

specificity for each category. The selected category is treated as the positive category,

and all other categories are grouped as the negative category.

In a medical context, an ideal diagnostic test would identify all patients with a suspected

disease, and it would not falsely identify anyone who did not have the disease. Thus

there are two types of errors: (1) failing to identify someone with the disease and (2)

incorrectly identifying someone who does not have the disease. These errors are reported

in the Confusion Matrix (see page 191) which shows the true positive (TP), true negative

(TN), false positive (FP) and false negative (FN) counts. If a predicted value is 1 (true)

and the actual class is also 1, then a TP prediction is counted. Similarly true negative

(TN) predictions occur when both classes are 0. False positive and false negative

predictions occur as shown in the following table:

Actual class Predicted class

 True False

True TP FN

False FP TN

The sensitivity of a test is the proportion of the people with the disease who are identified

by the test. The specificity of the test is the proportion of the people who do not have the

disease who are correctly identified as being disease-free by the test. Ideally, sensitivity

and specificity would both be 1.0.

Positive Predictive Value (PPV) is the proportion of patients with the disease who are

correctly predicted to have the disease. The PPV value for a perfect model would be 1.0.

Negative Predictive Value (NPV) is the proportion of patients who do not have the

disease who are correctly predicted as not having the disease. The NPV value for a

perfect model would be 1.0.

Precision and Recall – These terms are most commonly used in applications related to

information lookup. Precision is the proportion of cases selected by the model that have

193

the true value; precision is equal to PPV. Recall is the proportion of the true cases that

are identified by the model; recall is equal to sensitivity.

F-Measure is the harmonic mean of precision and recall. It combines precision and

recall to give an overall measure of the quality of the prediction.

Using the definitions of TP, TN, FP and FN given above, these statistics are calculated

using these formulas:

Area under ROC curve (AUC) – This is the area under the Receive Operating

Characteristic (ROC) curve for the model. This statistic is also called the “C-Statistic”.

The closer the value of the area is to 1.0, the better the model is. See page 215 for more

information about ROC curves.

Here is an example of a sensitivity and specificity report:

194

 ============ Sensitivity & Specificity ============

 Positive: Survived = 1 (Yes)
 Negative: Survived = 0 (No)

-------- Training Data --------

 Accuracy = 78.33%
 Sensitivity = 50.63%
 Specificity = 91.54%
 Geometric mean of sensitivity and specificity = 68.08%
 Positive Predictive Value (PPV) = 74.07%
 Negative Predictive Value (NPV) = 79.53%
 Geometric mean of PPV and NPV = 76.76%
 Precision = 74.07%
 Recall = 50.63%
 F-Measure = 0.6015
 Area under ROC curve (AUC) = 0.768330

-------- Validation Data --------

 Accuracy = 76.06%
 Sensitivity = 54.43%
 Specificity = 86.38%
 Geometric mean of sensitivity and specificity = 68.57%
 Positive Predictive Value (PPV) = 65.59%
 Negative Predictive Value (NPV) = 79.89%
 Geometric mean of PPV and NPV = 72.39%
 Precision = 65.59%
 Recall = 54.43%
 F-Measure = 0.5949
 Area under ROC curve (AUC) = 0.758716

Note that the first section of the report shows which target category DTREG is using as

the “positive” category and which for the “negative” category. If it selects the wrong

category, you can specify the positive category on the Misclassification Property page

(see page 130).

The probability threshold used to classify predicted targets as positive or negative is

shown next. The probability threshold can be specified on the Misclassification Property

page (see page 130). The Sensitivity and Specificity Chart (see page 217) shows how

sensitivity and specificity are changed as the probability threshold is shifted.

195

Probability Calibration Report

The Probability Calibration Report shows how the predicted probability of a target

category is distributed and provides a means for gauging the accuracy of predicted

probabilities. The probability calibration report is generated only when a classification

analysis is performed and there are two target categories. Here is an example of a

probability calibration report:

 ----- Probability calibration for Has diabetes = 1 -----

 Predicted -------- Training Data --------- -------- Validation Data --------

 Prob Range # Rows % Rows Predicted Actual # Rows % Rows Predicted Actual

----------- -------- ------ --------- ------ -------- ------ ---------- ------

0.00 - 0.10 186 24.22 0.0415 0.0054 172 22.40 0.0439 0.0581

0.10 - 0.20 165 21.48 0.1481 0.0788 144 18.75 0.1490 0.1250

0.20 - 0.30 86 11.20 0.2448 0.1860 109 14.19 0.2476 0.2569

0.30 - 0.40 63 8.20 0.3458 0.3333 69 8.98 0.3518 0.4058

0.40 - 0.50 58 7.55 0.4460 0.4483 78 10.16 0.4541 0.4872

0.50 - 0.60 46 5.99 0.5451 0.7391 54 7.03 0.5440 0.5556

0.60 - 0.70 30 3.91 0.6460 0.8667 39 5.08 0.6463 0.8462

0.70 - 0.80 51 6.64 0.7516 0.9412 48 6.25 0.7442 0.7708

0.80 - 0.90 36 4.69 0.8552 1.0000 36 4.69 0.8468 0.8333

0.90 - 1.00 47 6.12 0.9543 1.0000 19 2.47 0.9533 0.8421

 Average weighted probability error for training data = 0.073822

 Average weighted squared probability error for training data = 0.096968

 Average weighted probability error for validation data = 0.033229

 Average weighted squared probability error for validation data = 0.054171

There is one probability report table for each category of the target variable. The table

shown above is for the prediction that “Diabetes = Yes”.

The table has one line for each 0.1 range of predicted probability scores (0.00 to 0.10,

0.10 to 0.20, etc.). Each case in the training or validation data set is assigned to a range

based on the predicted probability that the target category of the case matches the

category of the table (Diabetes = Yes for this example).

Here are the columns in the table:

Predicted Probability Range – This describes a range of calculated probability values.

A data case is assigned to a band based on the predicted probability that the case has the

category of the table (Diabetes=Yes in this example).

Rows – This is the number of rows in this probability range. If a row weight variable is

used, the “count” is actually the sum of the row weights.

% Rows – This is the percent of the total rows that had computed probabilities in this

range.

196

Predicted – This is the average predicted probability for all of the data rows that had

predicted probabilities in the range. Usually the average predicted probability will be

about the midpoint of the range.

Actual – This is the actual proportion of the rows that had the target category for the

table.

If the model is accurate, the predicted probability of an event occurring should match the

actual proportion of times that the event occurs. The Probability Calibration Report

provides a breakdown that allows you to make that comparison. For example, look at the

second line in the table above for cases that had predicted probability scores in the range

0.10 to 0.20. There were 165 such rows which correspond to 21.48% of the total data

rows. The average predicted probability for those rows is 0.1481 which is about the

midpoint of the range. If the model is perfect, we would expect the actual proportion of

these cases to be 0.1481. However, from the “Actual” column we see that the actual

proportion is 0.0788. From this we conclude that the predicted probability for this range

tends to overestimate the frequency of actual occurrence. Using this information, it is

possible to develop a probability calibration correction function that maps predicted

probabilities to more accurate estimates of actual probabilities.

Average weighted probability error for training data – This is the average error

between the predicted probability and the actual occurrence rate weighted by the number

of rows that fall in each bin. For example, for the second line of the table above

describing the 0.10 to 0.2 probability range, the error was (0.1481-0.0788), and since

there were 21.48% of the total rows in that range, that error contributes 21.48% of the

total average error.

Average weighted squared probability error for training data – This is computed in

the same way as the average error described above, except that the error is squared before

being multiplied by the weight and added into the sum. After the total squared error is

added up, the square root is computed, and that is the result reported for this statistic.

For problems where probability estimates are important – rather than just overall

classification accuracy – the average and squared average error values are excellent

overall indicators of the quality of the model.

A graphical representation of probability calibration is presented in the Probability

Calibration Chart which is described on page 227.

197

Probability Threshold Report

The probability threshold report provides information about how different probability

thresholds would affect target category assignments. The threshold report provides a

convenient way to see the tradeoff between impurity and loss as the probability threshold

is varied. The probability threshold report is generated only when a classification

analysis is performed and there are two target categories. A graphical depiction of the

probability threshold response is available in the Probability Threshold Chart described

on page 223.

All classification models not only predict a specific category for each case but also

generate posterior probability scores that indicate the relative likelihood for each

possible category. Support Vector Machine (SVM) models can generate probability

estimates if you enable the appropriate option on the SVM property page.

Usually the category with the highest probability is selected as the predicted category. In

other words, the probability threshold is set at 0.5. You can specify a probability

threshold to control classifications on the Misclassification Cost Property Page described

on page 130.

Here is an example of a probability threshold report:

198

 ----- Threshold analysis for Liver condition = 2 -----

Probability Proportion Error Impurity Loss

----------- ---------- ------ -------- ------

 0.00 1.0000 0.4203 0.4203 0.0000

 0.05 0.9985 0.4188 0.4194 0.0000

 0.10 0.9961 0.4164 0.4180 0.0000

 0.15 0.9571 0.3773 0.3943 0.0000

 0.20 0.8790 0.2993 0.3405 0.0000

 0.25 0.7872 0.2075 0.2636 0.0000

 0.30 0.7431 0.1634 0.2198 0.0000

 0.35 0.6972 0.1232 0.1726 0.0050

 0.40 0.6696 0.0957 0.1386 0.0050

 0.45 0.6177 0.0670 0.0850 0.0250

 0.50 0.5856 0.0581 0.0547 0.0450

 0.55 0.5503 0.0749 0.0413 0.0900

 0.60 0.5161 0.0810 0.0168 0.1247

 0.65 0.4629 0.1168 0.0000 0.2015

 0.70 0.3924 0.1873 0.0000 0.3231

 0.75 0.2817 0.2980 0.0000 0.5140

 0.80 0.1709 0.4088 0.0000 0.7052

 0.85 0.0626 0.5171 0.0000 0.8920

 0.90 0.0062 0.5735 0.0000 0.9892

 0.95 0.0000 0.5797 0.0000 1.0000

 1.00 0.0000 0.5797 0.0000 1.0000

 Area under ROC curve (AUC) for training data = 0.987897

 Threshold to minimize misclassification for training data = 0.517651

 Threshold to minimize weighted misclassification for training data = 0.517651

 Threshold to balance misclassifications for training data = 0.514761

For each probability threshold, several items of information are reported:

Proportion of cases – This column shows the proportion of cases that will be assigned

the target category given a probability threshold. In other words, if the probability that a

case has the target category exceeds the threshold, then it is assigned the category. For

example, in the table shown above if the probability threshold is set to 0.20, then about

0.8790 (87.9%) of the cases will be assigned the selected target category (Liver

Condition = 2 in this example). If the probability threshold is increased to 0.80, then

fewer cases quality and only 0.1709 (17%) of the cases would be assigned the target

category; all other cases would be assigned the other target category. Note in this

example that if the default threshold of 0.50 is used, about 0.5856 (58.56%) of the cases

will be assigned the target category. If the threshold is set to 0.0, all cases are assigned

the target category and the proportion is 1.0. If the threshold is set to 1.0, no cases

qualify.

Error – This is the proportion of cases that would be misclassified if a specified

threshold is selected.

Impurity – The “impurity” is the proportion of cases whose actual (true) category is

different than the selected category but which are misclassified as having the target

category. In other words, it is the proportion of cases that are given the selected target

199

category that actually belong in the other category group. In the example table shown

above, if the probability threshold is set to 0.10 then about 0.4180 (41.8%) of the cases

classified as Liver Condition = 2 will actually have a different category. As the

probability threshold is increased, the impurity decreases. In the example above, when

the threshold is 0.50 the impurity is only 0.0547 (5%). When the probability threshold is

set to 0.0 all cases are assigned to the target category, so the impurity is equal to the

proportion of all cases that do not have the selected target category.

Loss – The “loss” is the proportion of cases whose actual (true) category matches the

selected target category but which are assigned a different category. In the example table

shown above we see that if rows are required to have a probability of 0.80 to be classified

as Liver Condition = 2, then about 0.7052 (70.52%) of the cases with that actual

classification will be misclassified. If the threshold is set to 0.0 then all cases are

assigned the target category and the loss is 0.0. If the threshold is set to 1.0, then no

cases qualify and the loss is 1.0.

Area under ROC curve – This is the area under the Receive Operating Characteristic

(ROC) curve for the model. This statistic is known as Area Under Curve, “AUC”; it is

also called the “C-statistic”. The closer the value of the area is to 1.0, the better the

model is.

Threshold to minimize misclassification for training data – This is the probability

threshold that would minimize the total misclassification error for all data.

Threshold to minimize weighted misclassification for training data – This is the

probability threshold that would minimize the weighted misclassification error. The

weighted misclassification error is computed by multiplying the misclassification rate for

each target category by a factor that corrects for the relative frequency of cases with that

category in the data. Target categories that occur infrequently in the data receive a

greater weight to prevent them from being overwhelmed by frequently occurring

categories.

Threshold to balance misclassifications for training data – This is the probability

threshold that would approximately equalize the number proportion of cases misclassified

for each target category.

Focus Category Report

The Focus Category Report provides information about the “focus category” of the target

variable. This section of the report is generated only if you designate a focus category on

the Class Labels property page for the model (see page 124). Designating a focus

category does not affect the model that DTREG generates; all it does is tell DTREG to

generate additional statistics about the focus category.

Two statistics are reported for the focus category:

200

The Impurity of the focus category is the percentage of the rows predicted to be the

focus category which are actually some other category. In other words, it is the percent

of the misclassified cases predicted to be the focus category. If every case that is

predicted to be the focus category is actually the focus category, then the impurity is 0.0.

The Loss of the focus category is the percentage of actual focus category cases which are

misclassified as some other category. If every case of the focus category is correctly

predicted to be the focus category, then the loss is 0.0.

Here is an example of the focus category model size report:

 ============ Focus Category Report ============

The target variable is Species

Focus Category = Versicolor

The full tree has 5 nodes.

The minimum impurity occurs with 4 nodes.

The minimum loss occurs with 2 nodes.

 ------ Focus Category Vs. Model Size ------

 ---- Training ---- --- Validation ---

Nodes Impurity % Loss % Impurity % Loss %

----- ---------- ------ ---------- ------

 4 2.08 6.00 7.00 4.00 <-- Minimum impurity

 3 9.26 2.00 8.67 4.00

 2 50.00 0.00 50.00 0.00 <-- Minimum loss

This report shows how the impurity and loss for the focus category change with varying

model sizes. For single-tree models, the model size is the number of terminal nodes in

the tree. For TreeBoost and Decision Tree Forest models, the model size is the number

of trees in the model. DTREG also generates charts showing the impurity and loss as a

function of model size (see pages 210 and 211).

The second table in the Focus Category Report shows which categories contributed to the

impurity and loss.

 ------ Focus Impurity and Loss Table ------

 --- Training --- -- Validation --

 Category Impurity % Loss % Impurity % Loss %

--------- ---------- ------ ---------- ------

 Setosa 0.00 0.00 0.00 0.00

Virginica 0.00 6.00 4.17 8.00

In this example, the focus category is Versicolor, so all of the categories other than

Versicolor are listed. This table shows that the validation data for the model had 4.17%

impurity due to Virginica cases that were misclassified as Versicolor. The focus category

had an 8% loss due to Versicolor cases being misclassified as Virginica.

201

Lift and Gain Table

The lift and gain table is a useful tool for measuring the value of a predictive model. Lift

and gain values are especially useful when a model is being used to target (prioritize)

marketing efforts. Here is an example of a Lift and Gain table:

Lift/Gain for Survived = Yes

 Bin Cutoff Class % Cum % Cum % Cum % of % of

Index Probability of bin Population of class Gain Population Class Lift

----- ----------- ------- ---------- -------- ------ ---------- ------ ------

 1 0.73191 72.40 10.04 22.50 2.24 10.04 22.50 2.24

 2 0.73191 73.76 20.08 45.43 2.26 10.04 22.93 2.28

 3 0.21202 18.10 30.12 51.05 1.69 10.04 5.63 0.56

 4 0.21202 28.51 40.16 59.92 1.49 10.04 8.86 0.88

 5 0.21202 17.65 50.20 65.40 1.30 10.04 5.49 0.55

 6 0.21202 34.84 60.25 76.23 1.27 10.04 10.83 1.08

 7 0.21202 58.82 70.29 94.51 1.34 10.04 18.28 1.82

 8 0.21202 2.26 80.33 95.22 1.19 10.04 0.70 0.07

 9 0.21202 3.17 90.37 96.20 1.06 10.04 0.98 0.10

 10 0.00000 12.74 100.00 100.00 1.00 9.63 3.80 0.39

 Average gain = 1.485

 Percent of cases with Survived = Yes: 32.30%

The lift and gain tables for a single-tree model have an entry for each terminal node. The

lift and gain charts for other types of models have a fixed number of bins – usually 10,

but you can change the number of bins on the Design Property Page (see page 33).

The basic idea of lift and gain is to sort the predicted target values in decreasing order of

purity on some target category (probability of Survived=Yes in the example above) and

then compare the proportion of cases with the category in each bin with the overall

proportion. In the case of a model with a continuous target variable, the predicted target

values are sorted in decreasing target value order and then compared with the mean target

value. The lift and gain values show how much improvement the model provides in

picking out the best 10%, 20%, etc. of the cases.

Most of the numbers in the table are relative to the overall percentage of cases with the

selected target category. This value is shown below the table (for example, “Percent of

cases with Survived = Yes: 32.30%”). Note that this percentage is calculated from the

data rows used to build the table, so the percentage for the training and validation data

may differ slightly.

Bin index – Bins are numbered from 1 up to the maximum number specified on the

Design Property Page. The first bin represents the data rows that have the highest

predicted probability for the specified target category (Survived=Yes for this example).

Cutoff Probability – This is the smallest predicted probability of data rows falling in this

bin or earlier bins.

Class % of bin – This is the percentage of the cases in the bin that have the specified

category of the target variable. In the example above, the target variable is “Survived”

and this lift/gain table is for category “Yes” of Survived.

202

Cumulative % population – This is the cumulative percentage of the total cases (with

any category) falling in bins up to and including the current one.

Cumulative % of class – This is the cumulative percentage of the rows with the

specified category (Survived=Yes in this example) falling in bins up to and including the

current one. In the example above, the first two bins have 48.38% of all of the

Survived=Yes cases.

Cumulative gain – This is the ratio of the cumulative percent of class divided by the

cumulative percent of the population. In the example above, the cumulative gain for bin

2 is 2.26 which is calculated by dividing 45.43 by 20.08.

% of population – This is the percentage of the total cases falling in the bin. This will

be approximately 100/number-of-bins.

% of class – This is percent of the cases with the specified category (Survived=Yes in

this example) that were placed in this bin. In this example, 22.50% of all the cases with

category Yes ended up in the first bin.

The Lift value (last column) is calculated by dividing the percent of rows in a bin with

the specified target category (% of Class) by the total percent of cases in the bin (% of

Population). In the table above, the lift for the first row is calculated as 2.24 =

22.50/10.04.

To understand lift and gain, consider the example of a company that wants to do a mail

marketing campaign. The company has a database of 100,000 potential customers, and

they calculate that each mailed advertisement will cost $1.00. Prior experience has

shown that the average response rate is 10%. So if they send the advertisement to all of

the prospects, they will incur an expense of $100,000 and they will likely receive

approximately 10,000 sales.

Hoping to improve their return on investment (ROI), the company uses DTREG to build

a predictive model using data from previous campaigns with Sale/No-sale as the target

variable and various demographic variables as predictors. The predictive model is used

to prioritize the prospects so that they can be sorted in decreasing order of expected sales

(i.e., the best sales candidates are sorted to the front of the list).

Using the “Cum % Population”, “Cum % of class”, “Cum Gain” and “Lift” columns from

the Lift/Gain chart, the marketing director of the company prepares the following table:

203

Ads Mailed Cum. % Class Expected Sales Cum. Gain Lift

 10000 30 3000 3.00 3.00

 20000 50 5000 2.50 2.00

 30000 65 6500 2.17 1.50

 40000 72 7200 1.80 0.70

 50000 80 8000 1.60 0.80

 60000 85 8500 1.42 0.50

 70000 90 9000 1.29 0.50

 80000 95 9500 1.19 0.50

 90000 98 9800 1.09 0.30

100000 100 10000 1.00 0.20

The table divides the total prospect set into 10 bins with the best 10% of the prospects (as

predicted by DTREG) in the first bin, the second-best 10% in the second bin, and so

forth. The table has five columns:

Ads mailed – This is the cumulative number of ads mailed starting with the best

prospects and advancing to less well qualified prospects.

Cum. % class – This is the cumulative percentage of the sales expected from ads sent to

prospects in the bins up to and including the one with the percentage. For example, we

expect to receive 50% of total sales from ads sent to the prospects in the two highest-

priority bins.

Expected sales – This is the total number of sales that can be expected from the

cumulative number of ads mailed to customers in bins up to and including the current

one. In this example, it is believed that of the total population (100,000) about 10% will

respond resulting in sales of 10,000 units if all customers are targeted. So the expected

cumulative sales for a bin are calculated by multiplying the expected total sales (10,000)

by the cumulative percentage of the class up to and including the bin (“Cum. % class”).

For example, if ads are mailed to customers falling in bins 1 and 2, then about 50% of the

10,000 expected sales will be achieved resulting in cumulative expected sales of 5,000

units.

Cum. Gain – This is the ratio of the expected sales using the model to prioritize the

prospects divided by the expected sales if a random mailing was done. In this example

we see that by targeting the customers in bins 1 and 2, we will get about 2.50 times as

many sales as if we mailed the same number of ads to a random set of customers. Thus

our return on investment (ROI) is increased by 2.5 if we target this group. Note that if we

increase the number of ads mailed to include less qualified customers in higher bins, the

gain decreases because we are now mailing to people who are less likely to respond. If

we send ads to all 100,000 potential customers then the gain is 1.00 because are not doing

any selective targeting.

Lift – This is the ratio of the expected sales for the prospects in a bin (“% of class”)

divided by the percent of the population in the bin (“% of population”). As you send ads

204

to less well qualified customers the number of proportion of sales decreases; this is

reflected by the lift decreasing in higher bins.

What we learn from the table is that by targeting the campaign at the best 20% of the

prospects (i.e., the prospects falling in the first two bins), we can expect 5000 sales which

constitute 50% of the total expected sales. By targeting the best 50000 prospects, we can

expect 8000 sales which constitute 80% of the total. The mailings done to the 10,000

prospects in the last (worst) bin are likely to yield only 200 sales for a return of 2%.

How Lift and Gain Values are calculated

Using the predictive model generated by DTREG, predicted target values are calculated

for each row. A one-dimensional array (i.e., a “vector”) is allocated with an entry for

each row, and predicted target values are stored for each row. In the case of a

classification problem (categorical target variable), the value is set to 1 if the predicted

target category for a row matches the target value selected for the table (a separate

Lift/Gain table is generated for each target category). A value of 0 is stored for rows

where the predicted category is different from the target value selected for the table. For

a regression analysis (target variable is continuous), the predicted value for each row is

stored in the vector.

The vector of row values is then sorted in decreasing order. In the case of a classification

problem, the rows that were assigned 1 because their predicted category matches the

category of the table get sorted to the front of the list. In the case of a regression

problem, the rows with the largest predicted target values get sorted the front of the list.

The sort is done in a manner so that the row numbers that correspond to the sorted values

are also rearranged; so we know which row has the largest value, which row has the

smallest value, etc.

Another one-dimensional array is allocated with an entry for each bin in the lift/gain

table. Usually there are 10 bins. The sorted row index numbers computed in the

previous step are divided into n partitions, where n is the number of bins (it is actually a

little more complex than this because row weights are factored into the partitioning). So

the first bin has the set of rows whose predicted values are the ones that best match the

target category for classification models or the largest numerical values for regression

models.

Values are then calculated for each bin using the rows that were partitioned into the bin.

For classification trees, the Lift for the bin is the ratio of the weight of rows whose

predicted target categories match the category of the table divided by the weight of the

rows in the bin whose actual target category matches the category for the Lift/Gain table.

For regression trees, the Lift for the bin is the ratio of the sum of predicted target values

in the bin divided by the sum of the actual target values for the bin.

205

Since the row values were sorted in decreasing value, the first bins are likely to have the

best predicted values, so their lift values will usually be greater than 1.00. Bins at the

bottom of the table have rows that were not predicted well (or which had small predicted

values), and their lift will usually be less than 1.00. If the model simply generated

random predictions, the lift values for all bins would be approximately 1.00.

The Cumulative Gain for each bin is the ratio of the proportion of all rows with

predicted categories matching the table category up to and including the bin divided by

the proportion of rows with the actual target category of the table up through the current

bin. Or, for regression trees, it is the proportion of the total predicted values for all rows

up to the bin divided by the proportion of the actual target values up through the bin. The

Cumulative Gain for the final bin will always be 1.00 because the proportion of the

predicted values for the entire set of rows is 1.00 as is the proportion of the actual values.

Here is a summary of how lift/gain values are calculated:

Let:

ActualTarget = The actual value of the target variable for each row.

PredictedTarget = The predicted value of the target variable for each row as predicted

by the model.

NumBins = Number of bins that will be in the lift/gain chart (specified on the Design

Property page).

1. Sort the data rows in descending order of PredictedTarget.

2. Divide the sorted rows into NumBins bins with approximately the same number

of rows in each bin. For a single-tree model, the bins contain the rows in each

terminal node.

3. Calculate and report the following values:

Mean Target = For a regression model, this is the weighted mean of ActualTarget

values in the bin. The bins are sorted in decreasing order on this column.

Class % of bin = For a classification model, this is the percentage of the rows in the bin

that have the selected category. For example, if “Purchased-Product” is the selected

category, then the value shown in this column is the number of rows representing people

who purchased the product. The bins are sorted in decreasing order on this column, so

the top row in the table has the purest set of rows for the category.

Cum. % Population = This is the cumulative percentage of the rows in all bins up to and

including the current bin.

206

Cum % Target = For a regression model, this is the cumulative percent of the sum of

the weighted target values (ActualTarget) occurring in the bins up to and including the

current bin. (The percentage is relative to the total weighted sum of ActualTarget values

in all rows.)

Cum % Class = For a classification model, this is the cumulative percent of the total

rows having the selected category (ActualTarget) that fall in bins up to and including the

bin.

Cum Gain = Cum % Target divided by Cum % Population. The gain shows how

much of an improvement is provided by the model by using the high priority bins up to

the one with the value.

% of Population = Percent of the total rows that are included in the bin.

% of Target = For a regression model, this is the sum of the ActualTarget values in the

bin divided by the total sum of ActualTarget values for the population times 100.

% of Class = For a classification model, this is the number of rows having the designated

category in the bin divided by the total number of rows having the designated category

times 100.

Lift = % of Target (or % of Class) divided by % of Population times 100.

See page 212 for information about generating lift and gain charts.

Terminal Node Table

The terminal node table displays summary statistics about each terminal node in a single

decision tree model. This section of the report is generated only if you check the box

labeled “Generate report of tree splits” on the Single Tree property page (see page 51).

 ============ Terminal Nodes ============

Terminal (leaf) tree nodes sorted by target category

Category Node Misclassification Num. Rows Weight

-------- ------ ----------------- --------- ------------

1 5 25.00% 80 80

1 7 31.25% 16 16

1 58 33.33% 27 27

1 8 33.33% 6 6

1 77 34.29% 35 35

1 78 40.00% 10 10

2 9 10.53% 38 38

2 42 11.48% 61 61

2 57 14.71% 34 34

2 79 16.67% 24 24

2 59 21.43% 14 14

207

The terminal nodes are ordered by the categories of the target variable. For each

category, the table shows each terminal node that predicts that category and the

misclassification rate. Within a category, the nodes are ordered by increasing

misclassification rate: so, the first terminal node listed for a category is the node that has

the lowest misclassification rate for the category (i.e., it is the purest node for the

category).

If the target variable is continuous, then the target node table has this format:

Terminal (leaf) tree nodes sorted by Sales value

 Node Target mean Target std.dev. Num. rows Weight

 ---- ------------- --------------- --------- ------------

 93 9.91364 2.485375 44 44

 92 13.92222 2.044384 18 18

 65 14.04167 2.803854 24 24

 119 14.40000 3.050683 3 3

 86 16.63333 4.313416 12 12

In this case, the node number is shown in the first column, the mean value of the target

variable for rows in the node is shown next followed by the standard deviation of the

target mean then the number of rows and their weight. The nodes are ordered by

increasing value of the target variable means.

The terminal node table is very useful for identifying focus groups. For example, if the

target variable is customer sales and you are trying to identify the type of customers who

are most likely to buy a product, then you would focus your attention on the terminal

nodes that have the highest mean value on the customer sales target variable.

208

Variable Importance Table

The variable importance table gives a ranking of the overall importance of the predictor

variables.

 ============ Overall Importance of Variables ============

 Variable Importance

------------------- ----------

Lower status 100.000

Num. rooms 88.439

Distance 28.388

Pupil-teacher ratio 24.965

Nitric oxides 24.739

Industrial 22.049

Tax rate 19.691

Old houses 15.584

Crime rate 12.341

Large lots 11.772

Radial highways 4.867

Black 1.648

Charles River 0.509

Importance scores are computed by using information about how variables were used as

primary splitters and also as surrogate splitters. Obviously, a variable that is selected as a

primary splitter early in the tree is important. What is less obvious is that surrogate

splitters that closely mimic the primary splitter are also important because they may be

nearly as good as the primary splitter in producing the tree. If a primary splitter is

slightly better than a surrogate, then the primary splitter may “mask” the significance of

the other variable. By considering surrogate splits, the importance measure calculated by

DTREG gives a more accurate measure of the actual and potential value of a predictor.

To get the most accurate measure of importance, you should select the option “Always

compute surrogate predictors” on the Missing Data property page (see page 133).

The importance score for the most important predictor is scaled to a value of 100.00.

Other predictors will have lower scores. Only predictors with scores greater than zero are

shown in the table.

See page 228 for information about displaying a chart of variable importance.

209

Charts and Graphs

DTREG generates a number of charts and graphs to show statistics for models. To view

a chart, click “Charts” on the main menu, and select the desired chart from the drop-

down menu.

Each of the charts is described below.

Model Size Chart

The Model Size chart shows how the error rate (residual or misclassifications) change

with the size of the model. For a single-tree model, the model size is the number of

terminal nodes in the tree. For a TreeBoost model, the model size is the number of trees

in the TreeBoost model series. For a Decision Tree Forest mode, the model size is the

number of trees in the forest. For multilayer perceptron neural networks where DTREG

has automatically found the optimal number of neurons, the model size chart shows the

210

model error as a function of the number of neurons in the hidden layer. For PNN/GRNN

neural networks, the chart shows the error as a function of the number of neurons.

The blue line on the chart represents the error rate for the training data. The red line

shows the error rate for the validation (test) data. A blue vertical line shows the size with

the minimum error on the training data line; a red vertical line shows the size with the

minimum error for the validation data. A green vertical line shows the size to which the

tree is pruned.

Focus Category Impurity Chart

The Focus Category Impurity Chart shows the impurity of the designated focus category

of the target variable as a function of the size of the model. For a single-tree model, the

model size is the number of terminal nodes in the tree. For a TreeBoost model, the model

size is the number of trees in the TreeBoost model series. For a Decision Tree Forest

mode, the model size is the number of trees in the forest.

The blue line on the chart represents the impurity percentage for the training data. The

red line shows the impurity for the validation (test) data. A blue vertical line shows the

size with the minimum impurity on the training data line; a red vertical line shows the

211

size with the minimum impurity for the validation data. A green vertical line shows the

size to which the tree is pruned.

The Impurity of the focus category is the percentage of the rows predicted to be the

focus category which are actually some other category. In other words, it is the percent

of the misclassified cases predicted to be the focus category. If every case that is

predicted to be the focus category is actually the focus category, then the impurity is 0.0.

A Focus Category Impurity chart is generated only if you designate a focus category on

the Class Table property page (see page 124).

Focus Category Loss Chart

The Focus Category Loss Chart shows the loss of the designated focus category of the

target variable as a function of the size of the model. For a single-tree model, the model

size is the number of terminal nodes in the tree. For a TreeBoost model, the model size is

the number of trees in the TreeBoost model series. For a Decision Tree Forest mode, the

model size is the number of trees in the forest.

The blue line on the chart represents the loss for the training data. The red line shows the

loss for the validation (test) data. A blue vertical line shows the size with the minimum

212

loss on the training data line; a red vertical line shows the size with the minimum loss for

the validation data. A green vertical line shows the size to which the tree is pruned.

The Loss of the focus category is the percentage of actual focus category cases which are

misclassified as some other category. If every case of the focus category is correctly

predicted to be the focus category, then the loss is 0.0.

A Focus Category Loss chart is generated only if you designate a focus category on the

Class Table property page (see page 124).

Lift and Gain Chart

When you select the “Lift & Gain” chart item, DTREG displays a screen with options

related to these charts. See page 204 for information about how Lift and Gain values are

calculated.

Select the type of chart you want to view (Gain, Lift or Cumulative lift) and the data to be

used for the chart (Training or Test). You also can select the number of bins to divide the

213

data into. For classification models, select which category of the target variable the

lift/gain is to be calculated for. See page 201 for information about how lift and gain

values are computed and used.

Gain Chart

A gain chart displays cumulative percent of the target value on the vertical axis and

cumulative percent of population on the horizontal axis. The straight, diagonal line

shows the expected return if no model is used for the population. The curved line shows

the expected return using the model. The shaded area between the lines shows the

improvement (gain) from the model.

214

Lift Chart

A lift chart displays the lift for each bin on the vertical axis and the cumulative

population on the horizontal axis.

Cumulative Lift Chart

A cumulative lift chart displays gain on the vertical axis and percent of population on the

horizontal axis.

215

ROC Chart

A Receiver Operating Characteristic (ROC) chart is available when a classification

analysis has been and the target variable has two categories. ROC charts are not

available for regression or for classification models where there are more than two target

categories.

Classification models not only predict a specific category for each case but also generate

posterior probability scores that indicate the relative likelihood for each possible

category. Usually the category with the highest probability is selected as the predicted

category.

A Receiver Operating Characteristic (ROC) chart displays the True Positive Rate (TPR)

for predictions of a specific category on the vertical (Y) axis and the False Positive Rate

(FPR) on the horizontal (X) axis. An ROC chart shows the trade-off between missed

classifications (low TPR) and false classifications (high FPR) as different probability

thresholds are considered. See also the description of the TPR/FPR chart that displays

TPR and FPR curves relative to probability thresholds.

216

The (0,1) point in the upper left corner represents perfect classification – the true

classification rate is 1.0 and the false classification rate is 0.0. The closer the ROC curve

gets to the upper left corner of the chart, the better it is. The (0,0) point is reached when

the probability threshold is set so high that that no cases are assigned the category, and no

other categories are misclassified as the designated category. The (1,1) point is reached

when the probability threshold is set so low that all cases receive the category

classification even if their actual category is something else. The diagonal line from (0,0)

to (1,1) represents the response that would be expected from randomly assigning the

category. The yellow area between the diagonal line and the ROC line is the benefit

gained by the model. The larger the yellow area, the better job the model is doing.

217

Sensitivity and Specificity Chart

A Sensitivity and Specificity Chart is available when a classification analysis has been

run with two target categories and probabilities calculated. This chart shows how

sensitivity and specificity can be adjusted by shifting the probability threshold for

classifying cases as positive or negative. The probability threshold is specified on the

Misclassification Cost property page (see page 130).

218

True Positive/False Positive Rate (TPR/FPR) Chart

This chart shows how True Positive Rate (TPR) and False Positive Rate (FPR) can be

adjusted by shifting the probability threshold for classifying cases as positive or negative.

The probability threshold is specified on the Misclassification Cost property page (see

page 130). It is desirable that TPR be as large as possible and FPR be as small as

possible. This chart is similar to the ROC chart described on page 215 in that they both

display TPR and FPR values. However, this chart shows how the TPR and FPR vary as

the probability threshold is adjusted.

219

True Negative/False Negative Rate (TNR/FNR) Chart

This chart shows how True Negative Rate (TNR) and False Negative Rate (FNR) can be

adjusted by shifting the probability threshold for classifying cases as positive or negative.

The probability threshold is specified on the Misclassification Cost property page (see

page 130). It is desirable that TNR be as large as possible and FNR be as small as

possible.

220

True Positive/True Negative Rate (TPR/TNR) Chart

This chart shows how True Positive Rate (TPR) and True Negative Rate (TNR) can be

adjusted by shifting the probability threshold for classifying cases as positive or negative.

The probability threshold is specified on the Misclassification Cost property page (see

page 130). It is desirable that TPR and TNR be as large as possible. The geometric mean

value of TPR and TNR is shown as the blue line.

221

Positive and Negative Predictive Value Chart

A Positive and Negative Predictive Value Chart is available when a classification

analysis has been run with two target categories and probabilities calculated. This chart

shows how PPV and NPV can be adjusted by shifting the probability threshold for

classifying cases as positive or negative. The probability threshold is specified on the

Misclassification Cost property page (see page 130).

222

223

Probability Threshold Chart

A Probability Threshold Chart is available when a classification analysis has been run

and the target variable has two categories. Threshold charts are not available for

regression or for models where the target variable has more than two categories. A table

showing the probability threshold response is generated in the analysis report. See page

197 for a description of the Probability Threshold Report.

Classification methods such as TreeBoost, SVM, Discriminant Analysis and Logistic

Regression not only predict a specific category for each case but also generate probability

scores that indicate the relative likelihood for each possible category. Usually the

category with the highest probability is selected as the predicted category. In other

words, the probability threshold is set at 0.5.

A Probability Threshold Chart shows how varying probability threshold values would

affect the proportion of cases assigned the selected target category. The horizontal (X)

224

axis of the threshold chart has probability threshold values varying from 0.0 to 1.0. The

vertical (Y) axis shows a proportion value. Three colored lines are shown on the chart:

Blue line, proportion of cases – The blue line shows the proportion of cases that will be

assigned the target category given a probability threshold. In other words, if the

probability that a case has the target category exceeds the threshold, then it is assigned

the category. For example, in the chart shown above if the probability threshold is set to

0.2, then about 0.88 (88%) of the cases will be assigned the selected target category

(Liver Condition = 2 in this example). If the probability threshold is increased to 0.8,

then fewer cases quality and only 0.17 (17%) of the cases would be assigned the target

category; all other cases would be assigned the other target category. Note in this

example that if the default threshold of 0.5 is used, about 0.59 (59%) of the cases will be

assigned the target category. If the threshold is set to 0.0, all cases are assigned the target

category and the proportion is 1.0. If the threshold is set to 1.0, no cases qualify.

Green line, impurity – The “impurity” is the proportion of cases whose actual (true)

category is different than the selected category but which are misclassified as having the

target category. In other words, it is the proportion of cases that are given the selected

target category that actually belong in the other category group. In the example chart

shown above, if the probability threshold is set to 0.1 then about 0.42 (42%) of the cases

classified as Liver Condition = 2 will actually have a different category. As the

probability threshold is increased, the impurity decreases. In the example above, when

the threshold is 0.5 the impurity is only 0.05 (5%). When the probability threshold is set

to 0.0 all cases are assigned to the target category, so the impurity is equal to the

proportion of all cases that do not have the selected target category.

Yellow line, loss – The “loss” is the proportion of cases whose actual (true) category

matches the selected target category but which are assigned a different category. In the

example chart shown above we see that if rows are required to have a probability of 0.8

to be classified as Liver Condition = 2, then about 0.71 (71%) of the cases with that

actual classification will be misclassified. If the threshold is set to 0.0 then all cases are

assigned the target category and the loss is 0.0. If the threshold is set to 1.0, then no

cases qualify and the loss is 1.0.

The probability threshold chart provides a convenient way to see the tradeoff between

impurity and loss as the probability threshold is varied. You can specify the probability

threshold to use for classifications on the Misclassification Cost Property Page described

on page 130.

225

Threshold Balance Chart

The Threshold Balance Chart shows how the misclassification error rate for each

category is affected by varying probability thresholds. A Threshold Balance Chart is

available when a classification analysis has been and the target variable has two

categories. Threshold balance charts are not available for regression analyses or for

models with more than two categories of the target variable. A table showing the

probability threshold response is generated in the analysis report. See page 197 for a

description of the Probability Threshold Report.

A Threshold Balance Chart shows how varying probability threshold values would affect

the misclassification proportion for cases with each target category. The horizontal (X)

axis of the threshold chart has probability threshold values varying from 0.0 to 1.0. The

vertical (Y) axis shows a misclassification proportion value. Three colored lines are

shown on the chart:

226

Green line – Proportion of cases misclassified for one of the target categories.

Blue line – Proportion of cases misclassified for the other target category.

Red line – Weighted misclassification rate. The weighted misclassification error is

computed by multiplying the misclassification rate for each target category by a factor

that corrects for the relative frequency of cases with that category in the data. Target

categories that occur infrequently in the data receive a greater weight to prevent them

from being overwhelmed by frequently occurring categories.

227

Probability Calibration Chart

The Probability Calibration Chart shows how the predicted probability for a target

category is distributed and provides a means for gauging the accuracy of predicted

probabilities. The probability calibration chart is generated only when a classification

analysis is performed and there are two target categories. Here is an example of a

probability calibration chart:

The horizontal axis has the predicted probability for the observations. The vertical axis

has the actual probability based on the frequency of occurrence. For example, in the

chart above the average predicted probability for cases between 0.6 and 0.7 was about

0.65; the actual probability based on the rate of occurrence for those cases was about

0.87. If the predicted probabilities match the actual probabilities, the points fall on the

diagonal line. The red shaded area shows the error which is the difference between the

predicted and actual probabilities. For additional information, see the description of the

Probability Calibration Report on page 195.

228

Variable Importance Chart

The Variable Importance chart is a bar chart showing the relative importance for the 10

most important variables.

229

X-Y Data Plot

The X-Y Data Plot chart displays the values of two continuous variables on a Cartesian

plot. When you select this type of chart, DTREG will display a screen where you select

which variables you want to plot. Here is an example:

In the top field, select the variable to be displayed on the vertical Y axis (ordinate); in the

lower field, select the variable to be displayed on the horizontal X axis (abscissa). Only

continuous variables may be selected.

If you have created a model, the target variable is continuous, and you select the target

variable to be displayed on the Y axis, then the “Plot line showing predicted target

values” option will be enabled. Check this box to display the predicted values of the

target variable on the plot. Here is an example of an X-Y data plot showing both the

actual data points and the fitted function:

230

231

Residual (Actual versus Predicted) Chart

The Actual versus Predicted chart is available only after building a model where the

target variable is continuous. It displays a point for each data row. The X coordinate of a

point is the actual target value. The Y coordinate of the point is the corresponding

predicted target value. This type of chart is sometimes called a Residual Chart. With a

perfect model, the predicted values would equal the actual values, the X and Y

coordinates for each point would be equal, and all points would be located on the

diagonal line where X=Y. When the predicted value differs from the actual value, the

points are offset from the diagonal line, and the vertical distance from the line to the point

corresponds to the error (residual). The error is denoted by red vertical lines.

232

Time Series Chart

The Time Series chart displays up to four lines:

 Black square – Actual values of the time series

 Green square – Predicted values for points corresponding to training points

 Open blue circle – Predicted values for validation rows not used for training

 Open red circle – Forecast values beyond the end of the time series

233

Time Series Residuals Chart

The Time Series Residual chart shows the residuals (errors) of the predicted values minus

the actual values.

Time Series Trend Chart

The Time Series Trend chart shows the actual values and a trend line fitted to the series.

234

Time Series Transformed Chart

The Time Series Transformed chart shows the time series after DTREG has removed the

trend and stabilized the variance (if requested).

235

Decision Trees

A decision tree is a logical model represented as a binary (two-way split) tree that shows

how the value of a target variable can be predicted by using the values of a set of

predictor variables. An example of a decision tree is shown below:

Decision Tree Nodes

The rectangular boxes shown in the tree are called “nodes”. Each node represents a set of

records (rows) from the original dataset. Nodes that have child nodes (nodes 1 and 3 in

the tree above) are called “interior” nodes. Nodes that do not have child nodes (nodes 2,

4 and 5 in the tree above) are called “terminal” or “leaf” nodes. The topmost node (node

1 in the example) is called the “root” node. (Unlike a real tree, decision trees are drawn

with their root at the top). The root node represents all the rows in the dataset.

In the top of the node box is the node number. Use the node number to find information

about the node in the reports generated by DTREG. The “N = nn” line shows how many

rows (cases) fall in the node. The “W = nn” line shows the sum of the weights of the

rows in the node. For details on the information presented in each node, see “What’s in a

node” on page 241.

Splitting Nodes

A decision tree is constructed by a binary split that divides the rows in a node into two

groups (child nodes). The same procedure is then used to split the child groups. This

process is called “recursive partitioning”. The split is selected to construct a tree that can

be used to predict the value of the target variable.

236

For each split, two decisions are made by DTREG: (1) which predictor variable to use for

the split (this is called the “splitting variable”), and (2) which set of values of the

predictor variable go into the left child node and which set go into the right child node;

this is called the “split point”. The same predictor variable can be used to split many

nodes. For a more detailed explanation of how trees are built, please see page 361.

The name of the predictor variable used to construct a node is shown in the node box

below the node number. For example, in the tree shown on page 235, nodes 2 and 3 were

formed by splitting node 1 on the predictor variable “Petal length”. The split point is

2.45. If the splitting variable is continuous (numeric) as in this split, the values going

into the left and right child nodes will be shown as values less than or greater than some

split point (2.45 in this example). Node 2 consists of all rows with the value of “Petal

length” less than or equal to 2.45, whereas node 3 consists of all rows with Petal length

greater than 2.45. If the splitting variable is categorical, the categories of the splitting

variable going into each node will be listed.

Building and Using a Decision Tree Model

There are two steps to making productive use of decision trees (1) building a decision

tree model, and (2) using the decision tree to draw inferences and make predictions. The

following sections provide an overview of how decision trees are built and used.

Overview of the Tree Building Process

The first step in building a decision tree is to collect a set of data values that DTREG can

analyze. This data is called the learning or training dataset because it is used by DTREG

to learn how the value of a target variable is related to the values of predictor variables.

This dataset must have instances for which you know the actual value of the target

variable and the associated predictor variables. You might have to perform a study or

survey to collect this data, or you might be able to obtain it from previously-collected

historical records.

Each entry in the learning dataset provides values for the target and predictor variables

for a specific customer, patient, company, etc. Each entry is known as a “case,” “row,”

“record,” “observation” or “vector”. See page 36 for information about the format of

datasets.

The question “How much data is required for the learning dataset?” is answered by

addressing the level of precision you desire in the resulting tree. In general, DTREG will

not split a node with fewer than 10 rows. So, a tree with three levels and four terminal

nodes must have an absolute minimum of 20 records, but the predictive accuracy would

be greatly improved by having four or more times that many records. DTREG is

designed to handle tens of thousands of records.

237

Once you obtain enough data for the learning dataset, this data is fed into DTREG which

performs a complex analysis on it and builds a decision tree that models the data. See

page 361 for additional information about the tree building process.

Overview of Using Decision Trees

Once DTREG has created a decision tree, you can use it in the following ways:

 You can use the tree to make inferences that help you understand the “big picture”

of the model. One of the great advantages of decision trees is that they are easy to

interpret even by non-technical people. For example, if the decision tree models

product sales, a quick glance might tell you that men in the South buy more of

your product than women in the North. If you are developing a model of health

risks for insurance policies, a quick glance might tell you that smoking and age

are important predictors of health.

 You can use the decision tree to identify target groups. For example, if you are

looking for the best potential customers for a product, you can identify the

terminal nodes in the tree that have the highest percentage of sales, and then focus

your sales effort on individuals described by those nodes.

 You can predict the target value for specific cases where you know only the

predictor variable values. This is known as “scoring”. Scoring is described in the

following section and, in more detail, on page 163.

238

Using a Decision Tree to Predict Target Variable Values (Scoring)

A decision tree can be used to predict the values of the target variable based on values of

the predictor variables.

To determine the predicted value of a row, begin with the root node (node 1 above).

Then decide whether to go into the left or right child node based on the value of the

splitting variable. Continue this process using the splitting variable for successive child

nodes until you reach a terminal, leaf node. The value of the target variable shown in the

leaf node is the predicted value of the target variable.

For example, let’s use the decision tree shown above to classify a case that has the

following predictor values:

 Petal length = 3.5

 Petal width = 2.1

Begin the analysis by starting in the root node, node 1. The first split is made using the

Petal length predictor. Since the value of Petal length in our case is 3.5, which is greater

than the split point of 2.45, we move from node 1 into node 3. If we stopped at that

point, the best estimate of Species would be Versicolor. Node 3 is split on a different

predictor variable, Petal width. Our value of Petal width is 2.1, which is greater than the

split point of 1.75, so we move into node 5. This is a terminal node, so we classify the

species as Virginica, which is the category assigned to the terminal node.

In the case of regression trees where the target variable is continuous, the mean value of

the target variable for the rows falling in a leaf node is used as the predicted value of the

target variable.

239

Regression and Classification Models

DTREG will generate a regression model or a classification model depending on whether

the target variable is continuous or categorical.

Regression Models -- If the target variable is continuous, a regression model is

generated. When using a regression tree to predict the value of the target variable, the

mean value of the target variable of the rows falling in a terminal (leaf) node of the tree is

the predicted value.

An example of a regression tree is shown below. In this example, the target variable is

“Median value”. From the tree we see that if the value of the predictor variable “Num.

rooms” is greater than 6.941, then the estimated (average) value of the target variable is

37.238; whereas, if the number of rooms is less than or equal to 6.941, then the average

value of the target variable is 19.934.

240

Classification Models -- If the target variable is categorical, then a classification model

is generated. To predict the value (category) of the target variable using a classification

tree, use the values of the predictor variables to move through the tree until you reach a

terminal (leaf) node, then predict the category shown for that node. An example of a

classification tree is shown below. The target variable is “Species”, the species of Iris.

We can see from the tree that if the value of the predictor variable “Petal length” is less

than or equal to 2.45 the species is Setosa. If the petal length is greater than 2.45, then

additional splits are required to classify the species.

241

Viewing a Decision Tree

I think that I shall never see a poem lovely as a tree.

 – Joyce Kilmer

Once an analysis has been completed, you can view the generated decision tree by

clicking the toolbar icon or by clicking “View-tree” on the main menu.

What’s in a node – Classification tree

The information displayed in each node depends on whether it is part of a classification

tree (categorical target variable) or a regression tree (continuous target variable). Here is

an example of a node from a classification tree:

242

Five lines of information are presented in this node:

1. Node number – The top line displays the number of the node. This number

allows you to match the node to the textual report for the analysis.

2. Predictor variable used for split – The second line displays the name of the

predictor variable that was used to generate the split from the parent node (i.e., the

split that generated this node). In this example, the parent node was split on

“Petal length”. Following the name of the predictor variable is either a “<=” or

“>” sign indicating if values less than or equal or greater than the split point go

into this node. In this example, it shows that records with values of Petal length

less than or equal to 2.45 were placed in this node. The sibling node received

records with Petal length greater than 2.45. If the predictor variable is categorical,

the categories of the variable that were placed in this node are shown after the

variable name.

3. Record and weight counts – The “N=nn” and “W=nn” values show how many

rows (N) were placed in this node and the sum of the row weights (W). If no

weight variable was specified, or all weights are 1.0, and the sum of the weights

will equal the number of rows.

4. Target variable category – This line displays the name of the target variable

(“Species”) and the category of it that was assigned to this node (“Setosa”). See

page 364 for information about how target categories are assigned to nodes.

5. Misclassification percent – This is the percentage of the rows in this node that

had target variable categories different from the category that was assigned to the

node. In other words, it is the percentage of rows that were misclassified.

What’s in a node – Regression tree

The information shown in a node for a regression tree is illustrated below:

In his example, this node was produced by splitting its parent node on the predictor

variable “Number of rooms”. There were 430 rows with values of “Number of rooms”

less than or equal to 6.941 that were assigned to this node.

The bottom two lines are different for regression trees than classification trees. The next-

to-bottom line displays the name of the target variable (“House value”) and the mean

value of the target variable for all rows in this node. So, in this example, the mean value

of “House value” is 19.934, and this would be the best predicted value for the target

variable for rows falling in this node.

The bottom line displays the standard deviation for the mean target value.

243

The History of Decision Tree Analysis

The first widely-used program for generating decision trees was “AID” (Automatic

Interaction Detection) developed in 1963 by J. N. Morgan and J. A. Sonquist
1
. Written in

FORTRAN and limited by the hardware of the time, AID was suitable only for small to

medium size data sets, and it could generate only regression trees. None the less, this

pioneering program was well received and widely used during the 1960’s and 70’s.

AID was followed by many other decision tree generators including THAID by Morgan

and Messenger in 1973
2
, and ID3 and, later, C4.5 by J. Ross Quinlan

3
.

The theoretical underpinning of decision tree analysis was greatly enhanced by the

research done by Leo Breiman, Jerome Friedman, Richard Olshen and Charles Stone that

was published in their book Classification And Regression Trees
4
. Much of their

research was embedded in a program they developed called “CART”
5
.

Recent advancements in decision tree analyses include the TreeBoost method developed

by Jerome Friedman (Friedman, 1999b) and Decision Tree Forests developed by Leo

Breiman (Breiman, 2001). Both of these methods use ensembles of trees to increase the

predictive accuracy over a single-tree model. DTREG can generate single-tree,

TreeBoost and Decision Tree Forest models.

1
 Morgan & Sonquist (1963) "Problems in the analysis of survey data and a proposal", JASA, 58, 415-434.

(Original AID)

2
 Morgan & Messenger (1973) THAID -- A sequential analysis program for the analysis of nominal scale

dependent variables, Survey Research Center, U of Michigan.

3
 Quinlan, J.R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufman: San Mateo, CA.

4
 Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. (1984), Classification and Regression Trees,

Wadsworth: Belmont, CA.

5
 CART® is a registered trademark of Salford Systems.

245

TreeBoost – Stochastic Gradient Boosting

“Boosting” is a technique for improving the accuracy of a predictive function by

applying the function repeatedly in a series and combining the output of each function

with weighting so that the total error of the prediction is minimized. In many cases, the

predictive accuracy of such a series greatly exceeds the accuracy of the base function

used alone.

See page 54 for the TreeBoost property page where you select TreeBoost models and set

parameters.

The TreeBoost algorithm used by DTREG was developed by Jerome H. Friedman

(Friedman 1999) and is optimized for improving the accuracy of models built on decision

trees. Research has shown that models built using TreeBoost are among the most

accurate of any known modeling technique. TreeBoost is also known as “Stochastic

Gradient Boosting” and “Multiple Additive Regression Trees” (MART).

The TreeBoost algorithm is functionally similar to decision tree forests because it

creates a tree ensemble, but a TreeBoost model consists of a series of trees whereas a

decision tree forest consists of a collection of trees grown in parallel. See the following

chapter for information about decision tree forests.

Mathematically, a TreeBoost model can be described as:

 PredictedTarget = F0 + B1*T1(X) + B2*T2(X) + … + BM*TM(X)

Where F0 is the starting value for the series (the median target value for a regression

model), X is a vector of “pseudo-residual” values remaining at this point in the series,

T1(X), T2(X) are trees fitted to the pseudo-residuals and B1, B2, etc. are coefficients of the

tree node predicted values that are computed by the TreeBoost algorithm.

Graphically, a TreeBoost model can be represented like this:

The first tree is fitted to the data. The residuals (error values) from the first tree are then

fed into the second tree which attempts to reduce the error. This process is repeated

through a series of successive trees. The final predicted value is formed by adding the

weighted contribution of each tree.

246

Usually, the individual trees are fairly small (typically 3 levels deep with 8 terminal

nodes), but the full TreeBoost additive series may consist of hundreds of these small

trees.

Features of TreeBoost Models

 TreeBoost models often have a degree of accuracy that cannot be obtained using a

large, single-tree model. TreeBoost models are often equal to or superior to any

other predictive functions including neural networks.

 TreeBoost models have been shown to produce more accurate results than

competing composite-tree methods such as bagging or boosting using other

methods such as AdaBoost.

 TreeBoost models are as easy to create as single-tree models. By simply setting a

control button, you can direct DTREG to create a single-tree model or a

TreeBoost model for the same analysis.

 TreeBoost models can handle hundreds or thousands of potential predictor

variables.

 Irrelevant predictor variables are identified automatically and do not affect the

predictive model.

 TreeBoost uses the Huber M-regression loss function (Huber, 1964) which makes

it highly resistant to outliers and misclassified cases.

 The sophisticated and accurate method of surrogate splitters is used for handling

missing predictor values.

 The stochastic (randomization) element in the TreeBoost algorithm makes it

highly resistant to over fitting.

 Cross-validation and random-row-sampling methods can be used to evaluate the

generalization of a TreeBoost model and guard against over fitting.

 TreeBoost can be applied to regression models and k-class classification

problems.

 TreeBoost can handle both continuous and categorical predictor and target

variables. Variables with textual values like “Male” and “Female” can be used as

well as numeric variables.

 TreeBoost models are grown quickly – in some cases up to 100 times as fast as

neural networks.

 The TreeBoost algorithm achieves the accuracy of other boosting methods such as

AdaBoost with much lower sensitivity to misclassified cases and outliers.

The primary disadvantage of TreeBoost is that the model is complex and cannot be

visualized like a single tree. It is more of a “black box” like a neural network. Because

of this, it is advisable to create both a single-tree and a TreeBoost model. The single-tree

model can be studied to get an intuitive understanding of how the predictor variables

relate, and the TreeBoost model can be used to score the data and generate highly

accurate predictions.

247

How TreeBoost Models Are Created

Here is an outline of the TreeBoost algorithm for regression models. For more details,

see Friedman (1999).

1. Find the median value of the target variable. This is the starting value for the

series (F0 in the mathematical description above).

2. Determine which rows will be used to build the next tree in the series. A

specified proportion of the rows are chosen randomly, with the target variable

values stratified. (In the case of a classification model, influence trimming may

reduce the set of rows by removing insignificant ones.)

3. Sort the residual values for the rows being used and find the quantile cutoff point

for the Huber-M loss function. The quantile cutoff point is specified as a

TreeBoost parameter. The residual values are then transformed by Huber’s

method to reduce the effect of outliers. The transformed residual values are

known as “pseudo residuals”.

4. Fit a tree (T1) to the pseudo residual values.

5. Compute the median of the pseudo residual values for the rows ending in each

terminal node of the tree. This median becomes the predicted value for the

terminal node. (In a single-tree model, the mean value of the target variable for

rows ending in a node is the predicted value for the node.)

6. Sum the differences (residuals) between the predicted node value and the pseudo

residuals that went into the tree build (with Huber’s adjustment for outliers).

Then compute the mean value of these residuals.

7. Compute the boost coefficient (B1) for the node based on the difference between

the mean residual values for the node and the median (predicted) value for the

node.

8. Multiply the boost coefficient by the shrink factor to reduce the rate of learning.

For 2-category classification models, the TreeBoost method is essentially the same as for

regression except logit (probability) values are fitted rather than raw target values. At the

end of the process, the category that minimizes the misclassification cost is chosen as the

predicted value.

K-category classification is more complex: In this case, the algorithm builds K parallel

TreeBoost series to model the probability of each possible category. At the end of the

process, the probability values for the categories are compared and the one that

minimizes misclassification cost is chosen as the best predicted category. Since K

TreeBoost series must be built in parallel, this process is computationally expensive if the

target variable has many categories.

The TreeBoost algorithm generates the most accurate models with minimum over fitting

if only a portion of the data rows are used to build each tree in the series (Friedman,

1999). This is the stochastic part of stochastic gradient boosting. You can specify the

proportion of the rows used for each tree on the TreeBoost parameter screen (see page

54).

248

Research has shown (Friedman, 2001) that the predictive accuracy of a TreeBoost series

can be improved by apply a weighting coefficient that is less than 1 (0 < v < 1) to each

tree as the series is constructed. This coefficient is called the “shrinkage factor”. The

effect is to retard the learning rate of the series, so the series has to be longer to

compensate for the shrinkage but its accuracy is better. Tests have shown that small

shrinkage factors in the range of 0.1 yield dramatic improvements over TreeBoost series

built with no shrinkage (v = 1). The tradeoff in using a small shrinkage factor is that the

TreeBoost series is longer and the computational time increases. You can select the

shrinkage factor on the TreeBoost parameter screen.

249

Decision Tree Forests

You can’t see the forest for the trees.

 – Anon.

A Decision Tree Forest consists of an ensemble (collection) of decision trees whose

predictions are combined to make the overall prediction for the forest. A decision tree

forest is similar to a TreeBoost model in the sense that a large number of trees are grown.

However, TreeBoost generates a series of trees with the output of one tree going into the

next tree in the series. In contrast, a decision tree forest grows a number of independent

trees in parallel, and they do not interact until after all of them have been built.

Both TreeBoost and decision tree forests produce high accuracy models. Experiments

have shown that TreeBoost works better with some applications and decision tree forests

with others, so it is best to try both methods and compare the results.

The Decision Tree Forest technique used by DTREG is an implementation of the

“Random Forest”™ algorithm developed by Leo Breiman (Breiman, 2001).
6

Features of Decision Tree Forest Models

 Decision tree forest models often have a degree of accuracy that cannot be

obtained using a large, single-tree model. Decision tree forest models are among

the most accurate models yet invented.

 Decision tree forest models are as easy to create as single-tree models. By simply

setting a control button, you can direct DTREG to create a single-tree model or a

decision tree forest model or a TreeBoost model for the same analysis.

 Decision tree forests use the “out of bag” data rows for validation of the model.

This provides an independent test without requiring a separate data set or holding

back rows from the tree construction.

 Decision tree forest models can handle hundreds or thousands of potential

predictor variables.

 The sophisticated and accurate method of surrogate splitters is used for handling

missing predictor values.

 The stochastic (randomization) element in the decision tree forest algorithm

makes it highly resistant to over fitting.

 Decision tree forests can be applied to regression and classification models.

The primary disadvantage of decision tree forests is that the model is complex and cannot

be visualized like a single tree. It is more of a “black box” like a neural network.

6
 “Random Forest” is a trademark of Leo Breiman and Adele Cutler and is licensed exclusively to Salford

Systems, San Diego, CA.

250

Because of this, it is advisable to create both a single-tree and a decision tree forest

model. The single-tree model can be studied to get an intuitive understanding of how the

predictor variables relate, and the decision tree forest model can be used to score the data

and generate highly accurate predictions.

How Decision Tree Forests Are Created

Here is an outline of the algorithm used to construct a decision tree forest:

Assume the full data set consists of N observations.

1. Take a random sample of N observations from the data set with replacement (this is

called “bagging”). Some observations will be selected more than once, and others will

not be selected. On average, about 2/3 of the rows will be selected by the sampling. The

remaining 1/3 of the rows are called the “out of bag (OOB)” rows. A new random

selection of rows is performed for each tree constructed.

2. Using the rows selected in step 1, construct a decision tree. Build the tree to the

maximum size, and do not prune it. As the tree is built, allow only a subset of the total

set of predictor variables to be considered as possible splitters for each node. Select the

set of predictors to be considered as a random subset of the total set of available

predictors. For example, if there are ten predictors, choose a random five as candidate

splitters. Perform a new random selection for each split. Some predictors (possibly the

best one) will not be considered for each split, but a predictor excluded from one split

may be used for another split in the same tree.

3. Repeat steps 1 and 2 a large number of times constructing a forest of trees.

4. To “score” a row, run the row through each tree in the forest and record the predicted

value (i.e., terminal node) that the row ends up in (just as you would score using a single-

tree model). For a regression analysis, compute the average score predicted by all of the

trees. For a classification analysis, use the predicted categories for each tree as “votes”

for the best category, and use the category with the most votes as the predicted category

for the row.

Decision tree forests have two stochastic (randomizing) elements: (1) the selection of

data rows used as input for each tree, and (2) the set of predictor variables considered as

candidates for each node split. For reasons that are not well understood, these

randomizations along with combining the predictions from the trees significantly improve

the overall predictive accuracy.

251

No Over fitting or Pruning

“Over fitting” is a problem in large, single-tree models where the model begins to fit

noise in the data. When such a model is applied to data not used to build the model, the

model does not perform well (i.e., it does not generalize well). To avoid this problem,

single-tree models must be pruned to the optimal size. In nearly all cases, decision tree

forests do not have a problem with over fitting, and there is no need to prune the trees in

the forest. Generally, the more trees in the forest, the better the fit.

Internal Measure of Test Set (Generalization) Error

When a decision tree forest is constructed using the algorithm outlined above, about 1/3

of data rows are excluded from each tree in the forest. The rows that are excluded from a

tree are called the “out of bag (OOB)” rows for the tree; each tree will have a different set

of out-of-bag rows. Since the out of bag rows are (by definition) not used to build the

tree, they constitute an independent test sample for the tree.

To measure the generalization error of the decision tree forest, the out of bag rows for

each tree are run through the tree and the error rate of the prediction is computed. The

error rates for all of the trees in the forest are then averaged to give the overall

generalization error rate for the entire forest.

There are several advantages to this method of computing generalization error: (1) all of

the rows are used to construct the model, and none have to be held back as a separate test

set, (2) the testing is fast because only one forest has to be constructed (as compared to V-

fold cross-validation where additional trees have to be constructed).

See page 60 for the Decision Tree Forest property page where you select Decision Tree

Forest models and set parameters.

253

Multilayer Perceptron Neural Networks

Call it a network, call it a tribe, call it a family. Whatever you call it, whoever you are,

you need one.

– Jane Howard, “Families”

Neural networks are predictive models loosely based on the action of biological neurons.

The following diagram by Jonathan Rosen illustrates the design and operation of a neural

network:

Just kidding!

A Brief History of Neural Networks

The selection of the name “neural network” was one of the great PR successes of the

Twentieth Century. It certainly sounds more exciting than a technical description such as

“A network of weighted, additive values with nonlinear transfer functions”. However,

despite the name, neural networks are far from “thinking machines” or “artificial brains”.

A typical artificial neural network might have a hundred neurons. In comparison, the

human nervous system is believed to have about 3x10
10

 neurons. We are still light years

from “Data” on Star Trek.

The original “Perceptron” model was developed by Frank Rosenblatt in 1958.

Rosenblatt’s model consisted of three layers, (1) a “retina” that distributed inputs to the

second layer, (2) “association units” that combine the inputs with weights and trigger a

threshold step function which feeds to the output layer, (3) the output layer which

combines the values. Unfortunately, the use of a step function in the neurons made the

perceptions difficult or impossible to train. A critical analysis of perceptrons published in

1969 by Marvin Minsky and Seymore Papert pointed out a number of critical weaknesses

of perceptrons, and, for a period of time, interest in perceptrons waned.

254

Interest in neural networks was revived in 1986 when David Rumelhart, Geoffrey Hinton

and Ronald Williams published “Learning Internal Representations by Error

Propagation”. They proposed a multilayer neural network with nonlinear but

differentiable transfer functions that avoided the pitfalls of the original perceptron’s step

functions. They also provided a reasonably effective training algorithm for neural

networks.

Types of Neural Networks

When used without qualification, the terms “Neural Network” (NN) and “Artificial

Neural Network” (ANN) usually refer to a Multilayer Perceptron Network (MLP).

However, there are many other types of neural networks including Probabilistic Neural

Networks, General Regression Neural Networks, Radial Basis Function Networks,

Polynomial Neural Networks (GMDH), Cascade Correlation, Functional Link

Networks, Kohonen networks, Gram-Charlier networks, Learning Vector Quantization,

Hebb networks, Adaline networks, Heteroassociative networks, Recurrent Networks

and Hybrid Networks.

DTREG implements the most widely used types of neural networks: Multilayer

Perceptron Networks (MLP), Probabilistic Neural Networks (PNN) and General

Regression Neural Networks (GRNN), Radial Basic Function (RBF) networks,

Polynomial Neural Networks (GMDH), and Cascade Correlation networks. This chapter

describes Multilayer Perception Networks.

The Multilayer Perceptron Neural Network Model

The following diagram illustrates a perceptron network with three layers:

This network has an input layer (on the left) with three neurons, one hidden layer (in

the middle) with three neurons and an output layer (on the right) with three neurons.

255

There is one neuron in the input layer for each predictor variable (x1…xp). In the case of

categorical variables, N-1 neurons are used to represent the N categories of the variable.

Input Layer

A vector of predictor variable values (x1…xp) is presented to the input layer. The input

layer (or processing before the input layer) standardizes these values so that the range of

each variable is -1 to 1. The input layer distributes the values to each of the neurons in

the hidden layer. In addition to the predictor variables, there is a constant input of 1.0,

called the bias that is fed to each of the hidden layers; the bias is multiplied by a weight

and added to the sum going into the neuron.

Hidden Layer

Arriving at a neuron in the hidden layer, the value from each input neuron is multiplied

by a weight (wji), and the resulting weighted values are added together producing a

combined value uj. The weighted sum (uj) is fed into a transfer function, σ, which

outputs a value hj. The outputs from the hidden layer are distributed to the output layer.

Output Layer

Arriving at a neuron in the output layer, the value from each hidden layer neuron is

multiplied by a weight (wkj), and the resulting weighted values are added together

producing a combined value vj. The weighted sum (vj) is fed into a transfer function, σ,

which outputs a value yk. The y values are the outputs of the network.

If a regression analysis is being performed with a continuous target variable, then there is

a single neuron in the output layer, and it generates a single y value. For classification

problems with a binary-value categorical target variable, there is a single output neuron

whose value determines whether the output category is predicted to be 1 or 0. For

classification problems with more than two target categories, there are N neurons in the

output layer producing N values, one for each of the N categories of the target variable.

Multilayer Perceptron Architecture

The network diagram shown above is a full-connected, three layer, feed forward,

perceptron neural network. “Fully connected” means that the output from each input and

hidden neuron is distributed to all of the neurons in the following layer. “Feed forward”

means that the values only move from input to hidden to output layers; no values are fed

back to earlier layers (a Recurrent Network allows values to be fed backward).

All neural networks have an input layer and an output layer, but the number of hidden

layers may vary. Here is a diagram of a perceptron network with two hidden layers and

four total layers:

256

When there is more than one hidden layer, the output from one hidden layer is fed into

the next hidden layer and separate weights are applied to the sum going into each layer.

Training Multilayer Perceptron Networks

The goal of the training process is to find the set of weight values that will cause the

output from the neural network to match the actual target values as closely as possible.

There are several issues involved in designing and training a multilayer perceptron

network:

 Selecting how many hidden layers to use in the network.

 Deciding how many neurons to use in each hidden layer.

 Finding a globally optimal solution that avoids local minima.

 Converging to an optimal solution in a reasonable period of time.

 Validating the neural network to test for over fitting.

Selecting the Number of Hidden Layers

For nearly all problems, one hidden layer is sufficient. Two hidden layers are required

for modeling data with discontinuities such as a saw tooth wave pattern. Using two

hidden layers rarely improves the model, and it may introduce a greater risk of

converging to a local minima. There is no theoretical reason for using more than two

hidden layers. DTREG can build models with one or two hidden layers. Three layer

models with one hidden layer are recommended.

Deciding how many neurons to use in the hidden layers

One of the most important characteristics of a multilayer perceptron network is the

number of neurons in the hidden layer(s). If an inadequate number of neurons are used,

the network will be unable to model complex data, and the resulting fit will be poor.

257

If too many neurons are used, the training time may become excessively long, and,

worse, the network may over fit the data. When over fitting occurs, the network will

begin to model random noise in the data. The result is that the model fits the training

data extremely well, but it generalizes poorly to new, unseen data. Validation must be

used to test for this.

DTREG includes an automated feature to find the optimal number of neurons in the

hidden layer. (See page 64 for details.) You specify the minimum and maximum number

of neurons you want it to test, and it will build models using varying numbers of neurons

and measure the quality using either cross validation or hold-out data not used for

training. This is a highly effective method for finding the optimal number of neurons, but

it is computationally expensive, because many models must be built, and each model has

to be validated. If you have a multiprocessor computer, you can configure DTREG to

use multiple CPU’s during the process. See page 16 for additional information.

The automated search for the optimal number of neurons only searches the first hidden

layer. If you select a model with two hidden layers, you must manually specify the

number of neurons in the second hidden layer.

Finding a globally optimal solution

A typical neural network might have a couple of hundred weighs whose values must be

found to produce an optimal solution. If neural networks were linear models like linear

regression, it would be a breeze to find the optimal set of weights. But the output of a

neural network as a function of the weights is often highly nonlinear; this makes the

optimization process complex.

If you plotted the error as a function of the weights, you would likely see a rough surface

with many local minima such as this:

This picture is highly simplified because it represents only a single weight value (on the

horizontal axis). With a typical neural network, you would have a 200-dimension, rough

surface with many local valleys.

Optimization methods such as steepest descent and conjugate gradient are highly

susceptible to finding local minima if they begin the search in a valley near a local

minimum. They have no ability to see the big picture and find the global minimum.

258

DTREG uses the Nguyen-Widrow algorithm (Nguyen, 1990) to select the initial range of

starting weight values. It then uses the conjugate gradient algorithm to optimize the

weights. Conjugate gradient usually finds the optimum weights quickly, but there is no

guarantee that the weight values it finds are globally optimal. So it is useful to allow

DTREG to try the optimization multiple times with different sets of initial random weight

values. The number of tries allowed using randomly selected starting weights is specified

on the Multilayer Perceptron property page (see page 67).

Converging to the Optimal Solution – Conjugate Gradient

Given a set of randomly-selected starting weight values, DTREG uses the conjugate

gradient algorithm to optimize the weight values.

Most training algorithms follow this cycle to refine the weight values:

1. Run the predictor values for a case through the network using a tentative set of

weights.

2. Compute the difference between the predicted target value and the actual target

value for the case. This is the error of the prediction.

3. Average the error information over the entire set of training cases.

4. Propagate the error backward through the network and compute the gradient

(vector of derivatives) of the change in error with respect to changes in weight

values.

5. Make adjustments to the weights to reduce the error.

Each cycle is called an epoch.

Because the error information is propagated backward through the network, this type of

training method is called backward propagation or “backprop”.

The backpropagation training algorithm was first described by Rumelhart and

McClelland in 1986; it was the first practical method for training neural networks. The

original procedure used the gradient descent algorithm to adjust the weights toward

convergence using the gradient. Because of this history, the term “backpropagation” or

“backprop” often is used to denote a neural network training algorithm using gradient

descent as the core algorithm. That is somewhat unfortunate since backward propagation

of error information through the network is used by nearly all training algorithms, some

of which are much better than gradient descent.

Backpropagation using gradient descent often converges very slowly or not at all. On

large-scale problems its success depends on user-specified learning rate and momentum

parameters. There is no automatic way to select these parameters, and if incorrect values

are specified the convergence may be exceedingly slow, or it may not converge at all.

While backpropagation with gradient descent is still used in many neural network

programs, it is no longer considered to be the best or fastest algorithm.

259

DTREG uses the conjugate gradient algorithm to adjust weight values using the gradient

during the backward propagation of errors through the network. Compared to gradient

descent, the conjugate gradient algorithm takes a more direct path to the optimal set of

weight values. Usually, conjugate gradient is significantly faster and more robust than

gradient descent. Conjugate gradient also does not require the user to specify learning

rate and momentum parameters.

The traditional conjugate gradient algorithm uses the gradient to compute a search

direction. It then uses a line search algorithm such as Brent’s Method to find the optimal

step size along a line in the search direction. The line search avoids the need to compute

the Hessian matrix of second derivatives, but it requires computing the error at multiple

points along the line. The conjugate gradient algorithm with line search (CGL) has been

used successfully in many neural network programs, and is considered one of the best

methods yet invented.

DTREG provides the traditional conjugate gradient algorithm with line search, but it also

offers a newer algorithm, Scaled Conjugate Gradient (see Moller, 1993).

The scaled conjugate gradient algorithm uses a numerical approximation for the second

derivatives (Hessian matrix), but it avoids instability by combining the model-trust region

approach from the Levenberg-Marquardt algorithm with the conjugate gradient approach.

This allows scaled conjugate gradient to compute the optimal step size in the search

direction without having to perform the computationally expensive line search used by

the traditional conjugate gradient algorithm. Of course, there is a cost involved in

estimating the second derivatives.

Tests performed by Moller show the scaled conjugate gradient algorithm converging up

to twice as fast as traditional conjugate gradient and up to 20 times as fast as

backpropagation using gradient descent. Moller’s tests also showed that scaled conjugate

gradient failed to converge less often than traditional conjugate gradient or

backpropagation using gradient descent.

Avoiding Over fitting

“Over fitting” occurs when the parameters of a model are tuned so tightly that the model

fits the training data well but has poor accuracy on separate data not used for training.

Multilayer perceptrons are subject to over fitting as are most other types of models.

DTREG has two methods for dealing with over fitting: (1) by selecting the optimal

number of neurons as described above, and (2) by evaluating the model as the parameters

are being tuned and stopping the tuning when over fitting is detected. This is known as

“early stopping”.

260

If you enable the early-stopping option, DTREG holds out a specified percentage of the

training rows and uses them to check for over fitting as model tuning is performed. The

tuning process uses the training data to search for optimal parameter values. But as this

process is running, the model is evaluated on the hold-out test rows, and the error from

that test is compared with the error computed using previous parameter values. If the

error on the test rows does not decrease after a specified number of iterations then

DTREG stops the training and uses the parameters which produced the lowest error on

the test data.

See page 67 for information about setting the parameters for the conjugate gradient

algorithm.

261

Radial Basis Function (RBF) Neural Networks

A Radial Basis Function (RBF) neural network has an input layer, a hidden layer and an

output layer. The neurons in the hidden layer contain Gaussian transfer functions whose

outputs are inversely proportional to the distance from the center of the neuron.

RBF networks are very similar to PNN/GRNN networks (see page 279). The main

difference is that PNN/GRNN networks have one neuron for each point in the training

file, whereas RBF networks have a variable number of neurons that is usually much less

than the number of training points. For problems with small to medium size training sets,

PNN/GRNN networks are usually more accurate than RBF networks, but PNN/GRNN

networks are impractical for large training sets.

How RBF networks work

Although the implementation is very different, RBF neural networks are conceptually

similar to K-Nearest Neighbor (k-NN) models. The basic idea is that a predicted target

value of an item is likely to be about the same as other items that have close values of the

predictor variables. Consider this figure:

Assume that each case in the training set has two predictor variables, x and y. The cases

are plotted using their x,y coordinates as shown in the figure. Also assume that the target

262

variable has two categories, positive which is denoted by a square and negative which is

denoted by a dash. Now, suppose we are trying to predict the value of a new case

represented by the triangle with predictor values x=6, y=5.1. Should we predict the target

as positive or negative?

Notice that the triangle is position almost exactly on top of a dash representing a negative

value. But that dash is in a fairly unusual position compared to the other dashes which

are clustered below the squares and left of center. So it could be that the underlying

negative value is an odd case.

The nearest neighbor classification performed for this example depends on how many

neighboring points are considered. If 1-NN is used and only the closest point is

considered, then clearly the new point should be classified as negative since it is on top of

a known negative point. On the other hand, if 9-NN classification is used and the closest

9 points are considered, then the effect of the surrounding 8 positive points may

overbalance the close negative point.

An RBF network positions one or more RBF neurons in the space described by the

predictor variables (x,y in this example). This space has as many dimensions as there are

predictor variables. The Euclidean distance is computed from the point being evaluated

(e.g., the triangle in this figure) to the center of each neuron, and a radial basis function

(RBF) (also called a kernel function) is applied to the distance to compute the weight

(influence) for each neuron. The radial basis function is so named because the radius

distance is the argument to the function.

 Weight = RBF(distance)

The further a neuron is from the point being evaluated, the less influence it has.

263

Radial Basis Function

Different types of radial basis functions could be used, but the most common is the

Gaussian function:

264

If there is more than one predictor variable, then the RBF function has as many

dimensions as there are variables. The following picture illustrates three neurons in a

space with two predictor variables, X and Y. Z is the value coming out of the RBF

functions:

The best predicted value for the new point is found by summing the output values of the

RBF functions multiplied by weights computed for each neuron.

265

The radial basis function for a neuron has a center and a radius (also called a spread).

The radius may be different for each neuron, and, in RBF networks generated by

DTREG, the radius may be different in each dimension.

With larger spread, neurons at a distance from a point have a greater influence.

RBF Network Architecture

266

RBF networks have three layers:

Input layer – There is one neuron in the input layer for each predictor variable. In the

case of categorical variables, N-1 neurons are used where N is the number of categories.

The input neurons (or processing before the input layer) standardizes the range of the

values by subtracting the median and dividing by the interquartile range. The input

neurons then feed the values to each of the neurons in the hidden layer.

Hidden layer – This layer has a variable number of neurons (the optimal number is

determined by the training process). Each neuron consists of a radial basis function

centered on a point with as many dimensions as there are predictor variables. The spread

(radius) of the RBF function may be different for each dimension. The centers and

spreads are determined by the training process. When presented with the x vector of

input values from the input layer, a hidden neuron computes the Euclidean distance of the

test case from the neuron’s center point and then applies the RBF kernel function to this

distance using the spread values. The resulting value is passed to the the summation

layer.

 Summation layer – The value coming out of a neuron in the hidden layer is multiplied

by a weight associated with the neuron (W1, W2, ...,Wn in this figure) and passed to the

summation which adds up the weighted values and presents this sum as the output of the

network. Not shown in this figure is a bias value of 1.0 that is multiplied by a weight W0

and fed into the summation layer. For classification problems, there is one output (and a

separate set of weights and summation unit) for each target category. The value output

for a category is the probability that the case being evaluated has that category.

Training RBF Networks

The following parameters are determined by the training process:

1. The number of neurons in the hidden layer.

2. The coordinates of the center of each hidden-layer RBF function.

3. The radius (spread) of each RBF function in each dimension.

4. The weights applied to the RBF function outputs as they are passed to the

summation layer.

Various methods have been used to train RBF networks. One approach first uses K-

means clustering to find cluster centers which are then used as the centers for the RBF

functions. However, K-means clustering is a computationally intensive procedure, and it

often does not generate the optimal number of centers. Another approach is to use a

random subset of the training points as the centers.

DTREG uses a training algorithm developed by Sheng Chen, Xia Hong and Chris J.

Harris (Chen, Hong, Harris, 2005). This algorithm uses an evolutionary approach to

determine the optimal center points and spreads for each neuron. It also determines when

267

to stop adding neurons to the network by monitoring the estimated leave-one-out (LOO)

error and terminating when the LOO error beings to increase due to over fitting.

The computation of the optimal weights between the neurons in the hidden layer and the

summation layer is done using ridge regression.. An iterative procedure developed by

Mark Orr (Orr, 1966) is used to compute the optimal regularization Lambda parameter

that minimizes generalized cross-validation (GCV) error.

See page 69 for information about parameters that control the training process.

269

GMDH Polynomial Neural Networks

Group Method of Data Handling (GMDH) polynomial neural networks are “self

organizing” networks. The network begins with only input neurons. During the training

process, neurons are selected from a pool of candidates and added to the hidden layers.

GMDH networks were originated in 1968 by Prof Alexey G. Ivakhnenko at the Institute

of Cybernetics in Kyiv (Ukraine).

Structure of a GMDH network

GMDH networks are self organizing. This means that the connections between neurons

in the network are not fixed but rather are selected during training to optimize the

network. The number of layers in the network also is selected automatically to produce

maximum accuracy without over fitting.

The following figure from Kordik, Naplava, Snorek illustrates the structure of a basic

GMDH network using polynomial functions of two variables:

The first layer (at the top) presents one input for each predictor variable. Each neuron in

the second layer draws its inputs from two of the input variables. The neurons in the

third layer draw their inputs from two of the neurons in the previous layer; this progresses

through each layer. The final layer (at the bottom) draws its two inputs from the previous

layer and produces a single value which is the output of the network.

270

Inputs to neurons in GMDH networks can skip layers and come from the original

variables or layers several layers earlier as illustrated by this figure:

In this network, the neuron at the right end of the third layer is connected to an input

variable rather than the output of a neuron on the previous layer.

Traditional GMDH neural networks use complete quadratic polynomials of two variables

as transfer functions in the neurons. These polynomials have the form:

DTREG extends GMDH networks by allowing you to select which functions may be

used in the network. See the GMDH property page description on page 73 for

information about selecting functions.

GMDH Training Algorithm

Two sets of input data are used during the training process: (1) the primary training data,

and (2) the control data which is used to stop the building process when over fitting

occurs. The control data typically has about 20% as many rows as the training data. The

percentage is specified as a training parameter.

271

The GMDH network training algorithm proceeds as follows:

1. Construct the first layer which simply presents each of the input predictor variable

values.

2. Using the allowed set of functions, construct all possible functions using

combinations of inputs from the previous layer. If only two-variable polynomials

are enabled, there will be n*(n-1)/2 candidate neurons constructed where n is the

number of neurons in the previous layer. If the option is selected to allow inputs

from the previous layer and the input layer, then n will the sum of the number of

neurons in the previous layer and the input layer. If the option is selected to allow

inputs from any layer, then n will the sum of the number of input variables plus

the number of neurons in all previous layers.

3. Use least squares regression to compute the optimal parameters for the function in

each candidate neuron to make it best fit the training data. Singular value

decomposition (SVD) is used to avoid problems with singular matrices. If

nonlinear functions are selected such as logistic or asymptotic, a nonlinear fitting

routine based on Levenberg-Marquardt method is used.

4. Compute the mean squared error for each neuron by applying it to the control

data. Note, the control data is different from the training data.

5. Sort the candidate neurons in order of increasing error.

6. Select the best (smallest error) neurons from the candidate set for the next layer.

A model-building parameter specifies how many neurons are used in each layer.

7. If the error for the best neuron in the layer as measured with the control data is

better than the error from the best neuron in the previous layer, and the maximum

number of layers has not been reached, then jump back to step 2 to construct the

next layer. Otherwise, stop the training. Note, when over fitting begins, the error

as measured with the control data will being to increase, thus stopping the

training.

If you are running on a multi-core CPU system, DTREG will perform GMDH training in

parallel using multiple CPU’s. See page 16 for information about setting how many

CPU’s to use.

Output Generated for GMDH Networks

In addition to the usual information reported for a model, DTREG displays the actual

GMDH polynomial network generated. Here is an example:

 ============ GMDH Model ============

N(3) = 0.650821+5.931812e+012*Age{Adult}-

5.931812e+012*Age{Adult}^2+4.685991e+015*Class{Second}-

4.685991e+015*Class{Second}^2+0.048843*Age{Adult}*Class{Second}

N(1) = 13.82502-2.390281e+012*Class{Crew}+4.78725e+011*Class{Crew}^2-

28.1043*N(3)+11.9577*N(3)^2+2.959348e+012*Class{Crew}*N(3)

272

N(7) = 0.325439+9.737558e+013*Sex{Male}-

9.737558e+013*Sex{Male}^2+9.00077e+015*Class{Second}-

9.00077e+015*Class{Second}^2+1.081648*Sex{Male}*Class{Second}

N(9) = 0.372317+2.225363e+013*Sex{Male}-2.225363e+013*Sex{Male}^2-

3.960104e+015*Class{First}+3.960104e+015*Class{First}^2-

0.244027*Sex{Male}*Class{First}

N(6) = -0.263746+1.221826*N(7)+0.268249*N(7)^2+1.636075*N(9)-

0.172757*N(9)^2-2.019208*N(7)*N(9)

Survived{Yes} = -0.008121+1.631212*N(1)-2.485552*N(1)^2-

0.186281*N(6)+0.126492*N(6)^2+1.720465*N(1)*N(6)

Output from neuron i is shown as N(i). Categorical predictor variables such as Sex are

shown with the activation category in braces. For example, “Sex{Male}” has the value 1

if the value of Sex is “Male”, and it has the value 0 if Sex is any other category. The

final line shows the output of the network. In this case, the probability of Survived being

Yes is predicted. Note how the inputs to each neuron are drawn from the outputs of

neurons in lower levels of the network. This example uses only two-variable quadratic

functions.

273

Cascade Correlation Neural Networks

Cascade correlation neural networks (Fahlman and Libiere, 1990) are “self-organizing”

networks. The network begins with only input and output neurons. During the training

process, neurons are selected from a pool of candidates and added to the hidden layer.

Cascade correlation networks have several advantages over multi-layer perceptron (MLP)

neural networks:

1. Because they are self-organizing and grow the hidden layer during training, you

do not have to be concerned with the issue of deciding how many layers and

neurons to use in the network.

2. Training time is very fast – often 100 times as fast as a multilayer perceptron

network. This makes cascade correlation networks suitable for large training sets.

3. Typically, cascade correlation networks are fairly small, often having fewer than a

dozen neurons in the hidden layer. Contrast this to probabilistic neural networks

which require a hidden-layer neuron for each training case.

4. Cascade correlation network training is quite robust, and good results usually can

be obtained with little or no adjustment of parameters.

5. Cascade correlation is less likely to get trapped in local minima than MLP

networks.

As with all types of models, there are some disadvantages to cascade correlation

networks:

1. They have an extreme potential for over fitting the training data; this results in

excellent accuracy on the training data but poor accuracy on new, unseen data.

DTREG includes an over fitting control facility to prevent this.

2. Cascade correlation networks usually are less accurate than probabilistic and

general regression neural networks on small to medium size problems (i.e., fewer

than a couple of thousand training rows). But cascade correlation scales up to

handle large problems far better than probabilistic or general regression networks.

Cascade Correlation Network Architecture

A cascade correlation network consists of a cascade architecture, in which hidden

neurons are added to the network one at a time and do not change after they have been

added. It is called a cascade because the output from all neurons already in the network

feed into new neurons. As new neurons are added to the hidden layer, the learning

algorithm attempts to maximize the magnitude of the correlation between the new

neuron’s output and the residual error of the network which we are trying to minimize.

A cascade correlation neural network has three layers: input, hidden and output.

274

Input Layer

A vector of predictor variable values (x1…xp) is presented to the input layer. The input

neurons perform no action on the values other than distributing them to the neurons in the

hidden and output layers. In addition to the predictor variables, there is a constant input

of 1.0, called the bias that is fed to each of the hidden and output neurons; the bias is

multiplied by a weight and added to the sum going into the neuron.

Hidden Layer

Arriving at a neuron in the hidden layer, the value from each input neuron is multiplied

by a weight (wji), and the resulting weighted values are added together producing a

combined value uj. The weighted sum (uj) is fed into a transfer function, σ, which

outputs a value hj. The outputs from the hidden layer are distributed to the output layer.

Output Layer

For regression problems, there is only a single neuron in the output layer. For

classification problems that have binary outcomes, there is a single output neuron whose

value varies from 0 to 1 with the outcome class being determined by whether the value is

closer to 1 or 0. For classification problems with more than two target categories, there is

a neuron for each category of the target variable, and the output of a neuron represents

the probably of the corresponding category.

Each output neuron receives values from all of the input neurons (including the bias) and

all of the hidden layer neurons. Each value presented to an output neuron is multiplied

by a weight (wkj), and the resulting weighted values are added together producing a

combined value vj. The weighted sum (vj) is fed into a transfer function, σ, which outputs

a value yk. The y values are the outputs of the network. For regression problems, a linear

transfer function is used in the output neurons. For classification problems, a sigmoid

transfer function is used.

Training Algorithm for Cascade Correlation Networks

Initially, a cascade correlation neural network consists of only the input and output layer

neurons with no hidden layer neurons. Every input is connected to every output neuron

by a connection with an adjustable weight, as shown below:

275

Each ‘x’ represents a weight value between the input and the output neuron. Values on a

vertical line are added together after being multiplied by their weights. So each output

neuron receives as its input a weighted sum from all of the input neurons including the

bias. The output neuron sends this weighted input sum through its transfer function to

produce the final output.

Even a simple cascade correlation network with no hidden neurons has considerable

predictive power. For a fair number of problems, a cascade correlation network with just

input and output layers provides good predictions.

Neurons are added to the hidden layer one by one. Each new hidden neuron receives a

connection from each of the network’s original inputs and also from every pre-existing

hidden neuron (hence it is a cascade architecture). The hidden neuron’s input weights are

trained and then frozen at the time the unit is added to the net; only the output connection

weights are trained repeatedly. Each new neuron therefore adds a new one-unit “layer”

to the network. This leads to the creation of very powerful high-order feature detectors; it

also may lead to very deep networks with a large number of inputs to the output neurons.

After the addition of the first hidden neuron, the network would have this structure:

276

The input weights for the hidden neuron are shown as square boxes to indicate that they

are fixed once the neuron has been added. Weights for the output neurons shown as ‘x’

continue to be adjusted during the training process.

To create a new hidden neuron, we begin with a candidate neuron that receives trainable

input connections from all of the network’s external inputs and from all pre-existing

hidden neurons. The output of this candidate neuron is not yet connected to the active

network. We run a number of passes over the examples in the training set, adjusting the

candidate neuron’s input weights after each pass. The goal of this adjustment is to

maximize the sum over all output neurons of the magnitude of the correlation between

the candidate neuron’s value and the residual output error observed at the outputs.

A candidate neuron cares only about the magnitude of its correlation with the error at a

given output, and not about the sign of the correlation. As a rule, if a hidden neuron

correlates positively with the error at a given output neuron, it will develop a negative

connection weight to that neuron, attempting to cancel some of the error; if the

correlation is negative, the output weight will be positive. Since a neuron’s weights to

different output neurons may be of mixed sign, a neuron can sometimes server two

purposes by developing a positive correlation with the error at one output and a negative

correlation with the error at another.

Instead of simply training a single candidate neuron, DTREG uses a pool of candidate

neurons, each with a different set of random initial weights. If allowed, the candidate

neurons also may have a mixture of transfer functions (sigmoid and Gaussian). All

candidates receive the same input signals and see the same residual error for each training

case. After all of the candidate neurons have been training to have maximum correlation

with the output error, the candidate with the highest correlation is selected from the pool

and added to the hidden layer. The output neuron weights are then trained using the all of

their inputs including the output from the new hidden neuron. Note that the input weights

for the other hidden neurons that are already part of the network are not retrained.

277

Here is a schematic of a network with two hidden neurons. Note how the second neuron

receives inputs from the external inputs and pre-existing hidden neurons.

279

Probabilistic and General Regression Neural Networks

Probabilistic and General Regression Neural Networks have similar architectures, but

there is a fundamental difference: Probabilistic networks perform classification where

the target variable is categorical, whereas general regression neural networks perform

regression where the target variable is continuous. If you select a PNN/GRNN network,

DTREG will automatically select the correct type of network based on the type of target

variable.

PNN and GRNN networks have advantages and disadvantages compared to multilayer

perceptron (MLP) networks:

 It is usually faster to train a PNN/GRNN network than a MLP network.

 PNN/GRNN networks often are more accurate than MLP networks.

 PNN/GRNN networks are relatively insensitive to outliers (wild points).

 PNN networks generate accurate predicted target probability scores.

 PNN networks approach Bayes optimal classification.

 PNN/GRNN networks are slower than MLP networks at classifying new cases.

280

 PNN/GRNN networks require more memory space to store the model.

 PNN/GRNN networks are very similar to RBF networks with a large number of

nodes. See page 261 for information about RBF networks.

How PNN/GRNN networks work

Although the implementation is very different, probabilistic neural networks are

conceptually similar to K-Nearest Neighbor (k-NN) models. The basic idea is that the

predicted target value of an item is likely to be about the same as other items that have

close values (i.e., close proximity in multi-dimensional space) of the training data

predictor variables. Consider this figure:

Assume that each case in the training set has two predictor variables, x and y. The cases

are plotted using their x,y coordinates as shown in the figure. Also assume that the target

variable has two categories, positive which is denoted by a square and negative which is

denoted by a dash. Now, suppose we are trying to predict the value of a new case

represented by the triangle with predictor values x=6, y=5.1. Should we predict the target

as positive or negative?

Notice that the triangle is positioned almost exactly on top of a dash representing a

negative value. But that dash is in a fairly unusual position compared to the other dashes

281

which are clustered below the squares and left of center. So it could be that the

underlying negative value is an odd case.

The nearest neighbor classification performed for this example depends on how many

neighboring points are considered. If 1-NN is used and only the closest point is

considered, then clearly the new point should be classified as negative since it is on top of

a known negative point. On the other hand, if 9-NN classification is used and the closest

9 points are considered, then the effect of the surrounding 8 positive points may

overbalance the close negative point.

A probabilistic neural network builds on this foundation and generalizes it to consider all

of the other training points. The distance is computed from the point being evaluated to

each of the other points, and a radial basis function (RBF) (also called a kernel function)

is applied to the distance to compute the weight (influence) for each point. The radial

basis function is so named because the radius distance is the argument to the function.

 Weight = RBF(distance)

The further some other point is from the new point, the less influence it has.

Radial Basis Function

282

Different types of radial basis functions could be used, but the most common is the

Gaussian function:

If there is more than one predictor variable, then the RBF function has as many

dimensions as there are variables. Here is a RBF function for two variables:

The best predicted value for the new point is found by summing the values of the other

points weighted by the RBF function.

283

The peak of the radial basis function is always centered on the point it is weighting. The

sigma value (σ) of the function determines the spread of the RBF function; that is, how

quickly the function declines as the distance increased from the point.

With larger sigma values and more spread, distant points have a greater influence.

The primary work of training a PNN or GRNN network is selecting the optimal sigma

values to control the spread of the RBF functions. DTREG uses the conjugate gradient

algorithm to compute the optimal sigma values. See page 80 for information about

setting the parameters for the conjugate gradient optimization.

284

Suppose our goal is to fit the following function:

If the sigma values are too large, then the model will not be able to closely fit the

function, and you will end up with a fit like this:

285

If the sigma values are too small, the model will over fit the data because each training

point will have too much influence:

DTREG allows you to select whether a single sigma value should be used for the entire

model, or a separate sigma for each predictor variable, or a separate sigma for each

predictor variable and target category. DTREG uses the Leave-One-Out (LOO) method

of evaluating sigma values during the optimization process. This measures the error by

building the model with all training rows except for one and then evaluating the error

with the excluded row. This is repeated for all rows, and the error is averaged.

286

Architecture of a PNN/GRNN Network

In 1990, Donald F. Specht proposed a method to formulate the weighted-neighbor

method described above in the form of a neural network. He called this a “Probabilistic

Neural Network”. Here is a diagram of a PNN/GRNN network:

All PNN/GRNN networks have four layers:

Input layer – There is one neuron in the input layer for each predictor variable. In the

case of categorical variables, N-1 neurons are used where N is the number of categories.

The input neurons (or processing before the input layer) standardizes the range of the

values by subtracting the median and dividing by the interquartile range. The input

neurons then feed the values to each of the neurons in the hidden layer.

Hidden layer – This layer has one neuron for each case in the training data set. The

neuron stores the values of the predictor variables for the case along with the target value.

When presented with the x vector of input values from the input layer, a hidden neuron

computes the Euclidean distance of the test case from the neuron’s center point and then

applies the RBF kernel function using the sigma value(s). The resulting value is passed

to the neurons in the pattern layer.

Pattern layer / Summation layer – The next layer in the network is different for PNN

networks and for GRNN networks. For PNN networks there is one pattern neuron for

each category of the target variable. The actual target category of each training case is

stored with each hidden neuron; the weighted value coming out of a hidden neuron is fed

only to the pattern neuron that corresponds to the hidden neuron’s category. The pattern

neurons add the values for the class they represent (hence, it is a weighted vote for that

category).

For GRNN networks, there are only two neurons in the pattern layer. One neuron is the

denominator summation unit the other is the numerator summation unit. The

287

denominator summation unit adds up the weight values coming from each of the hidden

neurons. The numerator summation unit adds up the weight values multiplied by the

actual target value for each hidden neuron.

Decision layer – The decision layer is different for PNN and GRNN networks. For PNN

networks, the decision layer compares the weighted votes for each target category

accumulated in the pattern layer and uses the largest vote to predict the target category.

For GRNN networks, the decision layer divides the value accumulated in the numerator

summation unit by the value in the denominator summation unit and uses the result as the

predicted target value.

Removing unnecessary neurons

One of the disadvantages of PNN/GRNN models compared to multi-level feed forward

networks is that PNN/GRNN models are large due to the fact that there is one neuron for

each training row. This causes the model to run slower than multilayer perceptron

networks when using scoring to predict values for new rows.

DTREG provides an option to cause it remove unnecessary neurons from the model after

the model has been constructed (see the parameter settings beginning on page 80).

Removing unnecessary neurons has three benefits:

1. The size of the stored model is reduced.

2. The time required to apply the model during scoring is reduced.

3. Removing neurons often improves the accuracy of the model.

The process of removing unnecessary neurons is a slow (order N
2
), iterative process.

Leave-one-out validation is used to measure the error of the model with each neuron

removed. The neuron that causes the least increase in error (or possibly the largest

reduction in error) is then removed from the model. The process is repeated with the

remaining neurons until the stopping criterion is reached. For models with more than

1000 training rows, the neuron removal process may become impractically slow. If you

have a multi-CPU computer, you can speed up the process by allowing DTREG to use

multiple CPU’s for the process. See page 16 for information about how to do this.

When unnecessary neurons are removed, the “Model Size” section of the analysis report

shows how the error changes with different numbers of neurons. You can see a graphical

chart of this by clicking Chart/Model size.

288

There are three criteria that can be selected to guide the removal of neurons:

 Minimize error – If this option is selected, then DTREG removes neurons as

long as the leave-one-out error remains constant or decreases. It stops when it

finds a neuron whose removal would cause the error to increase above the

minimum found.

 Minimize neurons – If this option is selected, DTREG removes neurons until the

leave-one-out error would exceed the error for the model with all neurons.

 # of neurons – If this option is selected, DTREG reduces the least significant

neurons until only the specified number of neurons remain.

289

Support Vector Machines (SVM)

It’s not enough to help the feeble up, but to support him after.

 – William Shakespeare

Introduction to Support Vector Machine (SVM) Models

A Support Vector Machine (SVM) performs classification by constructing an N-

dimensional hyperplane that optimally separates the data into two categories. SVM

models are closely related to neural networks. In fact, a SVM model using a sigmoid

kernel function is equivalent to a two-layer, feed-forward neural network.

Support Vector Machine (SVM) models are a close cousin to classical neural networks.

Using a kernel function, SVM’s are an alternative training method for polynomial, radial

basis function and multi-layer perceptron classifiers in which the weights of the network

are found by solving a quadratic programming problem with linear constraints, rather

than by solving a non-convex, unconstrained minimization problem as in standard neural

network training.

In the parlance of SVM literature, a predictor variable is called an attribute, and a

transformed attribute that is used to define the hyperplane is called a feature. The task of

choosing the most suitable representation is known as feature selection. A set of features

that describes one case (i.e., a row of predictor values) is called a vector. So the goal of

SVM modeling is to find the optimal hyperplane that separates clusters of vector in such

a way that cases with one category of the target variable are on one side of the plane and

cases with the other category are on the other size of the plane. The vectors near the

hyperplane are the support vectors.

The figure below presents an overview of the SVM process.

290

A Two-Dimensional Example

Before considering N-dimensional hyperplanes, let’s look at a simple 2-dimensional

example. Assume we wish to perform a classification, and our data has a categorical

target variable with two categories. Also assume that there are two predictor variables

with continuous values. If we plot the data points using the value of one predictor on the

X axis and the other on the Y axis we might end up with an image such as shown below.

One category of the target variable is represented by rectangles while the other category

is represented by ovals.

In this idealized example, the cases with one category are in the lower left corner and the

cases with the other category are in the upper right corner; the cases are completely

separated. The SVM analysis attempts to find a 1-dimensional hyperplane (i.e. a line)

that separates the cases based on their target categories. There are an infinite number of

possible lines; two candidate lines are shown above. The question is which line is better,

and how do we define the optimal line.

The dashed lines drawn parallel to the separating line mark the distance between the

dividing line and the closest vectors to the line. The distance between the dashed lines is

called the margin. The vectors (points) that constrain the width of the margin are the

support vectors. The following figure which is used with the kind permission of Jaiwei

Han (Han, Jiawei and Micheline Kamber) illustrates this.

291

An SVM analysis finds the line (or, in general, hyperplane) that is oriented so that the

margin between the support vectors is maximized. In the figure above, the line in the

right panel is superior to the line in the left panel.

If all analyses consisted of two-category target variables with two predictor variables, and

the cluster of points could be divided by a straight line, life would be easy.

Unfortunately, this is not generally the case, so SVM must deal with (a) more than two

predictor variables, (b) separating the points with non-linear curves, (c) handling the

cases where clusters cannot be completely separated, and (d) handling classifications with

more than two categories.

292

Flying High on Hyperplanes

In the previous example, we had only two predictor variables, and we were able to plot

the points on a 2-dimensional plane. If we add a third predictor variable, then we can use

its value for a third dimension and plot the points in a 3-dimensional cube. Points on a 2-

dimensional plane can be separated by a 1-dimensional line. Similarly, points in a 3-

dimensional cube can be separated by a 2-dimensional plane. See the figure below from

Fung, 1998.

As we add additional predictor variables (attributes), the data points can be represented in

N-dimensional space, and a (N-1)-dimensional hyperplane can separate them.

293

When Straight Lines Go Crooked

The simplest way to divide two groups is with a straight line, flat plane or an N-

dimensional hyperplane. But what if the points are separated by a nonlinear region such

as shown below?

In this case we need a nonlinear dividing line.

Rather than fitting nonlinear curves to the data, SVM handles this by using a kernel

function to map the data into a different space where a hyperplane can be used to do the

separation.

294

The kernel function may transform the data into a higher dimensional space to make it

possible to perform the separation. The following figure by Florian Markowetz

illustrates this:

295

The concept of a kernel mapping function is very powerful. It allows SVM models to

perform separations even with very complex boundaries such as shown below.

296

The Kernel Trick

Many kernel mapping functions can be used – probably an infinite number. But a few

kernel functions have been found to work well in for a wide variety of applications. The

default and recommended kernel function is the Radial Basis Function (RBF).

Kernel functions supported by DTREG:

Linear: u’*v

(This example was generated by pcSVMdemo:
http://www.procoders.net/en/Procoders/open_source/pcSVMdemo)

297

Polynomial: (gamma*u’*v + coef0)^degree

See the following figure from Kecman, 2004.

298

Radial basis function: exp(-gamma*|u-v|^2)

A Radial Basis Function (RBF) is the default and recommended kernel function. The

RBF kernel non-linearly maps samples into a higher dimensional space, so it can handle

nonlinear relationships between target categories and predictor attributes; a linear basis

function cannot do this. Furthermore, the linear kernel is a special case of the RBF. A

sigmoid kernel behaves the same as a RBF kernel for certain parameters. The RBF

function has fewer parameters to tune than a polynomial kernel, and the RBF kernel has

less numerical difficulties. The following figure from Yang, 2003 illustrates RBF

mapping.

An SVM model using a radial basis function kernel has the architecture of an RBF

network. However, the method for determining the number of nodes and their centers is

different from standard RBF networks with the centers of the RBF notes on the support

vectors (see the figure below from C. Campbell).

299

Sigmoid: tanh(gamma*u’*v + coef0)

300

Parting Is Such Sweet Sorrow

Ideally an SVM analysis should produce a hyperplane that completely separates the

feature vectors into two non-overlapping groups. However, perfect separation may not

be possible, or it may result in a model with so many feature vector dimensions that the

model does not generalize well to other data; this is known as over fitting. The following

figure from a slide by Florian Markowetz of Max Planck Institute for Molecular Genetics

illustrates a non-separable training set.

To allow some flexibility in separating the categories, SVM models have a cost

parameter, C, that controls the trade off between allowing training errors and forcing

rigid margins. It creates a soft margin that permits some misclassifications. The penalty

associated with a misclassified point is the distance from the point to the hyperplane

multiplied by the cost factor C. Increasing the value of C increases the cost of

misclassifying points
7
 and forces the creation of a more accurate model that may not

generalize well. DTREG provides grid and pattern search facilities that can be used to

find the optimal value of C.

7
 Technically, C is the cost of the sum of the distances of wrong-size points from the margins.

301

Classification with More Than Two Categories

The idea of using a hyperplane to separate the feature vectors into two groups works well

when there are only two target categories, but how does SVM handle the case where the

target variable has more than two categories? Several approaches have been suggested,

but two are the most popular: (1) “one against many” where each category is split out and

all of the other categories are merged; and, (2) “one against one” where k(k-1)/2 models

are constructed where k is the number of categories. DTREG uses the more accurate (but

more computationally expensive) technique of “one against one”. For a discussion of

why this method is used and comparisons with other approaches see Hsu and Lin, 2002.

Optimal Fitting Without Over fitting

The accuracy of an SVM model is largely dependent on the selection of the kernel

parameters such as C, Gamma, P, etc. DTREG provides two methods for finding optimal

parameter values, a grid search and a pattern search. A grid search tries values of each

parameter across the specified search range using geometric steps. A pattern search (also

known as a “compass search” or a “line search”) starts at the center of the search range

and makes trial steps in each direction for each parameter. If the fit of the model

improves, the search center moves to the new point and the process is repeated. If no

improvement is found, the step size is reduced and the search is tried again. The pattern

search stops when the search step size is reduced to a specified tolerance.

To avoid over fitting, cross-validation is used to evaluate the fitting provided by each

parameter value set tried during the grid or pattern search process.

The following figure by Florian Markowetz illustrates how different parameter values

may cause under or over fitting:

302

Standing On The Shoulders of Giants

The SVM implementation used by DTREG is partially based on the outstanding

LIBSVM project by Chih-Chung Chang and Chih-Jen Lin (Chang and Lin, 2005). They

have made both theoretical and practical contributions to the development of support

vector machines, and their work on LIBSVM is acknowledged with gratitude. Parts of

LIBSVM are used under the following terms:

LIBSVM: Copyright (c) 2000-2005 Chih-Chung Chang and Chih-Jen Lin
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither name of copyright holders nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

303

“This software(LIBSVM) is provided by the copyright holders and contributors ‘as is’ and
any express or implied warranties, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose are disclaimed. In no event shall the
regents or contributors be liable for any direct, indirect, incidental, special, exemplary, or
consequential damages (including, but not limited to, procurement of substitute goods or
services; loss of use, data, or profits; or business interruption) however caused and on
any theory of liability, whether in contract, strict liability, or tort (including negligence or
otherwise) arising in any way out of the use of this software, even if advised of the
possibility of such damage.”

305

Gene Expression Programming

If evolution really works, how come mothers only have two hands?

 – Ed Dussault

Introduction to Gene Expression Programming

Gene Expression Programming is a procedure that mimics biological evolution to create a

computer program to model some phenomenon. Gene expression programming can be

used to create many different types of models including decision trees, neural networks

and polynomial constructs. The type of gene expression programming implemented in

DTREG is Symbolic Regression – so named because it creates a symbolic mathematical

or logical function.

DTREG provides a full implementation of the Gene Expression Programming algorithm

developed by Cândida Ferreira (Ferreira 2006). Here are some of the features of

DTREG’s implementation:

 Continuous and categorical target variables

 Automatic handling of categorical predictor variables

 A large library of functions that you can select for inclusion in the model

 Mathematical and logical (AND, OR, NOT, etc.) function generation

 Choice of many fitness functions

 Both static linking functions and evolving homeotic genes

 Fixed and random constants

 Nonlinear regression to optimize constants

 Parsimony pressure to optimize the size of functions

 Automatic algebraic simplification of the combined function

 Several forms of validation including cross-validation and hold-out

 Computation of the relative importance of predictor variables

 Automatic generation of C or C++ source code for the functions

 Multi-CPU execution for multiple target categories and cross-validation

Introduction to Symbolic Regression

In ordinary mathematical regression, the procedure is given the form of the function to be

fitted to the data. This could be a linear function for linear regression or a general

306

mathematical function for nonlinear regression. The regression procedure computes the

optimal values of parameters for the function to make the function fit a data set as well as

possible, but the regression procedure does not alter the form of the function. For

example, a linear regression problem with two variables has the form:

Where x is the independent variable, y is the dependent variable, and a and b are

parameters whose values are to be computed by the regression algorithm. This type of

procedure is classified as parametric regression because the goal is to estimate

parameters for a function whose form is known (or assumed).

With nonparametric regression the form of the function is not known in advance, and it

is the goal of the procedure to find a function that will fit the data. So we are looking for

 () that will best fit

 ()

Where y is the dependent variable and there are n independent x variables.

There are many possible forms of nonparametric functions – neural networks and

decision trees are types of nonparametric functions. Symbolic regression is a subset of

nonparametric regression that restricts the functions to be mathematical or logical

expressions.

Symbolic Regression Example – Kepler’s Third Law

Around 1605, the German mathematician and astronomer Johannes Kepler discovered

three astronomical laws that describe the orbits of planets around the Sun. Kepler’s work

was based on the precise astronomical observations recorded by Danish astronomer

Tycho Brahe. Kepler’s third law states “The squares of the orbital periods of planets are

directly proportional to the cubes of the semi-major axis of the orbits.” Mathematically,

this is:

307

Let’s see if symbolic regression can figure this out without the help of a genius

astronomer. We will use the following data as input to the procedure:

Planet Distance Period

Venus 0.72 0.61

Earth 1.00 1.00

Mars 1.52 1.84

Jupiter 5.20 11.90

Saturn 9.53 29.40

Uranus 19.10 83.50

Gene expression programming was used to model this data. Two genes were used per

chromosome, and there were 7 symbols in the head section of each gene. After four

generations, DTREG found a perfect fit to the data. The expression generated and

displayed by DTREG is:

 Period = sqrt(Distance)*Distance

Simplifying this we find:

 √

This is exactly Kepler’s third law. The DTREG analysis for this problem can be found in

the GepKepler.dtr program file in the Examples folder.

Odd Parity Example

In this example, symbolic regression will be used to find a logical expression to compute

the parity for a 3-input binary circuit. The output parity value should be 1 if there are an

odd number of inputs with the value 1, and the output should be 0 if there are an even

number of inputs with the value 1. Here is the data for the analysis:

In1 In2 In3 Parity

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

308

For this problem we will allow DTREG to use only three functions in the expression:

AND, OR, NOT. We will use 3 genes per chromosome, and we will use the AND function

to link the genes. After 418 generations to train the model and an additional 397

generations to simplify it, DTREG generated the following function which perfectly fits

the data:

 Parity = (In3|(!(In1&In2)))&((!(In1|In2))|(In1&In2)|!In3)&In2|(In1|In3)

Where ‘|’ is the OR operator, ‘&’ is AND, and ‘!’ is NOT. The project file for this example

is named GepParity3.dtr; it can be found in the Examples folder.

Genetic Algorithms

 Genetic algorithms (GA) have been in widespread use since the 1980’s, but the first

experiments with computer simulated evolution go back to 1954.

Genetic algorithms are basically a smart search procedure. The goal is to find a solution

in a multi-dimensional space where there is no known exact algorithm. Genetic

algorithms are often thousands or even millions of times faster than exhaustive search

procedures. Exhaustive search is impractical for high dimension problems. The use of

random mutations allows genetic algorithms to avoid being trapped in locally-optimal

regions which is a serious problem for hill-climbing algorithms typically used for

iterative/convergence procedures. Genetic algorithms have been used to solve otherwise

intractable problems such as the Traveling Salesperson Problem.

Genetic algorithms mimic biological evolution, and the terms used for genetic algorithms

are based on biological features.

In biological DNA systems, the basic units are the adenine (A), thymine (T), guanine (G)

and cytosine (C) nucleotides that join the helical strands. In genetic algorithms, the basic

unit is called a symbol. The nature of symbols depends on the particular genetic

algorithm. In gene expression programming, the symbols consist of functions, variables

and constants. Symbols for variables and constants are called terminals, because they

have no arguments.

An ordered set of symbols form a gene, and an ordered set of genes form a chromosome.

In GEP programs, genes typically have 4 to 20 symbols, and chromosomes are typically

built from 2 to 10 genes; chromosomes may consist of only a single gene. The DNA

strand for a mammal typically contains about 5x10
9
 nucleotides.

Genetic Algorithms for Symbolic Regression

Many efforts have been made to use genetic algorithms to solve symbolic regression

problems – that is, to generate symbolic functions to model data. One of the problems

that plagues most of the efforts is finding a way to efficiently mutate and cross-breed

symbolic expressions so that the resulting expressions have a valid mathematical syntax.

309

For example, if you mutate () into () it isn’t any good, because it isn’t

syntactically correct.

One approach to this problem is to perform a mutation, check the result and then try a

different random mutation until a syntactically valid expression is generated. Obviously,

this can be a time consuming process for complex expressions.

A second approach is to limit what type of mutations can be performed – for example,

only exchanging complete sub-expressions. The problem with this approach is that if

limited mutations are used, the evolution process is hindered, and it may take a large

number of generations to find a solution, or it may be completely unable to find the

optimal solution.

Gene Expression Programming

An elegant solution to the expression-mutation problem was discovered in 1999 by

Cândida Ferreira (Ferreira 1996). Ferreira devised a system for encoding expressions

that allows fast application of a wide variety of mutation and cross-breeding techniques

while guaranteeing that the resulting expression will always be syntactically valid. This

approach is called Gene Expression Programming (GEP). Experiments have shown that

GEP is 100 to 60,000 times faster than older genetic algorithms.

Expression Trees and Karva

The key to GEP’s ability to quickly mutate valid expressions is the way it encodes

symbols in genes. This notation is called the Karva Language (Ferreira 1996).

Expressions encoded using Karva are called K-expressions. Consider the simple

mathematical expression

This can be encoded as an expression tree of the form

An expression tree is an excellent way to represent an expression in a computer, because

the tree can be arbitrarily complex, and expression trees can be evaluated quickly.

To convert an expression tree to the Karva notation, start at the left-most symbol in the

top line of the tree and scan symbols left-to-right and top-to-bottom. Each time a symbol

310

is encountered, add it to the K-expression in left-to-right order. When there are no more

symbols on a line, advance to the left end of the following line. Using this method, the

tree shown above is converted to the K-expression:

+*cab

Note that + is the first symbol found on the first line, at the end of that line scanning

begins on the second line and finds * followed by c. It then starts with the third line and

finds a and b.

As a second example, consider the expression

 √

The corresponding expression tree is

Where ‘Q’ represents square root. This can be translated to the K-expression

+*Qab*cd

The process of converting an expression tree to a K-expression can be carried out quickly

by a computer. A reverse process can quickly convert a K-expression back to an

expression tree.

Genes

A gene consists of a fixed number of symbols encoded in the Karva language. A gene

has two sections, the head and the tail. The head is used to encode functions for the

expression. The tail is a reservoir of extra terminal symbols that can be used if there

aren’t enough terminals in the head to provide arguments for the functions. Thus, the

head can contain functions, variables and constants, but the tail can contain only variables

and constants (i.e. terminals). The number of symbols in the head of a gene is specified

as a parameter for the analysis (see page 95). The number of symbols in the tail is

determined by the equation

311

 ()

Where t is the number of symbols in the tail, h is the number of symbols in the head, and

MaxArg is the maximum number of arguments required by any function that is allowed to

be used in the expression. For example, if the head length is 6 and the allowable set of

functions consists of binary operators (+, -, *, /), then the tail length is:

 ()

The purpose of the tail is to provide a reservoir of terminal symbols (variables and

constants) that can be used as arguments for functions in the head if there aren’t enough

terminals in the head.

Consider a gene with three symbols in the head and which uses binary arithmetic

operators. The tail will then have () terminal symbols. Here is an

example of such a gene. The head is in front of the comma, and the tail follows the

comma:

+-/,abcd

Ignoring the distinction between the head and the tail, this K-expression can be converted

to this expression tree:

Note that the head of the gene consisted only of functions, but the tail provided enough

terminals to fill in the arguments for the functions.

During mutation, symbols in the head can be replaced by either function or terminal

symbols. Symbols in the tail can be replaced only by terminals. Using the same example

K-expression shown above, assume mutation replaces the ‘/’ symbol with d. Then the

K-expression is:

+-d,abcd

And the expression tree becomes

312

Note that this expression tree has fewer nodes than the previous one. This illustrates an

important point: by allowing mutation to replace functions with terminals and terminals

with functions, the size of the expression can change was well as its content. As a further

example, assume the next mutation changes the first symbol in the K-expression from ‘+’

to c. The K-expression becomes:

c-d,abcd

The expression tree for this is:

The “tree” consists of a single node which is the variable c. Note that the number of

symbols in the gene did not change, but some symbols are not used. The symbols that

are not used are called the noncoding region of the gene. Because the functional length

of a gene may be less than the number of symbols it holds, it is called an open reading

frame (ORF). Biological genes also have noncoding regions.

If you experiment with K-expressions you will find that any possible mutation will result

in a valid expression as long as the following rules are adhered to:

1. Symbols in the head can be replaced with functions, variables and constants.

2. Symbols in the tail can be replaced only with variables and constants (terminals).

3. The tail is of sufficient length to provide terminals for all possible functions that

can occur in the head. (See the formula for tail length above.)

This is the key to the efficiency of gene expression programming. It is easy for a

computer program to follow these three rules while performing mutations, and it never

has to check whether the resulting expression has valid syntax. By allowing a broad

range of mutations, the process can efficiently explore a high dimensional space, and the

expressions can change in size as functions are replaced by terminals and terminals by

functions.

Chromosomes and Linking Functions

A chromosome consists of one or more genes. The number of genes in a chromosome is

a parameter for the analysis (see page 95). If there is more than one gene in a

313

chromosome, then a linking function is used to join the genes in the final function. The

linking function can be static or evolving (see page 106).

For example, consider a chromosome with two genes having the K-expressions:

Gene 1: *ab

Gene2: /cd

If ‘+’ is used as the static linking function, then the combined expression is:

Which is equivalent to ().

Homeotic Genes

In addition to specifying a static linking function, you can allow the linking functions to

be selected dynamically by evolution. This is done using homeotic genes.

In biology, homeotic genes control macro organization such as determining that arms

should be attached to shoulders and legs to hips. Mutations in homeotic genes produce

bizarre creatures. An example is the Antennapedia mutant of the fruit fly Drosophila,

where legs are found sprouting where the antennae would normally be. Often, mutations

in homeotic genes produce nonviable organisms.

In gene expression programming, a homeotic gene is used to link together the regular

genes in a chromosome. There is never more than one homeotic gene in a chromosome,

and there is no homeotic gene if a static linking function is used.

Homeotic genes have the same structure as regular genes: They have a head section with

a length specified as a parameter (see page 107), a tail section, and a set of symbols. The

symbols in homeotic genes consist of references to ordinary genes and linking functions.

Homeotic genes undergo mutation, inversion, transposition and crossover just as regular

genes do during evolution. Separate parameters are available to set the mutation rates for

homeotic genes (see page 106). Symbols and functions are never exchanged between

regular genes and homeotic genes.

For example, if a chromosome has 3 regular genes, G1, G2 and G3, and a homeotic gene,

then the homeotic gene might have a K-expression of

314

+*G3G1G2

And the expression tree would be

Where G1, G2 and G3 are the expression trees for the regular genes.

Mathematical Evolution

Evolution is the engine of gene expression programming. An initial population of

candidate functions is created, then mutation, breeding and natural selection are used to

evolve functions that more closely model the data.

The main steps in the training and evolution of a gene expression program are:

1. Create an initial population of viable individuals (chromosomes).

2. Use evolution to attempt to create individuals that fit the data well.

3. Use evolution to try to find a simpler, more parsimonious function.

4. Use nonlinear regression to find optimal values of constants.

Initial Population Creation

Gene expression programming and other genetic algorithms work by evolving sets of

individuals (chromosomes). But before the evolution process begins, an initial, founder

population of individuals must be constructed that can mutate, breed and be selected for

315

subsequent generations. The number of individuals in the population is a parameter for

the analysis (see page 95).

The Karva language used to represent expressions in gene expression programming

guarantees that all expressions will have valid mathematical syntax. But Karva does not

guarantee that the expressions will produce meaningful values when they are evaluated.

For example, the K-expression

/a0

is syntactically valid, but it generates the expression (), which, of course, is infinite.

There are many other cases where the results cannot be evaluated such as taking the

square root of a negative number, finding the log of a negative number or overflowing the

range of numbers by raising a large value to a huge power. Expressions that cannot be

evaluated to generate meaning values are called unviable and receive a fitness score of

zero. Expressions are also classified as unviable if they are unable to correctly classify

any members of the population. Some fitness functions place additional conditions on

viability: For example, the Hits with penalty fitness function only classifies an

expression as viable if both the true positive (TP) and true negative (TN) hit counts are

greater than zero (see page 97).

The creation of the initial population is done by randomly selecting functions and

terminals for the genes. Some of the resulting individuals may be viable, and some may

be unviable. If the population has no viable individuals, another population is randomly

created. This process is repeated up to several thousand times until an initial population

is found with at least one viable individual. If it is impossible to create an initial

population with a viable individual, then the analysis cannot be performed.

On a philosophical note, it is difficult to imagine how an initial population could have

been created for biological evolution. Gene expression programming starts with the

machinery for evolution in existence and ready to run – mutation, inversion,

transposition, cross-replication and selection. It also starts the process with viable

individuals having a structure suitable for evolution – symbols, genes and chromosomes.

In the natural world, the starting point would be simple elements and molecules with no

pre-existing organization of genes, chromosomes, DNA or RNA. The machinery for

evolution and passing on genetic material from generation to generation would not exist.

So evolution – at least as it is currently understood – cannot be used to explain how

unorganized chemicals organized themselves into DNA and RNA which are essential for

evolution. This is one of the stronger arguments for Intelligent Design.

316

The Process of Evolution

Once the initial population has been created, the process of evolution can be used to find

individuals that model the data well. Here is an outline of the evolution process:

1. Convert K-expressions in chromosomes to expression trees.

2. Compute the fitness score for each individual by comparing the predicted target

value with the actual target value for all training cases.

3. If the fitness score is sufficiently good, or if the maximum number of generations

has been evolved, or if the maximum execution time has been reached, stop the

evolution.

4. Transfer the best (most fit) individual to the next generation without modification.

5. Use roulette-wheel sampling to select individuals for the next generation.

6. Perform mutations.

7. Perform inversions.

8. Perform transposition.

9. Perform recombination to combine genetic material from pairs of individuals.

10. Return to step 1 for the next evolution cycle.

Natural Selection and Fitness

The principle of natural selection is that healthy, fit individuals should breed and produce

offspring at a faster rate than sick, unfit individuals. Through this selection process, each

generation becomes healthier and more fit. In order for this to take place, there must be

some characteristics of individuals that determine fitness for the environment, and there

must be a selection mechanism that favors the breeding of individuals with greater

fitness.

In gene expression programming, fitness is based on how well an individual models the

data. If the target variable has continuous values, the fitness can be based on the

difference between predicted values and actual values. For classification problems with a

categorical target variable, fitness can be measured by the number of correct predictions.

DTREG provides a variety of fitness functions that you can choose from for an analysis

(see page 95).

Evolution stops when the fitness of the best individual in the population reaches some

limit that is specified for the analysis or when a specified number of generations have

been created or a maximum execution time limit is reached.

All of the fitness functions produce fitness scores in the range 0.0 to 1.0 with 1.0 being

ideal fitness – that is, the individual exactly fits the data. If a function is unviable – for

example it takes the square root of a negative number or divides by zero – then its fitness

score is 0.0.

Once the fitness has been calculated for the individuals in the population, roulette-wheel

sampling is used to select which individuals move on to the next generation. Each

individual is assigned a slot of a roulette wheel, and the size of the slot is proportional to

317

the fitness of the individual. Unviable individuals whose fitness is 0.0 have slots that can

never be selected, so they are not propagated to the next generation. Roulette-wheel

sampling causes individuals to be selected with a probability proportional to their fitness,

and it eliminates unviable individuals. Since individuals are not removed from the

population once they are selected, individuals may be selected more than once for the

next generation.

Gene expression programming makes one exception to the roulette-wheel sampling

procedure: The most fit individual in each generation is unconditionally replicated

unchanged into the next generation. This is known as elitism. The reason this is done is

to guarantee that there will never be a loss of the best individual from one generation to

the next.

Mutation, Inversion, Transposition and Recombination

In order for a population to improve from generation to generation innovations must

occur that cause some individuals to have qualities never before seen. These innovations

come about from mutation. In gene expression programming there are several types of

mutation, some are simple random changes in the symbols of genes, others are more

complex involving reversing the order of symbols or transposing symbols or genes within

the chromosome.

Mutation is not necessarily beneficial; often the change results in a less fit individual or

in an unviable individual who cannot survive. But there is a possibility that a mutation

may produce an individual with extraordinary qualities – a “genius” individual. The

operation of evolution depends on mutations producing some individuals with greater

fitness. Through natural selection, their offspring improve the overall quality of the

population. As described above, elitism guarantees that a genius never dies unless a

better genius is found to take its place. If elitism applied to people, Isaac Newton might

have lived until Albert Einstein was born, and Einstein might still be alive today.

Several types of mutation are used by gene expression programming. See the section

beginning on page 104 for detailed information about each method.

Mutation – Simple mutation just replaces symbols in genes with replacement symbols.

Symbols in the heads of genes can be replaced by functions or terminals (variables and

constants). Symbols in the tail sections can be replaced only by terminals.

Inversion – Inversion reverses the order of symbols in a section of a gene.

Transposition – Transposition selects a group of symbols and moves the symbols to a

different position within the same gene. Gene transposition moves entire genes around in

the chromosome.

Recombination – During recombination, two chromosomes are randomly selected, and

genetic material is exchanged between them to produce two new chromosomes. It is

318

analogous to the process that occurs when two individuals are bred, and the offspring

share a mixture of genetic material from both parents.

Parsimony Pressure and Expression Simplification

If two expressions do an equally good job of fitting a data set, the simpler expression is

usually preferred. For symbolic regression, complexity is measured by the number of

symbols and functions in the expression. Gene expression programming has two

techniques for selecting simpler expressions over more complex ones.

The first approach is to adjust the fitness scores of individuals so that fitness is reduced

by an amount proportional to the complexity of the expression. This penalty for

complexity is called parsimony pressure. See page 95 for information about how to

adjust how much parsimony pressure is applied.

While parsimony pressure is effective at guiding evolution toward simpler expressions,

experiments have shown that parsimony pressure may hinder the process of evolving

toward greater fitness. It is not uncommon for more complex expressions to do a better

job of fitting than less complex ones, so pushing evolution to favor simpler expressions

may increase the number of generations required to find a solution, or it may make it

impossible to find a good solution. If parsimony pressure is used, you also should build a

model with it turned off, and verify that the simpler solution does not lose significant

accuracy.

The second approach to finding parsimonious solutions is to divide the task into two

phases: (1) primary training without parsimony pressure, and (2) secondary training

which uses parsimony pressure. Since the primary training is done without parsimony

pressure, evolution can focus on finding the most accurate model as quickly as possible.

Once primary training is finished, a second round of training begins using the final

population from primary training as the starting population for the secondary training.

During secondary training, parsimony pressure is used to try to find a simpler expression

that is at least as good as the best one found during primary training. While secondary

training is being performed, the primary goal is still to improve accuracy, and the

secondary goal is to find simpler expressions. So a simpler expression will be selected

only if its accuracy meets or exceeds the best accuracy previously found. If a more

accurate expression is found, it is used even if the result is an increase in complexity. So

it is possible that during the secondary training complexity could actually increase in

order to improve accuracy. But experiments have shown that this rarely happens, and

secondary training usually results in simpler expressions. Since there is never any risk of

losing accuracy with this approach, and it may result in a simpler and possibly more

accurate expression, it is recommended.

319

Algebraic Simplification

DTREG includes a sophisticated procedure for performing algebraic simplification on

expressions after gene expression programming has evolved the best expressions. This

simplification does not alter the mathematical meaning of expressions; it just does

simplifications such as grouping common terms and simplifying identities. Here are

some examples of simplifications that it can perform:

()

(√)

 ()

 ()
 ()

See page 100 for more information about algebraic simplification.

Optimization of Random Constants

In addition to functions and variables, expressions can contain constants. You can

specify a set of explicit constants, and you can allow DTREG to generate and evolve

random constants. While evolution can do a good job of finding an expression that fits

data well, it is difficult for evolution to come up with exact values for real constants.

DTREG provides an optional final step to the GEP process to refine the values of random

constants. If this option is enabled, DTREG uses a sophisticated nonlinear regression

algorithm to refine the values of the random constants. This optimization is performed

after evolution has developed the functional form and linking and simplification have

been performed. DTREG uses a model/trust-region technique along with an adaptive

choice of the model Hessian. The algorithm is essentially a combination of Gauss-

Newton and Levenberg-Marquardt methods; however, the adaptive algorithm often

works much better than either of these methods alone.

If nonlinear regression does not improve the accuracy of the model, the original model is

used. So there is no risk of losing accuracy by using this option.

321

K-Means Clustering

Developed between 1975 and 1977 by J. A. Hartigan and M. A. Wong (Hartigan and

Wong, 1979), K-Means clustering is one of the older predictive modeling methods. K-

Means Clustering is a relatively fast modeling method, but it is also among the least

accurate models that DTREG offers.

The basic idea of K-Means clustering is that clusters of items with the same target

category are identified, and predictions for new data items are made by assuming they are

of the same type as the nearest cluster center.

K-Means clustering is similar to two other more modern methods:

 Radial Basis Function neural networks (see page 258). An RBF network also

identifies the centers of clusters, but RBF networks make predictions by

considering the Gaussian-weighted distance to all other cluster centers rather than

just the closest one.

 Probabilistic Neural Networks (see page 279). Each data point is treated as a

separate cluster, and a prediction is made by computed the Gaussian-weighted

distance to each point.

Usually, both RBF networks and PNN networks are more accurate than K-Means

clustering models. PNN networks are among the most accurate of all methods, but they

become impractically slow when there are more than about 10000 rows in the training

data file. K-Means clustering is faster than RBF or PNN networks, and it can handle

large training files.

K-Means clustering can be used only for classification (i.e., with a categorical target

variable), not for regression. The target variable may have two or more categories.

To understand K-Means clustering, consider a classification involving two target

categories and two predictor variables. The following figure (Balakrishnama and

Ganapathiraju) shows a plot of two categories of items. Category 1 points are marked by

circles, and category 2 points are marked by asterisks. The approximate center of the

category 1 point cluster is marked “C1”, and the center of category 2 points is marked

“C2”.

322

Four points with unknown categories are shown by diamonds. K-Means clustering

predicts the categories for the unknown points by assigning them the category of the

closest cluster center (C1 or C2).

There are two issues in creating a K-Means clustering model:

1. Determine the optimal number of clusters to create.

2. Determine the center of each cluster.

Most K-Means clustering programs don’t provide any systematic way to find out the

optimal number of clusters, and it usually isn’t as obvious as shown in the figure above.

So the person trying to create a model must experiment and try guesses to see what works

best. DTREG provides an automatic search function that creates models using a varying

number of clusters, tests each one and reports which is best. The model performance

tests can be performed using cross-validation or holdout sampling. You can turn off the

automatic search and specify a fixed number of clusters if you prefer.

Given the number of clusters, the second part of the problem is determining where to

place the center of each cluster. Often, points are scattered and don’t fall into easily

recognizable groupings. Cluster center determination is done in two steps:

A. Determine starting positions for the clusters. This is performed in two steps:

1. Assign the first center to a random point.

323

2. Find the point furthest from any existing center and assign the next center

to it. Repeat this until the specified number of cluster centers have been

found.

B. Adjust the center positions until they are optimized. DTREG does this using a

modified version of the Hartigan-Wong algorithm that is much more efficient

than the original algorithm.

325

Discriminant Analysis

Originally developed in 1936 by R.A. Fisher (Fisher, 1936), Discriminant Analysis is a

classic method of classification that has stood the test of time. Discriminant analysis

often produces models whose accuracy approaches (and occasionally exceeds) more

complex modern methods.

Discriminant analysis can be used only for classification (i.e., with a categorical target

variable), not for regression. The target variable may have two or more categories.

To explain discriminant analysis, let’s consider a classification involving two target

categories and two predictor variables. The following figure (Balakrishnama and

Ganapathiraju) shows a plot of the two categories with the two predictors on orthogonal

axes:

A visual inspection shows that category 1 objects (open circles) tend to have larger values

of the predictor on the Y axis and smaller values on the X axis. However, there is overlap

between the target categories on both axes, so we can’t perform an accurate classification

using only one of the predictors.

326

Linear discriminant analysis finds a linear transformation (“discriminant function”) of the

two predictors, X and Y, that yields a new set of transformed values that provides a more

accurate discrimination than either predictor alone:

 TransformedTarget = C1*X + C2*Y

 The following figure (also from Balakrishnama and Ganapathiraju) shows the

partitioning done using the transformation function:

A transformation function is found that maximizes the ratio of between-class variance to

within-class variance as illustrated by this figure produced by Ludwig Schwardt and

Johan du Preez (Schwardt and Preez, 2005):

327

The transformation seeks to rotate the axes so that when the categories are projected on

the new axes, the differences between the groups are maximized. The following figure

(also by Schwardt and du Preez) shows two rotates axes. Projection to the lower right

axis achieves the maximum separation between the categories; projection to the lower left

axis yields the worst separation.

328

The following figure by Randy Julian (Julian, Lilly Labs) illustrates a distribution

projected on the transformed axis labeled “D”. Note that the projected values produce

complete separation on the transformed axis, whereas there is overlap on both the original

X and Y axes.

In the ideal case, a projection can be found that completely separates the categories (such

as shown above). However, in most cases there is no transformation that provides

complete separation, so the goal is to find the transformation that minimizes the overlap

of the transformed distributions. The following figure by Alex Park and Christine Fry

illustrates a distribution of two categories (“switch” in blue and “non-switch” in red).

The black line shows the optimal axis found by linear discriminant analysis that

maximizes the separation between the groups when they are projected on the line.

329

The following figure (also by Alex Park and Christine Fry) shows the distribution of the

switch and non-switch categories as projected on the transformed axis (i.e., the black line

shown in the figure above):

Note that even after the transformation there is overlap between the categories, but setting

a cutoff point around -1.7 on the transformed axis yields a reasonable classification of the

categories.

331

Linear Regression

I guide you in the way of wisdom and lead you along straight paths.

 – Proverbs 4:11 (NIV)

Introduction to Linear Regression

Linear regression is the oldest and most widely used predictive model. The method of

minimizing the sum of the squared errors to fit a straight line to a set of data points was

published by Legendre in 1805 and by Gauss in 1809. The term “least squares” is from

Legendre’s term, moindres carrés. However, Gauss claimed that he had known the

method since 1795. The term "regression" was coined in the nineteenth century to

describe a biological phenomenon, namely that the progeny of exceptional individuals

tend on average to be less exceptional than their parents and more like their more distant

ancestors [from Wikipedia].

A linear regression model fits a linear function to a set of data points. The form of the

function is:

Where Y is the target variable, X1, X2,… Xn are the predictor variables, and , …, are

coefficients that multiply the predictor variables. is a constant.

For example, the function shown above relating the strength of a material to hardness has

the fitted equation:

http://en.wikipedia.org/wiki/Adrien_Marie_Legendre
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/Nineteenth_century

332

 Strength = -0.8453 + 0.58388*Hardness

If there is a single predictor variable (X1), then the function describes a straight line. If

there are two predictor variables, then the function describes a plane. If there are n

predictor variables, then the function describes an n-dimensional hyperplane. Here is a

plot of a fitted plane with two predictor variables:

If a perfect fit existed between the function and the actual data, the actual value of the

target value for each record in the data file would exactly equal the predicted value.

Typically, however, this is not the case, and the difference between the actual value of the

target variable and its predicted value for a particular observation is the error of the

estimate which is known as the “deviation” or “residual”. The following plot depicts the

residuals as red vertical lines connecting the data points and the fitted line.

333

The goal of regression analysis is to determine the values of the β parameters that

minimize the sum of the squared residual values for the set of observations. This is

known as a “least squares” regression fit. It is also sometimes referred to as “ordinary

least squares” (OLS) regression.

Since linear regression is restricted to fitting linear (straight line/plane) functions to data,

it rarely works as well on real-world data as more general techniques such as neural

networks which can model non-linear functions. However, linear regression has a

number of strengths:

 Linear regression is the most widely used method, and it is well understood.

 Training a linear regression model is usually much faster than methods such as

neural networks.

 Linear regression models are simple and require minimum memory to implement,

so they work well on embedded controllers that have limited memory space.

 By examining the magnitude and sign of the regression coefficients (β) you can

infer how predictor variables affect the target outcome.

It is possible to use linear regression to fit functions with non-linear variables. To do this,

use DTL (see page 153) or an external program to generate transformed values of

variables, and then use the transformed variables as predictor variables for the function.

For example, if you generate a new variable, X2 using the transformation:

334

and include both X and X2 as predictor variables, then the fitted function will be:

Which is equivalent to

Linear regression is best suited for analyses with a continuous target variable, but

DTREG also can create linear regression models to perform classification with a

categorical target variable. When the target variable has two categories, a function is

created to predict 1 for one of the categories and 0 for the other. If the target variable has

more than two categories, DTREG creates a separate linear regression function for each

category. A category function is trained to generate 1 if the category it is modeling is

true and 0 for any other category.

If there are categorical predictor variables, DTREG generates a separate predictor

variable for each category. A created predictor-category variable has the value 1 if the

predictor variable has the category it represents and 0 if the predictor variable has any

other category. If a categorical predictor variable has n categories, then (n-1) dummy

variables are generated. Each generated variable has the value 1 if the variable’s value

matches its associated category. All generated variables have the value 0 if the value of

the predictor variable matches the remaining category. For example, if predictor variable

TicketClass has three categories, FirstClass, Tourist and SuperSaver, then DTREG will

arbitrarily select two of the categories for generated variables; let’s assume it selects

FirstClass and Tourist. Then if the value of TicketClass is FirstClass, the generated

variables would have the values: FirstClass=1, Tourist=0. If TicketClass was Tourist,

then the generated variables would have the values: FirstClass=0, Tourist=1. And if

TicketClass was SuperSaver, then the generated variables would have the values:

FirstClass=0, Tourist=0.

Several computational algorithms can be used to perform linear regression. DTREG uses

Singular Value Decomposition (SVD) which is robust and less sensitive to predictor

variables that are nearly collinear.

Output Generated for Linear Regression

In addition to statistics measuring how well the function fits the data (see page 189),

DTREG generates a table showing the computed β coefficient values.

 -------------- Computed Coefficient (Beta) Values --------------

Variable Coefficient Std. Error t Prob(t) 95% Confidence Interval

-------- ------------- ------------ --------- --------- ------------ ------------

Hardness 0.583884 0.016 36.40 < 0.00001 0.5508 0.6169

Constant -0.845341 1.106 -0.76 0.45203 -3.124 1.434

335

A line is displayed showing the computed β coefficient for each predictor variable. If a

constant (β0) is included in the equation, the last line shows the value of “Constant”.

Using the information in this table, we conclude that the function is:

 Strength = -0.845341 + 0.583884*Hardness

In addition to the coefficient value, the standard error of the coefficient is displayed along

with several other statistics:

t Statistic

The “t” statistic is computed by dividing the estimated value of the β coefficient by its

standard error. This statistic is a measure of the likelihood that the actual value of the

parameter is not zero. The larger the absolute value of t, the less likely that the actual

value of the parameter could be zero. The t statistic probability is computed using a two-

sided test.

Prob(t)

The “Prob(t)” value is the probability of obtaining the estimated value of the coefficient if

the actual coefficient value is zero. The smaller the value of Prob(t), the more significant

the coeficient and the less likely that the actual value is zero. For example, assume the

estimated value of a parameter is 1.0 and its standard error is 0.7. Then the t value would

be 1.43 (1.0/0.7). If the computed Prob(t) value was 0.05 then this indicates that there is

only a 0.05 (5%) chance that the actual value of the parameter could be zero. If Prob(t)

was 0.001 this indicates there is only 1 chance in 1000 that the parameter could be zero.

If Prob(t) was 0.92 this indicates that there is a 92% probability that the actual value of

the parameter could be zero; this implies that the term of the regression equation

containing the parameter can be eliminated without significantly affecting the accuracy of

the regression. One thing that can cause Prob(t) to be 1.00 (or near 1.00) is having

redundant parameters. If at the end of an analysis several parameters have Prob(t) values

of 1.00, check the function carefully to see if one or more of the parameters can be

removed.

ANOVA Table

 -- ANOVA and F Statistics --

 Source DF Sum of Squares Mean Square F value Prob(F)

 ---------- ------ -------------- -------------- ---------- ---------

 Regression 2 16510.39 8255.195 10.885 0.000432

 Error 24 18201.91 758.4128

 Total 26 34712.3

An "Analysis of Variance” table provides statistics about the overall significance of the

model being fitted.

336

F Value, and Prob(F)

The "F value” and "Prob(F)” statistics test the overall significance of the regression

model. Specifically, they test the null hypothesis that all of the regression coefficients are

equal to zero. This tests the full model against a model with no variables and with the

estimate of the dependent variable being the mean of the values of the dependent

variable. The F value is the ratio of the mean regression sum of squares divided by the

mean error sum of squares. Its value will range from zero to an arbitrarily large number.

The value of Prob(F) is the probability that the null hypothesis for the full model is true

(i.e., that all of the regression coefficients are zero). For example, if Prob(F) has a value

of 0.010 then there is 1 chance in 100 that all of the regression parameters are zero. This

low a value would imply that at least some of the regression parameters are nonzero and

that the regression equation does have some validity in fitting the data (i.e., the

independent variables are not purely random with respect to the dependent variable).

Confidence interval

The confidence interval shows the range of values for the computed coefficient that

covers the actual coefficient value with the specified confidence. For example, the

results above show a 95% confidence interval of 0.5508 to 0.6169 for the Hardness

coefficient. This means that we are 95% confident that the true coefficient of Hardness

falls in this range. You can set the percentage for the confidence interval on the Linear

Regression Property Page (see page 115).

Coefficients for categorical predictor variables

If some of the predictor variables have categorical values, then the table of computed

coefficients has a line for each variable generated for categories. Here is an example:

 -------------- Coefficient (Beta) Values for Survived = 1 (Yes) --------------

Variable Coefficient Std. Error t Prob(t) 95% Confidence Interval

--------- ------------- ------------ --------- --------- ------------ ------------

Class

 Crew 0.131181 0.02164 6.06 < 0.00001 0.08875 0.1736

 First 0.306734 0.02771 11.07 < 0.00001 0.2524 0.3611

 Second 0.120654 0.02852 4.23 0.00002 0.06473 0.1766

Age

 Adult -0.181296 0.04097 -4.43 0.00001 -0.2616 -0.101

Sex

 Male -0.49068 0.02301 -21.33 < 0.00001 -0.5358 -0.4456

Constant 0.767591 0.04186 18.34 < 0.00001 0.6855 0.8497

Note that variables were generated for Crew, First and Second categories of Class. The

variable generated for Age is 1 if Age=Adult and 0 otherwise. Similarly, there is a

generated value for Sex that has the value 1 if Sex=Male and 0 otherwise.

337

Logistic Regression

Introduction to Logistic Regression

Logistic Regression is a type of predictive model that can be used when the target

variable is a categorical variable with two categories – for example live/die, has

disease/doesn’t have disease, purchases product/doesn’t purchase, wins race/doesn’t win,

etc. A logistic regression model does not involve decision trees and is more akin to

nonlinear regression such as fitting a polynomial to a set of data values.

Logistic regression can be used only with two types of target variables:

1. A categorical target variable that has exactly two categories (i.e., a binary or

dichotomous variable).

2. A continuous target variable that has values in the range 0.0 to 1.0 representing

probability values or proportions.

As an example of logistic regression, consider a study whose goal is to model the

response to a drug as a function of the dose of the drug administered. The target

(dependent) variable, Response, has a value 1 if the patient is successfully treated by the

drug and 0 if the treatment is not successful. Thus the general form of the model is:

 Response = f(dose)

The input data for Response will have the value 1 if the drug is effective and 0 if the drug

is not effective. The value of Response predicted by the model represents the probability

of achieving an effective outcome, P(Response=1|Dose). As with all probability values,

it is in the range 0.0 to 1.0.

One obvious question is “Why not simply use linear regression?” In fact, many studies

have done just that, but there are two significant problems:

1. There are no limits on the values predicted by a linear regression, so the predicted

response might be less than 0 or greater than 1 – clearly nonsensical as a response

probability.

2. The response usually is not a linear function of the dosage. If a minute amount of the

drug is administered, no patients will respond. Doubling the dose to a larger but still

minute amount will not yield any positive response. But as the dosage is increases a

threshold will be reached where the drug begins to become effective. Incremental

increases in the dosage above the threshold usually will elicit an increasingly positive

effect. However, eventually a saturation level is reached, and beyond that point

increasing the dosage does not increase the response.

338

The Dose-Response Curve

The logistic regression dose-response curve has an S (sigmoidal) shape such as shown

here:

Notice that all of the Response values are 0 or 1. The Dose varies from 0 to 25. Below a

dose of 9 all of the Response values are 0. Above a dose of 10 all of the response values

are 1.

339

The Logistic Model Formula

The logistic model formula computes the probability of the selected response as a

function of the values of the predictor variables.

If a predictor variable is categorical variable with two values, then one of the values is

assigned the value 1 and the other is assigned the value 0. Note that DTREG allows you

to use any value for categorical variables such as “Male” and “Female”, and it converts

these symbolic names into 0/1 values. So you don’t have to be concerned with recoding

categorical values.

If a predictor variable is a categorical variable with more than two categories, then a

separate dummy variable is generated to represent each of the categories except for one

which is excluded. The value of the dummy variable is 1 if the variable has that

category, and the value is 0 if the variable has any other category; hence, no more than

one dummy variable will be 1. If the variable has the value of the excluded category,

then all of the dummy variables generated for the variable are 0. DTREG automatically

generates the dummy variables for categorical predictor variables; all you have to do is

designate variables as being categorical.

In summary, the logistic formula has each continuous predictor variable, each

dichotomous predictor variable with a value of 0 or 1, and a dummy variable for every

category of predictor variables with more than two categories less one category.

The form of the logistic model formula is:

)))...(exp(1/(1 22110 kkXXXP

Where β0 is a constant and βi are coefficients of the predictor variables (or dummy

variables in the case of multi-category predictor variables). The computed value, P, is a

probability in the range 0 to 1. The exp() function is e raised to a power. You can

exclude the β0 constant by turning off the option “Include constant (intercept) term” on

the logistic regression model property page.

340

Output Generated for a Logistic Regression Analysis

Summary statistics for the model

============ Logistic Regression Parameters ============

Predict: DeathPenalty = 1 (Yes)

Number of parameters calculated = 4

Number of data rows used = 147

Wald confidence intervals are computed for 95% probability.

Log likelihood of model = -88.142490

Deviance (-2 * Log likelihood) = 176.284981

Akaike's Information Criterion (AIC) = 184.284981

Bayesian Information Criterion (BIC) = 196.246711

The summary statistics begin by showing the name of the target variable and the category

of the target whose probability is being predicted by the model. You can select the

category on the logistic regression property page for the analysis.

The log likelihood of the model is the value that is maximized by the process that

computes the maximum likelihood value for the β parameters. Technically, it is the value

of the likelihood function,

i

x

i

ii
ieyL)1log()log(x

The Deviance is equal to -2*log-likelihood.

Akaike’s Information Criterion (AIC) is -2*log-likelihood+2*k where k is the number

of estimated parameters.

The Bayesian Information Criterion (BIC) is -2*log-likelihood + k*log(n) where k is

the number of estimated parameters and n is the sample size. The Bayesian Information

Criterion is also known as the Schwartz criterion.

Computed Beta Parameters

 ------------------ Computed Parameter (Beta) Values ------------------

 Variable Parameter Std. Error Pr. Chi Sq. Lower C.I. Upper C.I.

-------------- ---------- ------------ ----------- ------------ ------------

BlackDefendant 0.5952 0.394 0.1308 -0.177 1.367

WhiteVictim 0.2565 0.400 0.5216 -0.528 1.041

Serious 0.1871 0.061 0.0022 0.067 0.307

Constant -2.6516 0.675 < 0.0001 -3.974 -1.329

341

The computed beta parameters are the maximum likelihood values of the β parameters in

the logistic regression model formula (see above). By using them in an equation with the

corresponding values of the predictor (X) variables, you can compute the expected

probability, P, for an observation.

In addition to the maximum likelihood value, the standard error for the estimate is

displayed along with the Chi squared probability that the true value of the parameter is

not zero. The last two columns display the Wald upper and lower confidence intervals.

You can select the confidence interval percentage range on the Logistic Regression

property page.

The odds ratios corresponding to the parameter values are displayed in the next table.

The odds ratios are computed by raising e (base of natural logs) to the power of the

parameter value.

 ------------------ Odds Ratios ------------------

 Variable Odds Ratio Lower C.I. Upper C.I.

-------------- -------------- -------------- --------------

BlackDefendant 1.8134 0.8378 3.9247

WhiteVictim 1.2924 0.5898 2.8316

Serious 1.2057 1.0694 1.3594

If a predictor variable is categorical, then a dummy variable is generated for each

category except for one. In this case, there is a β parameter for each dummy variable, and

the categories are shown indented under the names of the variables like this:

 --------------- Computed Parameter (Beta) Values ---------------

Variable Parameter Std. Error Pr. Chi Sq. Lower C.I. Upper C.I.

--------- ---------- ---------- ----------- ---------- ----------

Class

 Crew 0.8845 0.1643 < 0.0001 0.5624 1.2065

 First 1.7733 0.1896 < 0.0001 1.4016 2.1450

 Second 0.7742 0.1921 < 0.0001 0.3977 1.1507

Age

 Adult -1.0225 0.2726 0.0002 -1.5568 -0.4881

Sex

 Male -2.2831 0.1534 < 0.0001 -2.5838 -1.9825

Constant 1.1915 0.2765 < 0.0001 0.6495 1.7334

342

Likelihood Ratio Statistics

 ------ Likelihood Ratio Statistics ------

 Variable L. Ratio DF Pr. Chi Sq.

-------------- ---------- ---- -----------

BlackDefendant 2.321 1 0.12763

WhiteVictim 0.413 1 0.52020

Serious 10.234 1 0.00138

Constant 18.609 1 0.00002

If you enable the option “Compute likelihood ratio significance tests” on the logistic

regression property page, then a table similar to the one shown above will be printed.

The likelihood ratio significance tests are computed by performing a logistic regression

with each parameter omitted from the model and comparing the log likelihood ratio for

the model with and without the parameter. These significance tests are considered to be

more reliable than the Wald significance test. However, since the logistic regression

must be recomputed with each predictor omitted, the computation time increases in

proportion to the number of predictor variables. If a predictor variable is a categorical

variable with multiple categories, the significance test is performed with all of the

categories included and all of them excluded.

Computational Issues for Logistic Regression

Failure to Converge

An iterative Newton-Raphson algorithm is used to calculate the maximum likelihood

values of the parameters. This procedure uses the partial second derivatives of the

parameters in the Hessian matrix to guide incremental parameter changes in an effort to

maximize the log likelihood value for the likelihood function. The algorithm iterates

until the absolute value of the largest parameter change is less than the value specified for

“Tolerance” on the logistic regression property page.

Most logistic regression analyses converge to a solution in a dozen or so iterations, but

you may occasionally run into one that does not converge. If this happens, try enabling

the option “Use Firth’s procedure” on the logistic regression property page. Firth’s

procedure slows down the calculations, but it usually results in achieving convergence.

Note: if Firth’s procedure is enabled, unbiased parameter values are calculated which

may be somewhat different than what you would get with Firth’s procedure turned off.

343

Singular Hessian Matrix

The Hessian matrix with the partial second derivatives of the parameter values is used to

guide the convergence process. If the Hessian matrix is singular, the logistic regression

procedure will be unsuccessful and a warning message will be displayed.

Complete and Quasi-Complete Separation of Values

Complete separation is a condition where one predictor or a linear combination of

predictors perfectly predicts the target value. For example, consider a situation where

every value of the Response target variable is 0 if Dose is less than 10 and every value is

1 if Dose is greater than 10. Then the value of Response can be perfectly predicted by

checking if Dose is less than or greater than 10. In this case it is impossible to compute

the maximum likelihood values for the β parameters because the slope of the logistic

function would be infinite.

At the beginning of each logistic regression analysis, a check is made for complete

separation on each predictor variable. If complete separation is detected, a report will be

generated similar to this:

----------- Report On Separation of Variables -----------

Warning: Complete separation of target values occurs on Age

The example above indicates that values of the target variable are completely determined

by the Age predictor variable. If separation occurs for a particular category of a multi-

category predictor variable, the category will be shown in brackets after the variable

name, for example “Race[2]”.

Quasi-complete separation occurs when values of the target variable overlap or are tied

at a single or only a few values of a predictor variable. The analysis does not check for

quasi-complete separation, but the symptoms are extremely large calculated values for

the β parameters or large standard errors. The analysis also may fail to converge.

If complete or quasi-complete separation is detected, the predictor variable(s) showing

separation should be removed from the analysis.

345

Correlation, Factor Analysis, Principal Components

Correlation, Factor Analysis, and Principal Components Analysis are different than the

other procedures in DTREG, because they do not generate predictive models. Instead,

these procedures are used for exploratory analysis where you are trying to understand the

nature and relationship between variables.

See page 119 for information about setting parameters to control these procedures.

Introduction to Correlation

Correlation is a measure of the association between two variables. That is, it indicates if

the value of one variable changes reliably in response to changes in the value of the other

variable. The correlation coefficient can range from -1.0 to +1.0. A correlation of -1.0

indicates that the value of one variable decreases as the value of the other variable

increases. A correlation of +1.0 indicates that when the value of one variable increases,

the other variable increases. Positive correlation coefficients less than 1.0 mean that an

increasing value of one variable tends to be related to increasing values of the other

variable, but the increase is not regular – that is, there may be some cases where an

increased value of one variable results in a decreased value of the other variable (or no

change). A correlation coefficient of 0.0 means that there is no association between the

variables: a positive increase in one variable is not associated with a positive or negative

change in the other.

Types of Correlation Coefficients

When used without qualification, “correlation” refers to the linear correlation between

two continuous variables, and it is computed using the Pearson Product Moment

function. A Pearson correlation coefficient of 1.0 occurs when an increase in value of

one variable results in an increase in value of the other variable in a linear fashion. That

is, doubling the value of one variable doubles the value of the other variable.

If two variables have an association but the relationship is not linear, then the Pearson

correlation coefficient will be less than 1.0 even if there is a perfectly reliable change in

one variable as the other changes. The Spearman rank-order correlation coefficient is

the most popular method for handling non-linear correlation. Spearman correlation sorts

the values being correlated and replaces the values by their order (rank) in the sorted list.

So the smallest value is replaced by 1, the second smallest by 2, etc. Correlation is then

computed using the rank-orders rather than the original data values. The Spearman

correlation coefficient will be 1.0 if a positive change in one variable produces a positive

change in the other variable even if the response is not linear.

346

Most correlation programs can compute correlations only between two continuous

variables. Since DTREG allows categorical variables, it must also compute correlations

between categorical variables. It’s not too hard to grasp the idea of correlating two

categorical variables with dichotomous values such as correlating Sex (male/female) with

Outcome (live/die), but it is harder to imagine correlating categorical variables with

multiple categories such as Marital Status with State of Residence. However, there are

established correlation procedures for handling these cases, and DTREG implements

procedures for handling all combinations of correlations between continuous,

dichotomous, and general categorical variables. The table below shows the method used

for each case.

 Continuous Dichotomous Multi-Category

Continuous Pearson or
Spearman

Point biserial Tau squared

Dichotomous Point biserial Phi coefficient Cramer’s V or
Entropy

Multi-Category Tau squared Cramer’s V or
Entropy

Cramer’s V or
Entropy

The correlation between two multi-category variables is essentially an ANOVA to

determine if there is a significant difference between the number of cases that fall in the

cells of an n by m array where n and m are the number of categories of the two variables.

These correlations can vary only from 0.0 to 1.0; they cannot be negative.

The Correlation Matrix

If you compute the correlation between n variables, then these correlations can be

presented in the form of an n by n matrix such as shown here:

 V1 V2 V3 V4 V5 V6

 ------- ------- ------- ------- ------- -------

V1 1.0000 0.4944 0.7134 -0.1041 0.1141 0.0762

V2 0.4944 1.0000 0.3882 0.0535 -0.0597 0.1423

V3 0.7134 0.3882 1.0000 -0.0247 0.2038 0.0583

V4 -0.1041 0.0535 -0.0247 1.0000 0.6201 0.6353

V5 0.1141 -0.0597 0.2038 0.6201 1.0000 0.4551

V6 0.0762 0.1423 0.0583 0.6353 0.4551 1.0000

Introduction to Factor Analysis and Principal Components Analysis

When you find a set of variables that are highly correlated with each other, it is

reasonable to wonder if this mutual association may be due to some common underlying

cause. For example, suppose values for the following variables are collected for an

incoming college freshman class: High school GPA, IQ, SAT Verbal, SAT Math,

347

Height, Weight, Waist size, and Chest size. A correlation matrix for these variables is

likely to show large positive correlations between High school GPA, IQ, and SAT scores.

Similarly, Height, Weight, Waist and Chest measurements will probably be positively

correlated. So, the question is whether High school GPA, IQ, and SAT scores are related

because of some underlying, common factor. The answer, of course, is yes, because they

are all measures of intelligence. Similarly, Height, Weight, Waist, and Chest

measurements are all related to physical size. So the conclusion is that there are only two

underlying factors that are being measured by the eight variables, and these factors are

intelligence and physical size. These common factors are sometimes called latent

variables. Since “intelligence” is an abstract concept, it cannot be measured directly:

instead, measures such as GPA, IQ, etc. are used to estimate the intelligence of an

individual.

In the simple example presented above, it’s not too difficult to isolate the pattern of

correlations that link the variables in the two groups; but when you have hundreds of

variables and there are multiple underlying factors, it is much more difficult to identify

the factors and the variables associated with each factor.

The purpose of Factor Analysis is to identify a set of underlying factors that explain

the relationships between correlated variables. Generally, there will be fewer

underlying factors than variables, so the factor analysis result is simpler than the original

set of variables.

Principal Component Analysis is very similar to Factor Analysis, and the two procedures

are sometimes confused. Both procedures are built on the same mathematical techniques.

Factor Analysis assumes that the relationship (correlation) between variables is due to a

set of underlying factors (latent variables) that are being measured by the variables.

Principal Components Analysis is not based on the idea that there are underlying

factors that are being measured. It is simply a technique for finding a linear combination

of the original variables that produce orthogonal (uncorrelated) variables that explain the

maximum amount of variance in the original variables. It is often used to reduce the

number of variables while retaining most of the predictive power.

The goal of PCA is to rigidly rotate the axes of an n-dimensional space (where n is the

number of variables) to a new orientation that has the following properties:

1. The first axis corresponds to the direction with the most variance among the

variables, and subsequent axes have progressively less variance in their direction.

2. The correlation between each pair of rotated axes is zero. This is a result of the

axes being orthogonal to each other (i.e., they are uncorrelated).

 PCA is performed by finding the eigenvalues and eigenvectors of the covariance or

correlation matrix. The eigenvectors represent a linear transformation from the original

variable coordinates to rotated coordinates that satisfy the criteria listed above. For

example, if you have variables X1 through Xn. Then the eigenvector components would

be:

348

 EVC1 = a11X1 + a12X2 + … + a1nXn

Through

 EVCm = am1X1 + am2X2 + … + amnXn

Where amn is the eigenvector value of the mth eigenvector component and the nth

variable. Note that the principal components are just linear combinations of the

variables. There is an option on the PCA properties page where you can specify a file to

which the coefficients of the PCA function will be written (see page 119).

DTREG can compute the variable values after being transformed by eigenvectors and

write them to a file. See the PCA option screen on page 119 for information about this

option.

Here is an example showing two principal components fitted to two variables. Note that

PC1 is oriented along a line that has the maximum variance (dispersion) of values, and

PC2 is orthogonal (perpendicular) to PC1.

Determining the Number of Factors to Use

In the example at the beginning of this chapter, we concluded that the eight variables

were related to two underlying factors, intelligence and physical size. However, the

choice of two factors was arbitrary. It is likely that IQ and SAT scores will have higher

correlation with each other than with GPA, because GPA is largely affected by

motivation and effort. Similarly, weight, waist, and chest size may be measures of heft

while height may be something different. So perhaps we should use four factors: (1) IQ,

SAT Verbal, SAT Math; (2) GPA; (3) Weight, Waist, and Chest size; (5) Height.

349

Determining the number of factors to use has been an issue since the beginning of factor

analysis. There is no perfect way to determine how many factors to use: there are a

number of suggested guidelines, but ultimately it is a judgment call. One of the most

useful measures is a chart called a Scree Plot that shows what percentage of the variance

is accounted for by each factor. A small scree plot is shown in the analysis report; a

larger and prettier one can be seen by clicking Charts/Model Size after finishing an

analysis. Here is an example of a Scree Plot:

The horizontal axis shows the number of factors. The vertical axis shows the percent of

the overall variance explained by each factor. Notice that there is a sharp drop off after 2

factors. So in this case, it is reasonable to retain two factors.

DTREG includes a number of methods for controlling how many factors are used. See

the Factor Analysis property page described on page 119 for details.

350

Output Generated by Factor Analysis

Factor Importance (Eigenvalue) Table

The Factor Importance table shows the relative and cumulative amount of variance

explained by each factor. Here is an example of such a table:

 ============== Factor Importance ==============

Factor Eigenvalue Variance % Cumulative % Scree Plot

------ ---------- ---------- ------------ --------------------

 1 1.90099 31.683 31.683 ********************

 2 1.68129 28.022 59.705 *****************

 3 0.18959 3.160 62.865 **

 4 0.02137 0.356 63.221

 5 -0.01090 . .

 6 -0.20007 . .

 Maximum allowed number of factors = 2

 Stop when cumulative explained variance = 80%

 Minimum allowed eigenvalue = 0.50000

 Number of factors retained = 2

This chart lists each factor, its associated eigenvalue, the percent of total variance

explained by the factor, and the total cumulative variance explained by all factors up to

and including this one. A small scree plot is show on the right.

One popular rule of thumb in determining how many factors to use is to only use factors

whose eigenvalues are at least 1.0. However, experience has show that this may exclude

useful factors, so a smaller eigenvalue cutoff is recommended.

Table of Communalities

 ============== Communalities ==============

 Initial Final Common Var. % Unique Var. %

 ------- ------- ------------- -------------

V1 0.5908 0.9285 92.848 7.152

V2 0.3250 0.2554 25.540 74.460

V3 0.5332 0.5693 56.927 43.073

V4 0.5938 0.9234 92.342 7.658

V5 0.4861 0.4449 44.488 55.512

V6 0.4326 0.4608 46.083 53.917

A communality is the percent of variance in a variable that is accounted for by the

retained factors. For example, in the table above, about 93% of the variance in V1 is

accounted for by the factors, while only 44% of the variance of V5 is accounted for.

351

Factor Loading Matrix
 ============== Un-rotated Factor Matrix ==============

 Fac1 Fac2

 --------- ---------

 V1 0.6167 * 0.7404 *

 V2 0.3619 0.3527

 V3 0.5359 0.5311

 V4 0.6727 * -0.6862 *

 V5 0.5724 -0.3423

 V6 0.5677 -0.3722

------ --------- ---------

 Var. 1.901 1.681

The factor loading matrix shows the correlation between each variable and each factor.

For example, V1 has a 0.6167 correlation with Factor 1 and a 0.7404 correlation with

Factor 2. From the factor matrix shown above, we see that Factor 1 is related most

closely to V4 followed by V1. V5 and V6 are also moderately significant variables on

Factor 1. Factor 2 is related to V1 and V4. So when trying to interpret the meaning of

Factor 2, you should try to figure out the common connection between V1 and V4.

Factor Rotation
============== Rotated Factor Matrix ==============

 Rotation method: Varimax

 Fac1 Fac2

 --------- ---------

 V1 -0.0056 0.9636 *

 V2 0.0494 0.5030

 V3 0.0674 0.7515 *

 V4 0.9566 * -0.0911

 V5 0.6583 * 0.1072

 V6 0.6740 * 0.0813

------ --------- ---------

 Var. 1.901 1.681

There are several methods of rotating the factor matrix that make the relationship

between the variables and the factors easier to understand. The factor matrix presented

above is the result of rotating the factor matrix presented in the previous section. In this

case Varimax rotation was used. After a Varimax rotation, some of the factor loadings

will be large, and the rest will be close to zero making it easy to see which variables

correlate strongly with the factor. Varimax is the most popular rotation method. After

performing the Varimax rotation, it is easy to see that Factor 1 is related to variables V4,

V5, and V6 whereas Factor 2 is related to variables V1, V2, and V3.

A Varimax rotation is an orthogonal transformation. That means the factor axes remain

orthogonal to each other, and the factors are uncorrelated. A Promax rotation relaxes that

restriction and allows the rotated axes to be oblique and correlated with each other.

352

When a Promax rotation is done, DTREG displays a table showing the correlations

between the rotated factors:

==== Correlation Between Rotated Factor Axes ====

 Fac1 Fac2

 ------- -------

 Fac1 1.0000 -0.1400

 Fac2 -0.1400 1.0000

Using Principal Components transformations

As discussed above, principal components are weighted, linear combinations of the

variables, and the principal components are ordered in decreasing order of explained

variance. It is possible to generate new variables whose values are computed using the

eigenvectors. For example, a new variable, PC1, could be computed for each set of

variable values using the formula:

 PC1 = a11X1 + a12X2 + … + a1nXn

Then this computed variable can be used in a predictive model instead of the original

variables. Since the principal components (and eigenvectors) are ordered in decreasing

order of explained variance, it is often possible to use fewer principal component

variables than original variables. For example, the following table taken from a DTREG

report shows the percent of total variance explained by each principal component and the

cumulative amount explained:

Factor Eigenvalue Variance % Cumulative % Scree Plot

------ ---------- ---------- ------------ --------------------

 1 6.12685 47.130 47.130 ********************

 2 1.43328 11.025 58.155 ****

 3 1.24262 9.559 67.713 ****

 4 0.85758 6.597 74.310 **

 5 0.83482 6.422 80.732 **

 6 0.65741 5.057 85.789 **

 7 0.53536 4.118 89.907 *

 8 0.39610 3.047 92.954 *

 9 0.27694 2.130 95.084 *

 10 0.22024 1.694 96.778

 11 0.18601 1.431 98.209

 12 0.16930 1.302 99.511

 13 0.06351 0.489 100.000

There were 13 original variables, but the cumulative effect of using only the first five

principal components accounts for 80.732% of the variance.

One word of caution: principal components are formed from a linear combination of the

variables. If the variables are related in a nonlinear manner, the principal components

will not correctly reflect the relationship.

353

The Enterprise Version of DTREG contains features to (1) compute principal component

transformations, (2) use the PCA transformations to convert the input data to PCA

transformed values, and (3) use PCA transformation functions computed in one model to

automatically generate new PCA variables in a subsequent model.

Here are the steps in computing PCA transform functions and then using them to generate

PCA variables in a subsequent model.

1. Perform a PCA analysis, select the criteria to determine how many principal

components will be stored, and check the option “Compute PCA transformation

function” on the PCA properties page.

2. After the PCA analysis has been performed, save the generated model to a

DTREG project file (.dtr file).

3. Open or create a new project in which you want to use the PCA transformation.

354

4. On the Data property page for the new model, click the button “Set PCA

transform”.

5. A popup screen will appear looking like this:

355

6. Check the box “Enable use of PCA transformation in model”, specify the name of

the DTREG project file contain the previously-computed PCA transformation,

then click the “Load PCA transformation from file” button. DTREG will read the

project file containing the PCA transformation function and attach the PCA

transformation function to this project. DTREG will report if the PCA

transformation was found in the auxiliary project and successfully attached to this

project:

7. Once the transformation has been read from the auxiliary project file and bound to

this model, the auxiliary project file is no longer needed. The PCA

transformation function becomes part of the new project, and it will be stored with

356

the new project file. If surrogate variables were computed with the PCA

transformation, they also will become part of the new model, and they will be

used to handle missing values going into the PCA transformation.

8. After binding a PCA transformation function to the model, new variables will

appear in the list of variables on the Variables Property Page with names PCn

where n is the principal component number.

9. You can then use these variables as predictors in the new model. The PCA

variables are also available for predicting values using the Score Function (see

page 163). If you use the DTREG COM DLL component, the PCA

transformations will be applied to the input data for computing predictions. If you

use DTL with PCA transformations, variables created by DTL may be used as

inputs to the PCA transformation function, but the PCA variables created by the

transformation are not available to the DTL program.

357

Handling Missing Data Values

 Missing data values are an unfortunate but frequent occurrence in many predictive

modeling situations. For example, demographic information obtained for marketing

analysis may have hundreds of variables, but not all of the information will be available

(or even relevant) to some of the people. In medical studies some tests may be performed

for some patients but not others.

Specifying missing values in input data

There are three ways to denote a missing value in an input data record:

1. Leave the column blank.

2. Put a single period (‘.’) in the column without any numbers around it.

3. Put a question mark (‘?’) in the column.

Types of missing variables

DTREG recognizes three types of variables: target, predictor, and weight. If the target or

weight variables for a data record have missing values, the data record is unconditionally

excluded from the analysis. Also, if all of the predictor variables have missing values,

the data record is excluded. But if some predictor variables are available but others have

missing values, DTREG provides four methods for handling the data records with

missing values:

Exclude the data row

The simplest way to deal with records having some missing predictor variable values is to

exclude those rows from the analysis. If there are many data rows available and the

percentage of rows with missing values is small, then this may be the best method.

Excluding rows is fast, and it prevents any error from being introduced due to the missing

values.

Replace missing values with median/mode values

The second approach is to replace missing predictor values by the median value of the

variable. For categorical predictors, the mode (most frequent category) is used for the

replacement. Using the median/mode introduces some error into the model for that

variable, but it allows the non-missing values of the other predictors to contribute to the

model.

358

Surrogate Variables

 The most sophisticated method is to use surrogate variables to impute the predictor

values that are missing. A surrogate variable is another predictor variable that is

associated (correlated) with the primary predictor variable. DTREG fits a linear or

polynomial function to estimate the missing variable value based on the available value

of the surrogate variable.

Before the model building process starts, DTREG examines each potential surrogate

variable for each primary predictor variable and computes the association between the

variables. Continuous and categorical predictor variables with two categories may have

surrogates and be used as surrogates. Categorical variables with more than two

categories cannot have surrogates nor can they be used as surrogates. The mode is used

as the replacement value for categorical variables with more than two categories.

If there are n eligible variables, then () potential matches must be evaluated.

For each potential variable pair, the association is calculated. The association measures

how closely the variables are related. Association values range from 0 (no association) to

100 (perfect association). The surrogates with the highest association are connected to

the primary predictor. So each predictor has a different set of surrogate variable

functions.

The method used to compute the association depends on the type of the predictor:

Continuous predictors – Linear regression is used to fit a function:

 ()

The association is then computed as 100 times the proportion of the variance of the

predictor explained by the function. So if the function output exactly matches the

predictor, the association is 100.

Categorical predictors – A slightly different method is used to compute the association

for categorical predictors with two categories. If the potential surrogate is also

categorical, the values of the predictor and the surrogate are compared and the proportion

of the values that match (have the same category) is computed; call this

MatchProportion. Then association is computed using the formula:

 | |

If the proportion of matching rows is 0.5, then the association is 0.0, because there is a

50/50 chance of a match. If the proportion matching is either 1.0 or -1.0 then the

association is 100. A negative match proportion means that the variables are associated

in the opposite direction. A match proportion of (-1.0) means that the category values are

exactly opposite; hence, the predictor value can be imputed by reversing the category

value of the surrogate. If the primary predictor is categorical and the surrogate is

359

continuous, a function is fitted to the 0/1 predictor values and a threshold of 0.5 is used to

convert the value computed by the function to the predictor category value.

When a predictor variable is encountered with a missing value, DTREG examines each of

the associated surrogate variables looking for one that has a non-missing value on that

data row. The surrogates are examined in the order of decreasing association values.

When a surrogate variable is found with a non-missing value, the surrogate function is

used to compute the replacement value for the variable. If all surrogates have missing

values, the median/mode is used replace the missing value.

Surrogate variables are almost always the best method for handling missing values.

However, there are situations where surrogate variables may improve the accuracy of the

model on the training data but produce inferior results on the validation results compared

with using median/mode values. So it is recommended that you build models using both

surrogate variables and median/mode values and compare the validation results.

Surrogate variables are used (1) during the model building process, (2) when using the

Score function (page 163) to predict values for a data file, and (3) when the DTREG

COM library is used to predict values (page 375). If the Translate procedure (page 169)

is used to generate source code for a model, surrogate variable calculations are included

in the generated source code.

Parameters related to selecting surrogate variables are specified on the Variables property

page which is described on page 41. Here is the surrogate variable portion from that

page:

The following parameters can be specified:

Number of surrogates to store – This is the maximum number of surrogate variables

that DTREG will store for each predictor variable. Fewer surrogates may be stored if no

significant associations are found.

Minimum surrogate association – The association computed for each potential

surrogate is compared to this value. If the association is smaller than this, then the

surrogate is excluded.

Maximum polynomial order – This controls whether linear, quadratic, or cubic

functions are used for surrogate associations. If a polynomial order greater than 1 is

specified, DTREG computes the association for all polynomials up to that order, and it

360

only uses the higher order polynomials if they provide superior fit (greater association)

than lower-order polynomials.

Report surrogate variables – If this option is checked, then DTREG adds a table to the

analysis report showing which surrogate variables were stored for each predictor along

with the polynomial coefficients and the association. See page 182 for an example of the

surrogate variable report.

Surrogate Splitters

A surrogate splitter is similar to a surrogate variable, but it is specialized for decision tree

based models – single trees, TreeBoost, and decision tree forests.

When a decision tree is created, each predictor variable is evaluated at each split point to

determine how well it can partition the values. After the best predictor has been

determined, other candidate predictors are examined and the splits generated by them are

compared with the primary split. The association is computed by comparing the split

generated by the predictor with the primary predictor. The best surrogate splitters are

stored along with the primary splitter. If the primary splitter value is missing, surrogate

splits are examined looking for a non-missing value on a surrogate predictor.

One of the key differences between surrogate variables and surrogate splitters is that a

different set of surrogate splitters is stored for each split. So the same predictor may have

different surrogate splitter variables at different spit points in the decision tree. In

contrast, surrogate variables are computed once before the model building process

begins, and the same set of surrogate variables is always used for a particular predictor

variable.

361

How Trees are Built and Pruned

Train up a tree in the way it should go, and when you are old sit under the shade of it.

 – Charles Dickens

The process DTREG uses to build and prune a tree is complex and computationally

intensive. Here is an outline of the steps:

1) Build the tree

a) Examine each node and find the best possible split

i) Examine each predictor variable

(1) Examine each possible split on each predictor

b) Create two child nodes

c) Determine which child node each row goes into. This may involve using

surrogate splitters.

d) Continue the process until a stopping criterion (e.g., minimum node size) is

reached.

2) Prune the tree

a) Build a set of cross-validation trees

b) Compute the cross validated misclassification cost for each possible tree size

c) Prune the primary tree to the optimal size

Building Trees

The process used to split a node is the same whether the node is the root node with all of

the rows or a child node many levels deep in the tree. The only difference is the set of

rows in the node being split.

Splitting Nodes

DTREG tries each predictor variable to see how well it can divide the node into two

groups.

If the predictor is continuous, a trial split is made between each discrete value (category)

of the variable. For example, if the predictor being evaluated is Age and there are 80

values of Age ranging from 10 to 79, then DTREG makes a trial split putting the rows

with a value of 10 for Age in the left node and the rows with values from 11 to 79 in the

right node. The improvement gained from the potential split is remembered, and then the

next trial split is done putting rows with Age values of 10 and 11 in the left group and

values from 12 to 79 in the right group. The number of splits evaluated is equal to the

number of discrete values of the predictor variable less one.

362

You can control the maximum number of discrete values used for continuous variables

by setting the value of “Max. categories for predictor variables” on the Design property

screen (see page 33). If there are more actual discrete values than this parameter setting,

values are grouped together into value ranges.

This process is repeated by moving the split point across all possible division points. The

best improvement found from any split point is saved as the best possible split for that

predictor variable in this node. The process is then repeated for each other predictor

variable. The best split found for any predictor variable is used to perform the actual split

on the node. The next best five splits are saved as “competitor splits” for the node.

When examining the possible splits for a categorical predictor variable, the calculations

are more complex and potentially much more time consuming.

If the predictor variable is categorical and the target variable is continuous, the categories

of the predictor variable are sorted so that the mean value of the target variable for the

rows having each category of the predictor are increasing. For example, if the target

variable is “Income” and the predictor variable has three categories, single, married and

divorced, the categories are ordered so that the mean value of Income for the people in

each predictor category is increasing. The splitting process then tries each split point

between each category of the predictor. This is very similar to the process used for

continuous predictor variables except the categories are arranged by values of the target

variable rather than by values of the predictor variable. The number of splits evaluated is

equal to the number of categories of the predictor variable less one.

If both the target variable and the predictor variable are categorical, the process gets more

complex. In this case, to perform an exhaustive search DTREG must evaluate a potential

split for every possible combination of categories of the predictor variable. The number

of splits is equal to 2
(k-1)

-1 where k is the number of categories of the predictor variable.

For example, if there are 5 categories, 15 splits are tried; if there are 10 categories, 511

splits are tried; if there are 16 categories, 32,767 splits are tried; if there are 32 categories,

2,147,483,647 splits are tried. Because of this exponential growth, the computation time

to do an exhaustive search becomes prohibitive when there are more than about 12

predictor categories. In this case, DTREG uses the clustering technique described below

to group the target categories.

There is one case where classification trees are efficient to build using exhaustive search

even with categorical predictors having a large number of categories. That is the case

where the target variable has only two possible categories. Fortunately, this situation

occurs fairly often – the target categories might be live/die, bought-product/did-not-buy,

malignant/benign, etc. For this situation, DTREG has to evaluate only many splits as the

number of categories for the predictor variable less one.

In order to make it feasible to construct classification trees with target variables that have

more than two categories and predictor variables that have a large number of categories,

DTREG switches from using an exhaustive search to a cluster analysis method when the

363

number of predictor categories exceeds a threshold that you can specify on the Model

Design property page (see page 33). This technique uses cluster analysis to group the

categories of the target variable into two groups. DTREG is then able to try only (k-1)

splits, where k is the number of predictor categories.

Once DTREG has evaluated each possible split for each possible predictor variable, a

node is split using the best split found. The runner-up splits are remembered and

displayed as “Competitor Splits” in the report.

Evaluating Splits

The ideal split would divide a group into two child groups in such a way so that all of the

rows in the left child have the same value on the target variable and all of the rows in the

right group have the same target value – but different from the left group. If such a split

can be found, then you can exactly and perfectly classify all of the rows by using just that

split, and no further splits are necessary or useful. Such a perfect split is possible only if

the rows in the node being split have only two possible values on the target variable.

Unfortunately, perfect splits do not occur often, so it is necessary to evaluate and

compare the quality of imperfect splits. Various criteria have been proposed for

evaluating splits, but they all have the same basic goal which is to favor homogeneity

within each child node and heterogeneity between the child nodes. The heterogeneity –

or dispersion – of target categories within a node is called the “node impurity”. The goal

of splitting is to produce child nodes with minimum impurity.

The impurity of every node is calculated by examining the distribution of categories of

the target variable for the rows in the group. A “pure” node, where all rows have the

same value of the target variable, has an impurity value of 0 (zero). When a potential

split is evaluated, the probability-weighted average of the impurities of the two child

nodes is subtracted from the impurity of the parent node. This reduction in impurity is

called the improvement of the split. The split with the greatest improvement is the one

used. Improvement values for splits are shown in the node information that is part of the

report generated by DTREG.

DTREG provides two methods for evaluating the quality of splits when building

classification trees, (1) Gini and (2) Entropy,. Only one method is provided when

building regression trees, and that is minimum variance within nodes. The minimum

variance/least squares criteria is essential the same criteria used by traditional, numeric

regression analysis (i.e., line and function fitting).

Experience has shown that the splitting criterion is not very important, and Gini and

Entropy yield trees that are very similar. Gini is considered slightly better than Entropy,

so it is the default criteria used for classification trees. See Breiman, Friedman, Olshen

and Stone Classification And Regression Trees (1984) for a technical description of the

Gini and Entropy criteria.

364

Assigning Categories to Nodes

When a decision tree is used to predict values of the target variable, rows are run through

the tree down to the point where they reach a terminal node. The category assigned to the

terminal node is the predicted value for the row being evaluated. So a natural question is

how categories are assigned to nodes.

For regression trees built with a continuous target variable, the value assigned to a node is

simply the average value of the target variable for all rows that end up in the node

weighted by the row weights.

For classification trees built with a categorical target variable, the determination of what

category to assign to a node is more complex: it is the category that minimizes the

misclassification cost for the rows in the node. The calculation of the misclassification

cost is somewhat complex. The formula involves the distribution of target categories in

the node compared with the distribution in the total (learning) sample. The category

weights and the misclassification costs also affect the assigned category. In the simplest

case, every row that is misclassified has a cost of 1 and every row that is correctly

classified has a cost of 0, so the category with the most rows in the node is assigned to the

node. The misclassification cost for every node is displayed in the report generated by

DTREG. A misclassification summary table is included near the end of the report.

If you wish, you can specify specific costs for misclassifying one target category as

another target category. For example, you might want to assign a greater cost to

classifying a heart attack as indigestion than classifying indigestion as a heart attack.

These misclassification costs are implemented by generating altered prior (category

weight) values that are used in the calculation. See Breiman, Friedman, et al (1984) for a

detailed description of how misclassification costs are used.

Missing Values and Surrogate Splitters

Ideally, every row would have values for every variable. Unfortunately, in the real

world, missing values are encountered often: People being surveyed refuse or forget to

answer questions, some questions may not apply to all people, some medical tests may

not be performed on all patients, etc.

Some simple programs discard rows that have any missing values. But this is a waste of

valuable information that may be available on other variables.

DTREG uses a sophisticated technique involving surrogate splitters to estimate the

values of predictor variables with missing values.

Surrogate splitters are predictor variables that are not as good at splitting a group as the

primary splitter but which yield similar splitting results; they mimic the splits produced

by the primary splitter.

365

DTREG compares which rows are sent to the left and right child groups by the primary

splitter with the rows sent to the corresponding child groups by every other predictor

variable. The association between the primary splitter and each alternate predictor is

computed as a function of how closely the alternate predictor matches the primary

splitter. (This roughly corresponds to a count of how many rows each predictor sends left

and right, but the actual calculation is more complex.) The alternate predictor variables

are then ranked in decreasing order of association.

The largest possible association value is 1.0 which means the surrogate sends exactly the

same set of rows to the left and right groups as the primary splitter. An association value

of 0.0 means that the surrogate does no better at assigning rows than simply putting them

in the most probable group.

Surrogate splitters are similar to competitor splitters in the sense that they both yield

splits of benefit but are not as good as the primary splitter. Often, the same variable will

be listed as both a competitor and a surrogate. However, there is a significant difference

between the way variables are ranked as competitors and as surrogates. Competitor splits

are runners-up to the primary split: they are judged the same way the primary splitter is

judged by how much improvement they make in reducing node impurity. Surrogate

splitters are not ranked by the amount of improvement they produce but rather by how

closely they mimic the split selected for the primary splitter. The optimal split point for a

surrogate maximizes the association between the surrogate and the primary splitter; it

does not necessarily maximize the improvement. If you compare entries for the same

variable in the competitor and surrogate lists, you may see different split points selected

and different values for the improvement from the splits.

Surrogate splitters are used to classify rows that have missing values in the primary

splitter. They function both when the tree is being built and later when the tree is used to

score additional datasets.

When a row is encountered that has a missing value on the primary splitter, DTREG

searches the list of surrogate splitters and uses the one with the highest association to the

primary splitter that has a non-missing value for the row.

Surrogate splitters provide the most accurate classification of rows with missing values.

This is the default and recommended method for handling missing predictor values.

In addition to their function in classifying rows with missing predictor values, the

association between the primary splitter and surrogate splitters is used in the calculation

of the overall importance of variables. To understand why this is done, consider two

variables that are very similar and highly correlated, for example height and weight. At

some split point, weight may be selected as the primary splitter because it is slightly

better than height. If this preference for weight prevails at many split points, weight

would appear to be extremely important and height as unimportant. However, if you

removed weight as a predictor variable and reran the analysis, an identical tree very well

might be built using height as the splitting variable wherever weight was used before.

366

Hence, height is nearly as important as weight. When one variable hides the importance

of another variable, it is known as masking. By considering not only which variables are

used as primary splitters but also the association of the surrogates, DTREG is able to

provide a more accurate evaluation of variable importance.

Stopping Criteria

If no limits were placed on the size of a tree, DTREG theoretically might build a tree so

large that every row of the learning dataset ended up in its own terminal node. But doing

this would be computationally expensive, and the tree would be so large that it would be

difficult or impossible to interpret and display.

Several criteria are used to limit how large a tree DTREG constructs. Once a tree is built,

the pruning method described in a following section is used to reduce its size to the

optimal number of nodes.

The following criteria are used to limit the size of a tree as it is build:

 Minimum size node to split. On the Design property page, you can specify that

nodes containing fewer than a specified number of rows are not to be split.

 Maximum tree depth. On the Design property page, you can specify the

maximum number of levels in the tree that are to be constructed.

Pruning Trees

Every branch of mine that bears no fruit, he takes away, and every branch that does bear

fruit he prunes, that it may bear more fruit.

 – Jesus (John 15:2)

One of the classic problems in building decision trees is the question of how large a tree

to build. Early programs such as AID (Automatic Interaction Detection) used stopping

criteria such as those described in a preceding section along with other criteria such as the

improvement from splits to decide when to stop. This is known as forward pruning. But

analysis of trees generated by these programs showed that they often were not of the

optimal size.

DTREG does not use its stopping criteria as the primary means for deciding how large a

tree should be. Instead, it uses relaxed stopping criteria and builds an overly-large tree.

It then analyzes the tree and prunes it back to the optimal size. This is known as

backward pruning. Backward pruning requires significantly more calculations than

forward pruning, but the optimal tree sizes are much more accurately calculated. See

page 209 for information about displaying a chart showing error rate versus model size.

367

Why Tree Size Is Important

There are two reasons why it is desirable to generate trees of the optimal size.

First, if a situation can be described and explained equally well by two descriptions, the

description that is simpler and more concise is generally preferred. The same is true with

decision trees: if two trees provide equivalent predictive accuracy, the simpler tree is

preferred because it is easier to understand and faster to use for making predictions.

Second, and more importantly, smaller trees may provide greater predictive accuracy

for unseen data than larger trees. This is a non-intuitive fact that warrants explanation.

When creating a decision tree, a learning dataset is used. This dataset contains a set of

rows that are a representative sample of the overall population. The process used to build

the decision tree selects optimal splits to fit the tree to the learning dataset. Once the tree

has been built, the records in the learning dataset can be run through the tree to see how

well the tree fits the data. The rate of classification errors measured when running the

learning dataset through a tree built using that dataset is known as the “resubstitution

cost” for the tree. (It is called resubstitution because the same data is rerun through the

tree.)

For the learning dataset, the accuracy of the fit always improves (resubstitution cost

decreases) as the tree is grown larger. It is always possible to grow a sufficiently large

tree to provide 100% accuracy in predicting the learning dataset. In an extreme case, the

tree might be grown so large that every row of the learning dataset ended up in its own

terminal node. Obviously, with such a tree, an exactly correct value of the target value

for every row could be predicted.

However, it is desirable that a decision tree not only accurately model the learning dataset

from which it was built, but also that it be able to predict the values of other cases that are

presented to it later after it has been constructed. The ability to predict values for

independent datasets is known as generalization.

While a large tree may fit the learning dataset with extreme accuracy, its size may reduce

its generalization accuracy. As an analogy, consider fitting a suit of clothes.

Manufactured clothes sold in stores are made to fit various sizes, but they are designed so

that there is some slack and leeway around a specified size. In contrast, a custom tailored

suit is made precisely to fit a specific individual. While the custom tailored suit will fit

one person extremely well, it will not fit other people in the same size range as well as a

generic suit. In the same way, adding extra nodes to a tree to “custom tailor” it to the

learning dataset may introduce misclassifications when it is later applied to a different

dataset.

Another way to understand why large trees can be inferior to smaller trees is that the

large trees fit and model minor “noise” in the data, whereas smaller trees model only the

significant data factors.

368

See page 209 for information about generating a chart showing misclassification error

rate versus model size.

The primary goal of the pruning process is to generate the optimal size tree that can

be generalized to other data beyond the learning dataset.

369

V-Fold Cross Validation

You’re dealing with the demon of external validation. You can’t beat external validation.

You want to know why? Because it feels soooo good!

 – Barbara Hall, Northern Exposure

The method used by DTREG to determine the optimal tree size is V-fold cross validation.

Research has shown that this method is highly accurate, and it has the advantage of not

requiring a separate, independent dataset for assessing the accuracy and size of the tree.

If a tree is built using a specific learning dataset, and then independent test datasets are

run through the tree, the classification error rate for the test data will decrease as the tree

increases in size until it reaches a minimum at some specific size. It the tree is grown

beyond that point, the classification errors will either remain constant or increase. A

graph showing how classification errors typically vary with tree size is shown below:

In order to perform tests to measure classification error as a function of tree size, it is

necessary to have test data samples independent of the learning dataset that was used to

build the tree. However, independent test data frequently is difficult or expensive to

obtain, and it is undesirable to hold back data from the learning dataset to use for a

separate test because that weakens the learning dataset. V-fold cross validation is a

370

technique for performing independent tree size tests without requiring separate test

datasets and without reducing the data used to build the tree.

Cross validation would seem to be paradoxical: we need independent data that was not

used to build the tree to measure the generalized classification error, but we want to use

all data to build the tree. Here is how cross validation avoids this paradox.

All of the rows in the learning dataset are used to build the tree. This tree is intentionally

allowed to grow larger than is likely to be optimal. This is called the reference, unpruned

tree. The reference tree is the best tree that fits the learning dataset.

Next, the learning dataset is partitioned into some number of groups called “folds”. The

partitioning is done using stratification methods so that the distribution of categories of

the target variable are approximately the same in the partitioned groups. The number of

groups that the rows are partitioned into is the ‘V’ in “V-fold cross classification”.

Research has shown that little is gained by using more than 10 partitions, so 10 is the

recommended and default number of partitions in DTREG.

For the point of discussion, let’s assume 10 partitions are created. DTREG then collects

the rows in 9 of the partitions into a new pseudo-learning dataset. A test tree is built

using this pseudo-learning dataset. The quality of the test tree for fitting the full learning

dataset will, in general, be inferior to the reference tree because only 90% of the data was

used to build it. Since the 10% (1 out of 10 partitions) of the data that was held back

from the test tree build is independent of the test tree, it can be used as an independent

test sample for the test tree.

The 10% of the data that was held back when the test tree was built is run through the test

tree and the classification error for that data is computed. This error rate is stored as the

independent test error rate for the first test tree.

A different set of 9 partitions is now collected into a new pseudo-learning dataset. The

partition being held back this time is selected so that it is different than the partition held

back for the first test tree. A second test tree is built and its classification error is

computed using the data that was held back when it was built.

This process is repeated 10 times, building 10 separate test trees. In each case, 90% of

the data is used to build a test tree and 10% is held back for independent testing. A

different 10% is held back for each test tree.

Once the 10 test trees have been built, their classification error rate as a function of tree

size is averaged. This averaged error rate for a particular tree size is known as the “Cross

Validation cost” (or “CV cost”). The cross validation cost for each size of the test trees is

computed. The tree size that produces the minimum cross validation cost is found. This

size is labeled as “Minimum CV” in the tree size report DTREG generates. See page 183

for an example of a tree size report with cross validation statistics.

371

The reference tree is then pruned to the number of nodes matching the size that produces

the minimum cross validation cost. The pruning is done in a stepwise fashion, removing

the least important nodes during each pruning cycle. The decision as to which node is the

“least important” is based on the cost complexity measure as described in Classification

And Regression Trees by Breiman, Friedman, Olshen and Stone (1984).

It is important to note that the test trees built during the cross-validation process are used

only to find the optimal tree size. Their structure (which may be different in each test

tree) has no bearing on the structure of the reference tree which is constructed using the

full learning dataset. The reference tree pruned back to the optimal size determined by

cross validation is the best tree to use for scoring future datasets.

Adjusting the Optimal Tree Size

If you plot the cross-validation error cost for a tree versus tree size, the error cost will

drop to a minimum point at some tree size, then it will rise as the tree size is increased

beyond that point. Often, the error cost will bounce up and down in the vicinity of the

minimum point, and there will be a range of tree sizes that produce approximately the

same low error cost. A graph illustrating this is shown below:

Note that the absolutely smallest misclassification cost is only slightly smaller than the

misclassification cost for a tree that is several nodes smaller. Since smaller and simpler

trees are preferred over larger trees that have the same predictive accuracy, you may

prefer to prune back to the smaller tree if the increase in misclassification cost is minimal.

The cross validation cost for each possible tree size is displayed in the Tree Size report

that DTREG generates. See page 183 for an example.

372

On the “Validation” property page for the model, DTREG provides several options for

controlling the size that is used for pruning:

 Prune to the minimum cross-validated error – If you select this option,

DTREG will prune the tree to the size the produces the absolutely minimum

cross-validated classification error.

 Allow 1 standard error from minimum – Many researchers believe that it is

acceptable to prune to a smaller tree as long as the increase in misclassification

cost does not exceed one standard error of the variance in the cross validation

misclassification cost. The standard error for the cross validation cost values is

displayed in the Tree Size report. See page 183 for an example.

 Allow this many S.E. from the minimum – Using this option, you can specify

an exact number of standard errors from the minimum misclassification cost you

will allow.

373

Example Analyses

The DTREG installation program installs a set of example projects in a folder named

“Examples” under the DTREG installation directory. Normally, this is C:\Program

files\DTREG\Examples. A good way to get started using DTREG is to browse the

examples in that directory and run some of them.

Most of the example analyses came from the UCI Repository of Machine Learning

Databases (http://www.ics.uci.edu/~mlearn/MLRepository.html). Irvine, CA: University

of California, Department of Information and Computer Science. This repository has

greatly benefited the development of many decision tree and machine learning programs.

Summary information about some of the examples is presented below. Other information

can be found in the “Notes” section displayed on the Design property page within

DTREG.

TITANIC.DTR – The sinking of the Titanic is a famous event, and new books are still

being published about it. Many well-known facts - from the proportions of first-class

passengers to the "women and children first" policy, and the fact that that policy was not

entirely successful in saving the women and children in the third class - are reflected in

the survival rates for various classes of passenger. These data were originally collected

by the British Board of Trade in their investigation of the sinking. For each person on

board the fatal maiden voyage of the ocean liner Titanic, this dataset records sex, age

(adult/child), booking class (first/second/third class, or crew) and whether or not that

person survived.

IRIS.DTR – This is a classification problem dating back to 1936. Its originator, R. A.

Fisher, developed the problem to test clustering analysis and other types of classification

programs prior to the development of computerized decision tree generation programs.

The dataset is small consisting of 150 records. The target variable is categorical

specifying the species of iris. The predictor variables are measurements of plant

dimensions.

BOSTON.DTR – This is a regression tree example to predict the value of houses in

various areas around Boston based on characteristics of the locale such as proximity to

the Charles River and major highways, socioeconomic status, air pollution and other

factors.

LIVERDISORDER.DTR – This is a dataset from England that generates a classification

tree to predict liver disorders. The target variable is liver condition (healthy or

abnormal). The predictor variables are various blood chemical measurements along with

the number of alcoholic drinks consumed per day.

HOUSEVOTES.DTR – This is a classification problem that attempts to predict the

political party affiliation of U.S. House members based on how they voted on various

374

bills in 1984. The target variable is political party (Republican/Democrat). The predictor

variables are Yes/No votes cast on various bills.

LANDINGCONTROL.DTR – This is a classification problem to decide whether it is

better to use manual or automatic (autopilot) control when landing the space shuttle. The

target variable has two categories, Automatic and Manual. The predictor variables

include wind direction, velocity and visibility.

BRIDGES.DTR – This is a classification problem that attempts to classify the type of

various bridges around Pittsburg based on predictors such as their length, type of material

and date of construction.

HORSECOLIC.DTR – This is a classification problem to decide if horses suffering

from colic need to be treated surgically. The target variable categories are surgical or

non-surgical. The predictor variables describe the horse’s condition such as age,

temperature, degree of discomfort, etc.

CLEVELANDHEART14.DTR – This is a classification problem that attempts to

predict heart disease due to vessel narrowing. The target variable, ‘num’, is the number

of vessels showing narrowing. The focus is on predicting a value of 0 (no disease) versus

non-disease which indicates narrowing in some vessels.

375

DTREG .NET Class Library

The optional DTREG .NET class library makes it easy for production applications to call

DTREG as an “engine” to compute the predicted value for data records using a predictive

model created by DTREG.

Any type of model (Single Tree, TreeBoost or Decision Tree Forest, SVM, etc.) can be

used with the DTREG COM library to generate predicted values

Because of the standardization of the .NET interface, it is easy to call DTREG functions

from programs written in C#, VB.NET and other .NET languages.

Example C# program

Here is an example of a complete C# program:
using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using DTREGclassLibrary;

namespace TestDTREGclassLibrary

{

 /*---

 * Class to build a DTREG model.

 */

 class BuildModel

 {

 /*-----------------------------------

 * Routine that trains a DTREG model.

 */

 public int BuildTheModel()

 {

 int intStatus;

 /*

 * Establish a reference to a DTREGclass object.

 */

 DTREGclass objDtreg = new DTREGclass();

 m_objDtreg = objDtreg;

 /*

 * Enter our registration information.

 */

 intStatus = objDtreg.SetRegistration("registered name", "registration key");

 if (CheckStatus(intStatus)) return (intStatus);

 /*

 * Initialize for a new model.

 */

 intStatus = objDtreg.BeginTraining("Test model training");

 if (CheckStatus(intStatus)) return(intStatus);

 /*

 * Set the type of model to build.

 * 1 = Single decision tree.

 * 2 = TreeBoost.

 * 3 = Decision tree forest.

 * 4 = Logistic regression.

 * 5 = SVM

 * 7 = LDA

 * 9 = Neural network

 * 10 = PNN/GRNN

 * 11 = RBF

 * 12 = Cascase correlation

 * 13 = GEP

 * 14 = Linear regression

 * 15 = K-Means

376

 * 16 = GMDH

 * 17 = Correlation, factor analysis.

 */

 intStatus = objDtreg.SetModelType(2);

 if (CheckStatus(intStatus)) return (intStatus);

 /*

 * Define 5 variables. The first variable is the categorical target variable.

 * The other 4 variables are continuous predictor variables.

 */

 intStatus = objDtreg.BeginVariableDefinitions();

 if (CheckStatus(intStatus)) return (intStatus);

 intStatus = objDtreg.DefineVariable("Species", 2, true);

 if (CheckStatus(intStatus)) return (intStatus);

 intStatus = objDtreg.DefineVariable("Sepal length", 1, false);

 if (CheckStatus(intStatus)) return (intStatus);

 intStatus = objDtreg.DefineVariable("Sepal width", 1, false);

 if (CheckStatus(intStatus)) return (intStatus);

 intStatus = objDtreg.DefineVariable("Petal length", 1, false);

 if (CheckStatus(intStatus)) return (intStatus);

 intStatus = objDtreg.DefineVariable("Petal width", 1, false);

 if (CheckStatus(intStatus)) return (intStatus);

 intStatus = objDtreg.EndVariableDefinitions();

 if (CheckStatus(intStatus)) return (intStatus);

 /*

 * Feed in data records.

 * The column delimiter character is ","

 */

 intStatus = objDtreg.BeginStoringData(",", 0);

 if (CheckStatus(intStatus)) return (intStatus);

 foreach (var item in DataRow)

 {

 intStatus = objDtreg.StoreDataRow(item);

 if (CheckStatus(intStatus)) return (intStatus);

 }

 intStatus = objDtreg.EndOfData();

 if (CheckStatus(intStatus)) return (intStatus);

 /*

 * Train the model. The type of the model was set by SetModelType().

 */

 intStatus = objDtreg.GenerateModel();

 if (CheckStatus(intStatus)) return (intStatus);

 /*

 * Get analysis reports from the model, and write them to files.

 * --- Change the folder for the files ---

 */

 String txtReport = objDtreg.GetAnalysisReport();

 String txtXMLReport = objDtreg.GetAnalysisReportXML();

 System.IO.File.WriteAllText(@"C:\Test\AnalysisReport.txt", txtReport);

 System.IO.File.WriteAllText(@"C:\Test\AnalysisReport.xml", txtXMLReport);

 /*

 * Write the project to a file.

 */

 intStatus = objDtreg.SaveProject(@"C:\Test\Model.dtr");

 if (CheckStatus(intStatus)) return (intStatus);

 /*

 * Finished

 */

 return(0);

 }

 /*--

 * Check a status code and display a message box if there is an error.

 * Return true if there is an error or false for success.

 */

 bool CheckStatus(int intStatus)

 {

 if (intStatus != 0) {

 MessageBox.Show(m_objDtreg.StatusMessage(intStatus), "Error");

 return(true);

 } else {

 return(false);

 }

 }

/*

 * Data rows for model training.

 */

string []DataRow = {

 "Setosa,5.1,3.5,1.4,0.2",

 [… More data rows …]

377

 };

}

}

379

Licensing and Use of DTREG

Use and Distribution of DTREG

There are two versions of the DTREG program: demonstration and registered. You are

welcome to make copies of the demonstration version of DTREG and pass them on to

friends or post this program on bulletin boards or distribute it via disk catalog services,

CD ROMS, or other means provided the entire DTREG distribution is included in its

original, unmodified form. A distribution fee may be charged for the cost of the diskette,

shipping and handling. Vendors are encouraged to contact the author to get the most

recent version of DTREG.

As a demonstration product, you are granted a no-cost, trial period of 30 days during

which you may evaluate DTREG. If you find DTREG to be useful, educational, and/or

entertaining, and continue to use it beyond the 30 day trial period, you are required to

compensate the author by purchasing it.

In return for purchasing DTREG, you will be authorized to continue using DTREG

beyond the trial period on a single computer. Contact the author for information about

multi-system licenses.

The registered version of DTREG may not be redistributed or used on more than one

computer system.

Copyright Notice

Both the DTREG program and documentation are copyright © 1991-2004 by Phillip H. Sherrod.

You are not authorized to modify the program or documentation. "DTREG” is a trademark of

Phillip H. Sherrod.

Web page

Up-to-date information about DTREG can be found on the web page: http://www.dtreg.com

Contacting the author

Phil Sherrod, the author of DTREG, can be contacted at PhilSherrod@comcast.net

Disclaimer

This software and documentation are provided on an "as is” basis. This program may

contain "bugs” and inaccuracies, and its results should not be assumed to be correct

unless they are verified by independent means. Phillip H. Sherrod disclaims all warranties

http://www.nlreg.com/

380

relating to this software, whether expressed or implied, including but not limited to any

implied warranties of merchantability or fitness for a particular purpose. Neither Phillip

H. Sherrod nor anyone else who has been involved in the creation, production, or

delivery of this software shall be liable for any indirect, consequential, or incidental

damages arising out of the use or inability to use such software, even if Phillip H. Sherrod

has been advised of the possibility of such damages or claims. The person using the

software bears all risk as to the quality and performance of the software.

This agreement shall be governed by the laws of the State of Tennessee and shall inure to

the benefit of Phillip H. Sherrod and any successors, administrators, heirs and assigns.

Any action or proceeding brought by either party against the other arising out of or

related to this agreement shall be brought only in a state or federal court of competent

jurisdiction located in Williamson County, Tennessee. The parties hereby consent to in

personam jurisdiction of said courts.

381

References

Agresti, Alan. Categorical Data Analysis, Second Edition. Wiley series in probability

and statistics, 2002.

Aldenderfer, Mark S. and Roger K. Blashfield. Cluster Analysis. Sage Publications,

1984.

Allison, Paul D. Logistic Regression Using The SAS System: Theory and Application.

SAS Institute Inc., Cary, NC, 1999.

Balakrishnama, S. and A. Ganapathiraju, Linear Discriminant Analysis – A Brief

Tutorial, Institute for Signal and Information Processing, Mississippi State University.

Berk, Richard A. (2003) “An Introduction to Ensemble Methods for Data Analysis”

UCLA Department of Statistics Technical Report.

Bishop, Christopher M. (2005) Neural Networks for Pattern Recognition. Oxford

University Press.

Blake, C.L. & Merz, C.J. (1998). UCI Repository of Machine Learning Databases

[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of

California, Department of Information and Computer Science.

Blok, Hendrick J. On the nature of the stock market: Simulations and experiments.

PhD thesis, University of British Columbia, 2000.

(http://www.zoology.ubc.ca/~rikblok/lib/blok00b.html)

Breiman, Leo, Jerome Friedman, Richard Olshen, and Charles Stone. Classification and

Regression Trees. Pacific Grove: Wadsworth, 1984.

Breiman, Leo (1996) “Bagging Predictors.” Machine Learning 26:123-140.

Breiman, Leo (2001). “Decision Tree Forests.” Machine Learning 45 (1):5-32, October

2001.

Campbell, C. An Introduction to Kernel Methods.

Caruana, Rich and Alexandru Niculescu-Mizil. An Empirical Comparison of Supervised

Learning Algorithms Using Different Performance Metrics. Computer Science, Cornell

University, Ithaca NY 14850.

Cattell, Raymond B. Factor Analysis – An introduction and Manual for the Psychologist

and Social Scientist. Harper & Brothers, 1952.

382

Chang, Chih-Chung and Chih-Jen Lin. LIBSVM – A Library for Support Vector

Machines. April, 2005. http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Chen, C.H. (1996) Fuzzy Logic and Neural Network Handbook. McGraw-Hill.

Chen, Chao, Andy Liaw, Leo Breiman, Using Random Forest to Learn Imbalanced Data.

Chen, Sheng, Xia Hong and Chris J. Harris, "Orthogonal Forward Selection for

Constructing the Radial Basis Function Network with Tunable Nodes", 2005.

Chen, Sheng, Xunxian Weng and Chris J. Harris: "Experiments with Repeating Weighted

Boosting Search for Optimization in Signal Processing Applications". IEEE

Transactions on Systems, Man and Cybernetics – Part, B Cybernetics, Vol. 35, No. 4,

August 2005.

Cristianini, Nello and John Shawe-Taylor: An Introduction to Support Vector Machines

and other kernel-based learning methods. Cambridge University Press, 2000.

Efron, Bradley and Robert J. Tibshirani. An Introduction to the Bootstrap. Chapman &

Hall/CRC, 1998.

Fahlman, Scott E. and Christian Libiere (1990) The Cascade-Correlation Learning

Architecture. Carnegie Mellon University. CMU-CS-90-100

Fawcett, Tom. ROC Graphs: Notes and Practical Considerations for Data Mining

Researchers. March 16, 2004.

Ferreira, Cândida. Gene Expression Programming. Mathematical Modeling by an

Artificial Intelligence, 2
nd

 Edition. Springer-Verlag--Studies in computational

intelligence 21, 2006.

Fisher, R.A (1936). The use of multiple measures in taxonomic problems, Ann.

Eugenics, 7:179—188, 1936.

Fung, Glenn. CS 525 Project. Fall, 1998.

Freund, Y. (1995). Boosting a weak learning algorithm by majority, Information and

Computation 121(2): 256-285.

Freund, Y. and Schapire, R. (1996a). Experiments with a new boosting algorithm,

Machine Learning: Proceedings of the Thirteenth International Conference, Morgan

Kauffman, San Francisco, pp. 148-156.

Friedman, Jerome H., Trevor Hastie and Robert Tibshirani (1998) “Addative Logistic

Regression: A Statistical View of Boosting.” Stanford University, Dept. of Statistics,

Technical Report.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

383

Friedman, Jerome H. (1999a). Greedy Function Approximation: A Gradient Boosting

Machine. Technical report, Dept. of Statistics, Stanford University.

Friedman, Jerome H. (1999b). Stochastic Gradient Boosting. Technical report, Dept. of

Statistics, Stanford University.

Friedman, Jerome H. and Bogdan E. Popescu (2003) Importance Sampled Learning

Ensembles.

Fung, Glenn. Siemens Medical Solutions. The Disputed Federalist Papers: SVM Feature

Selection via Concave Minimization.

Gorsuch, Richard L. Factor Analysis. W. B. Saunders Co. 1974

Han, Jiawei and Micheline Kamber Data Mining: Concepts and Techniques. Slides for

Textbook Chapter 6. http://www-courses.cs.uiuc.edu/~cs498han/slides/06.ppt#1095

Hand, David, Heikki Mannila, Padhraic Smyth. Principles of Data Mining. The MIT

Press, 2001.

Harman, Harry H. Modern Factor Analysis. The University of Chicago Press. 1967.

Hartigan, J.A. and Wong, M.A. 1979. A K-Means Clustering Algorithm. Applied

Statistics 28.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical

Learning; Data Mining, Inference, and Prediction. Springer, 2001.

Hastie, T.J. and R.J. Tibshirani. Generalized Additive Models. Chapman & Hall/CRC,

1999.

Heinze, G. and Schemper, M. (2002). A solution to the problem of separation in logistic

regression. Statistics in Medicine, 21, 2409 - 2419.

Heinze, G. and Ploner, M. (2003). Fixing the nonconvergence bug in logistic regression

with SPLUS and SAS. Computer Methods and Programs in Biomedicine, 71, 181-187.

Heinze, G. (1999). Technical Report 10/1999: The application of Firth's procedure to

Cox and logistic regression. Section of Clinical Biometrics, Department of Medical

Computer Sciences, University of Vienna, Vienna, Austria.

Hosmer, David W., Stanley Lemeshow. Applied Logistic Regression, Second Edition.

Wiley Series in Probability and Statistics, 2000.

384

Huber, P. (1964). Robust estimation of a location parameter, Annals of Math. Stat. 53:

73-101.

Hsu, C.-W and C.-J. Lin. A comparison of methods for multi-class support vector

machines. IEEE Transactions on Neural Networks, 13(2):415-425, 2002.

Huberty, Carl J. Applied Discriminant Analysis. John Wiley & Sons, 1994.

Ivakhnenko G.A. Self-Organisation of Neuronet with Active Neurons for Effects of Nuclear Tests

Explosions Forecasting. System Analysis Modeling Simulation

Julian, Randy. Using LDA. Lilly Research Laboratories

(http://miner.chem.purdue.edu/Lectures/Lecture10.pdf).

Klecka, William R. Discriminant Analysis. Sage Publications, 1980

Kecman, Vojislav. Support Vector Machines Basics. School of Engineering Report 616.

The University of Auckland, School of Engineering. April, 2004.

Kleinbaum, David G., Mitchel Klein. Logistic Regression, A Self Learning Text, Second

Edition. Springer, 1992.

Kordík, Pavel, Pavel Náplava, Miroslav Šnorek, Marko Genyk-Berezovskyj. “The

Modified GMDH Method Applied to Model Complex Systems” Department of

Computer Science and Engineering, CTU, FEE Karlovo nám. 13, Prague, Czech Republic

Kubat, Miroslav and Stan Matwin. Addressing the Curse of Imbalanced Training Sets:

One-Sided Selection.

Loh, W.Y. and Shih, Y.S. (1997). Split selection methods for classification trees.

Statistica Sinica 7: 815-840.

Maindonald, John and John Braun. Data Analysis and Graphics Using R, An Example-

based Approach. Cambridge University Press, 2003.

Markowetz, Florian. “Classification by Support Vector Machines. Practical DNA

Microsarray Analysis 2003.” Max Planck Institute for Molecular Genetics,

Computational Molecular Biology, Berlin.
https://phssec1.fhcrc.org/secureplone/www.bioconductor.org/workshops/2003/NGFN03/svm.pdf

Masters, Timothy (1993) Practical Neural Network Recipes in C++. Morgan

Kaufmann.

Masters, Timothy (1995) Advanced Algorithms for Neural Networks, A C++

Sourcebook. John Wiley & Sons, Inc.

http://miner.chem.purdue.edu/Lectures/Lecture10.pdf

385

Meyer, David, Friedrich Leisch and Kurt Hornik (Nov., 2002). “Benchmarking Support

Vector Machines”, Report No. 78, Vienna University of Economics and Business

Administration.

Meyer, David (Jan. 23, 2004). Results of a benchmark study with focus on SVM’s and

resample/combine methods.

http://www.imbe.med.uni-erlangen.de/links/EnsembleWS/talks/Meyer.pdf

Minsky, Marvin and Seymour Papert. Perceptrons. MIT Press, 1969.

Moller, Martin Fodslette (1993) A Scaled Conjugate Gradient Algorithm for Fast

Supervised Learning. Pergamon Press.

Momma, Michinari and Kristin P. Bennett. A Pattern Search Method for Model

Selection of Support Vector Regression. SIAM Conference on Data Mining, 2002.

Morgan, J. N. and Messenger. “THAID -- A sequential analysis program for the analysis

of nominal scale dependent variables”, Survey Research Center, U of Michigan. (1973)

Morgan, J. N. and J. A. Sonquist. [AID – Automatic Interaction Detection] “Problems

in the analysis of survey data and a proposal", JASA, 58, 415-434. (1963)

Murphy, Patrick M and Michael J. Pazzani (1994). Exploring the Decision Forest: An

Empirical Investigation of Occam’s Razor in Decision Tree Induction. Journal of

Artificial Intelligence Research, 1, (pp. 257-275).

Nguyen, Derrick and Bernard Widrow, “Improving the learning speed of 2-layer neural

networks by choosing initial values of adaptive weights”, in Proc. IJCNN, vol. 3, pp. 21-

26, July 1990.

Orr, Mark J.L. (1966): Introduction to Radial Basis Function Networks, Centre for

Cognitive Science, University of Edinburgh, Scotland.

Park, Alex and Christine Fry. Statistical modeling of user switching behavior based on

reward histories. (http://web.mit.edu/9.29/www/brett/ca_model.html)

Price, Kenneth V., Rainer M. Storn, Jouni A. Lampien (2005) Differential Evolution, A

Practical Approach to Global Optimization. Springer-Verlag.

Qian, Bo and Khaled Rasheed (2004) “Hurst Exponent and Financial Market

Predictability”. Department of Computer Science, University of Georgia, Athens, GA

USA.

Quinlan, J. Ross. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,

1993.

http://www.imbe.med.uni-erlangen.de/links/EnsembleWS/talks/Meyer.pdf
http://web.mit.edu/9.29/www/brett/ca_model.html

386

Reyment, Richard and K.G. Koreskog. Applied Factor Analysis in the Natural Sciences.

Cambridge University Press, 1993.

Rosenblatt, Frank. “The Perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain.” Psychological Review. 1958

Rumelhart, David and James McClelland. Parallel Distributed Processing. MIT Press,

1986.

Rummell, R.J. Applied Factor Analysis, Northwestern University Press, 1970.

Schwardt, Ludwig and Johan du Preez. Manipulating Feature Space, PR414/PR813.

The University of Stellenbosch. Feb. 15, 2005.

Segal, Mark R (2003). “Machine Learning Benchmarks and Decision Tree Forest

Regression”. Division of Biostatistics, University of California, San Francisco.

Shawe-Taylor, John and Nello Cristianni: Kernel Methods for Pattern Analysis.

Cambridge University Press, 2004.

Sherrod, Phillip H. NLREG Nonlinear Regression Analysis Program. Phillip H.

Sherrod, 2003. (http://www.nlreg.com)

Specht, Donald F. “Probabilistic Neural Networks” Neural Networks, 3: (1990).

Specht, Donald F. “Enhancements to Probabilistic Neural Networks,” Proceedings of the

International Joint Conference on Neural Networks (IJCNN ’92). 1992.

Steinberg, Dan and Phillip Colla. CART: Tree-Structured Non-Parametric Data Analysis.

San Diego, CA: Salford Systems, 1995.

Venables, W.N and B.D Ripley. Modern Applied Statistics with S, Forth Edition.

Springer Science+Business Media, Inc., 2002.

Wilson, D. Randall and Tony R. Martinez. “Improved Center Point Selection for

Probabilistic Neural Networks.” Proceedings of the International Conference on

Artifical Neural Networks and Genetic Algorithms, 9ICANNGA 1997), pp. 514-517,

1997.

Witten, Ian H, Eibe Frank. Data Mining; Practical Machine Learning Tools and

Technique with JAVA Implementations. Academic Press, 2000.

Yang, Haiqin. Margin Variations in Support Vector Regression for the Stock Market

Prediction. Masters thesis, The Chinese University of Hong Kong, June, 2003.

http://www.nlreg.com/

387

Zhang, Heping and Burton Singer. Recursive Partitioning in the Health Sciences.

Springer, 1999.

Index

.

.csv file type, 18, 36

.dtr file type, 19, 24

.NET program interface, 375

1

1 SE pruning, 53, 372

A

A priori probabilities, 128

Absolute selection range fitness function, 99

Access, data for DTREG, 36

Activation function, 66

Actual versus predicted chart, 231

AdaBoost, 246

Adaline networks, 254

Addative logistic regression, 383

Adjusting optimal tree size, 371

AID, Automatic Interaction Detection, 243, 366, 385

Akaike’s Information Criterion, 340

Algebraic simplification, 100, 319

Altered priors, 132, 364

Amplitude adjustment, 144

Amplitude stabilization, 48

Analysis of variance report, 189

Analysis of variance table, 335

Analysis report format, 179

Analysis report log file, 35

ANOVA table, 335

Antennapedia mutant, 313

ARMA models, 140

Artificial neural network, 254

Assigning categories to nodes, 364

Association direction, 188

Association of surrogate splitters, 188

AUC statistic, 193, 199

Autocorrelation, 147

Automatic Interaction Detection, 243

Automatic trend removal, 48

Auto-Regressive Moving Average models, 140

Average category weights, 129

Average weighted probability error, 196

B

Backpropagation algorithm, 258

Backward propagation of errors, 258

Backward pruning, 367

Balanced category weights, 129

Balancing target categories, 37

Bayesian Information Criterion, 340

Berk, Richard A., 381

Berra, Yogi, 11

Beta parameters, logistic regression, 340

Bibliography, 381

Binary split, 235

Bishop, Christopher M., 381

Blake, C. L., 381

Blok, Henrik J., 147

Boosting, 245, 383

Boston.dtr example, 373

Box-Jenkins, 140

Brahe, Tyco, 306

Breiman, Leo, 243, 249, 381

Brent’s method, 259

Bridges.dtr example, 374

Building trees, 361

BUILDMODEL command, 29

C

C code generation, 170, 172

C source code generation, 169

C statistic, 199

C# program interface, 375

C++ code generation, 170

C4.5 program, 243

CART program, 243, 386

Cascade correlation neural networks, 273

Cascade correlation property page, 76

Categorical variables, 14

Categories for continuous variables, 34

Category labels property page, 124

Category weights, 128

Chang, Chih-Chung, 302

Charts and plots, 209

Christ, Jesus, 366

Class labels property page, 124

Classes of variables, 13

Classification trees, 240

ClevelandHeart14.dtr example, 374

Cluster analysis, 12, 321, 362

Column separator character, 19, 38

Comma as decimal point, 19, 38

Comma separated value files, 36

Command line operation, 27

Communality estimates, 121

Competitor splits, 187, 363

Complete separation, 343

Complexity measure, 371

Computer learning, 12

Confidence intervals, 341

Confusion matrix, 191

Conjugate gradient algorithm, 68, 258, 259

Conjugate gradient parameters, 67

Continuous variable categories, 34

Continuous variables, 14

Convergence failure, 342

Convergence tolerance, 109

Copyright notice, 379

Correlation, 345

Correlation matrix, 346

Correlation matrix data input, 120

390

Correlation property page, 119

Cost complexity measure, 184, 371

CPU’s to use for processing, 16

Cramer’s V correlation, 346

Creating a new project, 18

Credit scoring, 12

Cross validation, 52, 57, 369

Cross validation cost, 184, 370

Cross validation cost standard error, 184

Cross validation variable importance, 59

Cross-validation control variable, 45

C-Statistic, 193

csv file type, 18, 36

CSV files, 36

Cumulative gain, 202

Cumulative lift chart, 214

Custom category weights, 129

Custom pruning cutoff, 53, 372

Customer targeting, 11

CV cost, 370

D

DATA command, 28

Data file format, 36

Data mining, 11

Data modeling, 12

Data plot chart, 229

Data property page, 36

Data subset, 19, 36

Data Transformation Language (DTL), 153

Decimal point character, 19, 38

Decision Forests, 249

Decision layer, 287

Decision Tree Forest, 249

Decision tree forest property page, 60

Decision tree forest size control, 61

Decision trees, 235

Default type of model, 16

Denominator summation unit, 286

Depth of trees, 55

Design property page, 33

Deviance of log likelihood, 340

Deviation, 332

Dichotomous variables, 337

Differential evolution, 385

Dimension reduction, 352

Disclaimer, 379

Discriminant analysis, 325

Discriminant analysis property page, 113

Dispersional Analysis, 147

DJIA, 139

Dose-response curve, 338

Dow Jones Industrial Average, 139

DTL DataTransformation Language, 153

DTL reference manual, 154

dtr file type, 19, 24

DTREG .NET class library, 375

DTREG COM library, 375

DTREG Web page, 379

DTREGcom.dll, 375

DTREGsetup.exe, 15

E

Eigenvalues, 350

Einstein, Albert, 317

Elitism, 317

e-mail contact for author, 379

EndRun() function, 160

Ensemble tree methods, 245, 249

Entropy correlation, 346

Entropy splitting method, 34, 363

Epsilon SVM parameter, 89

Equal category weights, 129

Equal misclassification costs, 131

Equal priors, 129

Evaluating splits, 363

Example projects, 25, 373

Excel, data for DTREG, 36

Excluding rows with missing values, 357

Execution priority, 16

Execution threads, 16

Exhaustive search, 362

Explained variance, 189

Explained variance fitness function, 97

Explicit global variables, 156

Exploratory tree generation, 52

Exponentially weighted moving average, 49

Expression simplification, 100, 102

Expression tree, 309

F

F value, 336

F Value and Prob(F), 336

Factor analysis, 12, 345

Factor analysis property page, 119

False negative, 98, 192

False positive, 98, 192

Feature selection, 289

Federalists Papers, 292

Feed-forward neural network, 89, 299

Ferreira, Cândida, 382

First row in data file, 38

Firth’s procedure, 118, 342

Fisher, R.A., 325, 382

Fitness functions, 97

Fitness score, 96

Fixed size pruning, 52

F-Measure, 193

Focus category, 199

Focus Category Impurity chart, 210

Focus Category Loss chart, 211

Focus category, designating, 126

Focus category, Impurity, 200, 211

Focus category, Loss, 200, 212

FOLDER command, 28

Forcing the initial split, 127

Forecasts for time series, 50

Forward pruning, 366

Founder population, 314

Freund, Y., 382

Friedman, Jerome, 243, 245, 381, 383

Full tree generation, 52

391

Fully connected networks, 255

Functional link networks, 254

G

Gain chart, 212, 213, 214

Gain table, 201

Gauss, Johann Carl Friedrich, 331

Gauss-Newton optimization, 109, 319

Gene expression programming, 305

Gene Expression Programming property page, 94

Gene head length, 96

Gene recombination rate, 106

Gene transposition, 105

Gene transposition rate, 105

General regression neural network property page, 80

General regression neural networks, 279

Generalization of trees, 367

Generating scoring code, 169

Generations without improvement, 96

Genes per chromosome, 96

Genetic algorithms, 308

GEP Constants property page, 108

GEP Evolution property page, 104

GEP expression simplification, 100

GEP Expression simplifier, 102

GEP functions property page, 103

GEP General property page, 95

GEP Linking property page, 106

GEP missing value parameters, 101

GEP model building parameters, 95

GEP Mutation rate, 104

GEP property page, 94

GEP Recombination rates, 105

GEP testing and validation parameters, 101

GEP Transposition rates, 105

GepKepler example, 307

GepParity3 example, 308

Gini splitting method, 34, 363

Global variables, 155

GMDH polynomial neural networks, 269

GMDH property page, 73

Gradient, 259

Gradient boosting, 245

Gradient descent algorithm, 258

Gram-Charlier networks, 254

Graphs and charts, 209

Grid search, 91

GRNN property page, 80

Gross domestic product, 139

H

Hartigan, J.A., 383

Hebb networks, 254

Hessian matrix, 259, 342, 343

Heteroassociative networks, 254

Heterogeneity of nodes, 363

Hidden layer, 255, 274

Hidden layer activation function, 66

Hinton, Geoffrey, 254

Homeotic genes, 107, 313

Homogeneity of nodes, 363

HorseColic.dtr example, 374

HouseVotes.dtr example, 374

Huber M-regression loss function, 246

Huber’s quantile cutoff, 55

Hurst Exponent, 147

Hybrid networks, 254

Hyperplane, 289, 292

I

ID3 program, 243

Implicit constants, 108

Implicit global variables, 155

Importance chart, 228

Improvement of split, 363

Impurity of focus category, 200, 211

Impurity of nodes, 363

Influence trimming factor, 56

Initial population, 314

Initial split property page, 126

Initial split variable, 127

Input data report section, 180

Input layer, 255, 274

Insertion sequence transposition, 105

Installing DTREG, 15

Intelligent Design, 315

Interior nodes, 235

Interval variables, 14

Intervention event, 142

Intervention variable, 142

Inversion rate, 104

Iris.dtr example, 19, 373

IS transposition rate, 105

J

Jesus Christ, 366

K

Karva language, 309

Kepler, Johannes, 306

Kepler’s laws, 306

Kernel function, 86, 262, 281, 293

Kernel trick, 296

K-expressions, 309

K-Means clustering, 321

K-Means Clustering property page, 110

K-nearest neighbor classification, 261, 280

Kohonen networks, 254

L

lag function, 158

Lag value, 139

Lag variable, 141

Lag variables, 48

LandingControl.dtr example, 374

Latent variables, 347

Leaf nodes, 235

392

Learning dataset, 236

Learning rate parameter, 258

Learning vector quantization, 254

Least squares criteria, 363

Least squares regression, 332

Legendre, Adrien-Marie, 331

Levenberg-Marquardt algorithm, 259

Levenberg-Marquardt method, 109, 319

LIBSVM, 302, 382

License information, 379

Lift and gain chart, 212

Lift chart, 214

Lift table, 201

Lift/Gain bins, 35

Likelihood ratio significance test, 118

Likelihood ratio significance tests, 342

Lin, Chih-Jen, 302

Line search, 91, 259, 301

Linear activation function, 66

Linear discriminant analysis, 325

Linear kernel function, 86, 296

Linear regression, 305, 331

Linear regression property page, 115

Linear trend, 49

Linearly weighted moving average, 49

Linking function, 107, 313

LiverDisorder.dtr example, 373

Log file, 33

Log likelihood function, 340

Logistic activation function, 66

Logistic regression, 337

Logistic regression property page, 117

Loh, W.Y., 384

Loss of focus category, 200, 212

M

Machine learning, 12

Main screen, 15

main() function, 154

MART, 245

Masters, Timothy, 384

Maximum tree levels, 51

McClelland, James, 386

Mean squared error fitness function, 97

Median/mode missing value replacement, 357

Merz, C. J., 381

Minimal cross-validated error, 53, 370, 372

Minimum CV, 371

Minimum node size, 51, 55

Minimum trees in TreeBoost series, 58

Minimum variance criteria, 363

Minsky, Marvin, 253, 385

Miscellaneous property page, 137

Misclassification cost, 130, 364

Misclassification cost property page, 130

Misclassification cost splitting method, 34

Misclassification matrix, 191

Misclassification summary table, 190

Missing data property page, 133

Missing value category, 38

Missing value code, 158

Missing value indicator, 38

Missing value methods, 357

Missing values, 364

Missing values in data, 40

MissingValue implicit value, 158

Mix category weights, 129

MLP neural networks, 253

MLP property page, 63

Model size chart, 209

Model-trust region, 259

Moller, Martin Fodslette, 259

Momentum parameter, 258

Monotonic variables, 14

Morgan, J.N., 243, 385

Most probable category in node, 364

Moving average, 48

M-regression loss function, 55, 246

Multi-CPU support, 16

Multilayer feed-forward neural networks, 253

Multilayer perceptron neural networks, 253

Multiple Additive Regression Trees, 245

Murphy, Patrick M., 385

Mutation rate, 104

N

Natural selection, 316

Nearest neighbor classification, 261, 280

Negative predictive value, 192

Negative Predictive Value chart, 221

Neural network, 289

Neural network kernel function, 89, 299

Neural network property page, 63, 69, 76, 80

Neural networks, 246, 253, 261, 273

New project, 18

Newton, Isaac, 317

Newton-Raphson algorithm, 117

Nguyen, Derrick, 385

NLREG program, 386

Node impurity, 363

Node split information, 186

Node splits report section, 185

Node summary report section, 185

Nodes in tree, 235

Nodes, interior, 235

Nodes, leaf, 235

Nodes, root, 235

Nodes, terminal, 235

Nominal variables, 14

Noncoding region, 312

Nonlinear regression, 306, 386

Nonparametric regression, 306

Non-stationary time series, 143

Notes about project, 35

NPV, 192

Number of hits fitness function, 97

Number of hits with penalty fitness function, 98

Number of trees in decision tree forest, 61

Numerator summation unit, 286

393

O

Oblique rotation, 351

Odd parity example, 307

Odds Ratio, logistic regression, 341

Olshen, Richard, 243, 381

One standard error pruning, 53

One-point recombination rate, 105

Open reading frame, 312

Opening a project, 24

Optimal tree size, 367

Ordered variables, 14

Ordinal variables, 14

Ordinary least squares, 333

Orr, Mark, 385

Orthogonal forward selection, 382

Orthogonal rotation, 351

OUTPUT command, 28

Output layer, 255, 274

Output layer activation function, 66

Output report, 179

Overall variable importance, 208

P

Papert, Seymore, 253

Papert, Seymour, 385

Parametric regression, 306

Parity example, 307

Parsimony pressure, 100, 318

Partial autocorrelation, 148

Pattern layer, 286

Pattern search, 91, 92, 301

Pazzani, Michael J., 385

PCA scores, 123

PCA transform function, 123

PCA transform functions, 352

PCA variables, 352

pcSVMdemo, 296

Pearson product moment correlation, 120, 345

Perceptron, 253

Perceptron neural networks, 253

Period as decimal point, 19, 38

Phi coefficient correlation, 346

Phil Sherrod, 379

Plots and charts, 209

PNN property page, 80

PNN sigma value, 283

Point biserial correlation, 346

Polynomial kernel function, 86, 87, 297

Polynomial networks property page, 73

Polynomial neural networks, 269

Positive predictive value, 192

Positive Predictive Value chart, 221

Positive target category, 132

Posterior probability scores, 165

PPV, 192

Precision, 192

Predicted probability accuracy, 195

Predictor category balance, 43

Predictor coverage, 43

Predictor variable, 13

Preferences, 16

Preferred splitting variables, 127

Principal components analysis, 345

Principal components property page, 119

Principle components analysis, 12

Prior probabilities, 128

Priority of execution, 16

Priors property page, 128

Prob(F), 336

Prob(t) value, 335

Probabilistic neural network property page, 80

Probabilistic neural networks, 279

Probability accuracy report, 195

Probability calibration chart, 227

Probability calibration report, 195

Probability scores, 165

Probability threshold balance chart, 225

Probability threshold chart, 223

Probability threshold report, 197

Probability threshold, balance misclassifications, 199

Probability threshold, minimize total error, 199

Probability threshold, minimize weighted errors, 131,

199, 226

Probability threshold, specifying, 131

PROJECT command, 28

Project log file, 33

Project parameters report section, 180

Project title, 33

Promax rotation, 121, 351

Properties for a model, 31

Proportion of variance explained, 189

Pruning control, 53

Pruning tolerance, 59

Pruning trees, 366

Q

Qian, Bo, 386

Quasi-complete separation, 343

Quinlan, J. Ross, 243, 386

R

Radial basis function, 88, 262, 281, 298

Radial basis function networks, 254

Radial Basis Function neural networks, 261

Radial Basis Function property page, 69

Radial basis kernel function, 86

Random Forests™, 249

Random number seeds, 137

Random rows validation, 52, 57

Random shock, 139

Rasheed, Khaled, 386

RBF kernel function, 86

RBF network, 88, 298

RBF networks, 254

RBF neural networks, 261

RBF property page, 69

Recall, 192

Receiver Operating Characteristic chart, 215

Recombination, 105

Recurrent networks, 254, 255

394

Recursive partitioning, 235

Reduction of dimensions, 352

Reference tree, 370

References, 381

Registering DTREG, 379

Registration key, 17

Regression trees, 239

Relative selection range fitness function, 99

Repeating weighted boosting search, 382

Repeating Weighted Boosting Search parameters, 70

REPORT command, 29

Rescaled Range algorithm, 147

Residual, 332

Residual chart, 231

Residual variance, 189

Resubstitution cost, 184, 367

Retina, 253

Retraining PNN/GRNN models, 83

Return on investment, 202

Return statement, 154

Ridge regression, 267

RIS transposition rate, 105

ROC chart, 215

ROC chart, area under, 193, 199, 215

ROC chart, reference, 382

ROI, 202

Root insertion sequence transposition, 105

Root node, 235

Root relative squared error fitness function, 97

Rosen, Jonathan, 253

Rosenblatt, Frank, 253, 386

Roulette-wheel sampling, 316

Rumelhart, David, 254, 386

Running an analysis, 26

RWBS parameters, 70

S

Salford Systems, 386

SAS code generation, 170, 175

Scaled conjugate gradient, 259, 385

Scaled conjugate gradient algorithm, 68

Schapire, R., 382

Schwartz Criterion, 340

SCOREINPUT command, 29

SCOREOUTPUT command, 29

ScoreRecord function, 174

Scoring data, 163

Scree plot, 349

Sensitivity, 99, 192

Sensitivity and specificity fitness function, 98

Sensitivity Specificity chart, 217

Setting preferences, 16

Shakespeare, William, 289

Sherrod, Phil, 379

Sherrod, Phillip H., 386

Shih, Y.S., 384

Shrinkage factor, 56

Sigma spread value, 283

Sigmoid kernel function, 86, 89, 299

Sigmoidal dose-response curve, 338

Simple moving average, 48

Single Tree property page, 51

Singular Hessian matrix, 343

Singular value decomposition, 334

Slack variables, 300

Smooth minimum spikes, 53, 58

Soft margin, 300

Softmax activation function, 66

Sonquist, J.A., 243, 385

Spearman rank-order correlation, 120, 345

Specht, Donald F., 286, 386

Specificity, 99, 192

Specifying category weights, 129

Specifying misclassification costs, 132

Split, 365

Split point, 236, 362

Splitting algorithm, 34

Splitting nodes, 361

Splitting variable, 236

Squared multiple correlation, 121

Stabilization of variance, 48

Stabilizing variance, 144

Standard error of cross validation cost, 184

Star Trek, 253

StartRun() function, 160

Static global variables, 159

Static linking function, 107

Stationary time series, 143

Stochastic gradient boosting, 245

Stone, Charles, 243, 381

Stopping criteria, 366

StoreData() function, 159

Subset of data rows, 19, 36

Summary of variables report section, 181

Summation layer, 266, 286

Supervised learning, 12

Support of DTREG, 379

Support Vector Machine, 289

Surrogate splitters, 134, 167, 185, 187, 208, 360, 364

Surrogate splitters association, 188

Surrogate Variable report section, 182

Surrogate variables, 358

SVM, 289

SVM cache size, 89

SVM Epsilon parameter, 89

SVM grid search, 91

SVM kernel function, 86

SVM line search, 91, 301

SVM pattern search, 91, 92, 301

SVM probability estimates, 90

SVM property page, 85

SVM shrinking heuristic, 90

SVM stopping criteria, 89

Symbolic regression, 305

Symbols in GEP programs, 308

T

t statistic, 335

Target category distribution, 128

Target category distribution report, 186

Target variable, 13

Tau squared correlation, 346

395

Terminal node table, 206

Terminal nodes, 235

Terminal symbols, 308

THAID, 385

THAID program, 243

Threshold balance chart, 225

Threshold chart, 223

Threshold report, 197

Time series chart, 232

Time series forecasting, 50

Time series lag function, 158

Time series models, 139

Time series property page, 47

Time series residuals chart, 233

Time series transformed chart, 234

Time series trend chart, 233

Time series validation, 50

Titanic passenger example, 373

Title for project, 33

TNR/FNR chart, 219

TPR/FPR chart, 218

TPR/TNR chart, 220

Trademark notice, 379

Training data category weights, 129

Training dataset, 236

Translate property page, 170

Translation, 169

Transposition, 105

Traveling Salesperson Problem, 308

Tree fitting algorithm, 34

Tree level control, 51

Tree nodes, 235

Tree pruning control, 53

Tree size optimization, 367

Tree size report section, 183

TreeBoost, 245

TreeBoost cross validation, 57

TreeBoost probability scores, 165

TreeBoost property page, 54

TreeBoost series length, 55

Trend removal, 48, 143

True negative, 98, 192

True positive, 98, 192

Two-point recombination rate, 106

Type 1 + 2 margins, 62

Type 1 margins, 62

Types of variables, 14

U

UCI Repository of Machine Learning Databases, 373,

381

Unexplained variance, 189

Unitary misclassification costs, 131

Unpruned tree, 54

Unsupervised learning, 12

Unviable expressions, 315

Use and distribution, 379

Using a decision tree to predict values, 238

V

Validating a time series model, 145

Validating time series, 50

Validation cost, 184

Validation cost standard error, 184

Validation data row report file, 46

Validation property page, 45

Validation row selection variable, 46

Validation Statistics report section, 183

Values of nodes, 364

Variable attributes in data file, 39

Variable classes, 13

Variable for initial split, 127

Variable importance chart, 228

Variable importance table, 208

Variable names in data file, 38

Variable types, 14

Variable weights property page, 136

Variables property page, 41

Variance splitting method, 34

Variance stabilization, 48, 144

Varimax rotation, 121, 351

VB.NET program interface, 375

V-fold cross validation, 52, 57, 369

Viable expressions, 315

Viewing the tree, 27, 241

Voter targeting, 11

W

Wald confidence intervals, 341

Web page, 379

Weight variable, 13

Weighted misclassification errors, 131, 199, 226

Widrow, Bernard, 385

Williams, Ronald, 254

Wong, M.A., 383

X

XML Analysis report log file, 35

X-Y data plot chart, 229

Y

Yogi Berra, 11

