
DTL

Data Transformation Language

Phillip H. Sherrod

Copyright © 2005-2006
All rights reserved

www.dtreg.com

DTL is a full programming language built into the DTREG program. DTL makes it easy to
generate new variables, transform and combine input variables and select records to be
used in the analysis.

Contents

Contents...3
Introduction ...6

Introduction to the DTL Language..6
Using DTL For Data Transformations ..7

The main() function...7
Global Variables..8

Implicit Global Variables ..8
Explicit Global Variables ..9
Static Global Variables..11

Using the StoreData() function to generate data records...11
The StartRun() and EndRun() Functions...12

DTL Language Reference ...15
Expressions..15

Numeric constants ...15
String constants ...16
Variable names ..17
Statement labels...17
Operators ...18
Comments..23

Declarations...25
Variable types..25
Variable classes ...26
Variable declaration statement ..27

Array declarations ...28
Variable initialization ..28
Declaration examples ..30

Program Statements...31
Basic Statement Syntax ...31
Reserved Keywords...31
Assignment Statement ...32
IF Statement ..32
WHILE Statement ...33
DO Statement ..34
LOOP Statement..35
FOR Statement ..35
BREAK Statement ..36
CONTINUE Statement..37
GOTO Statement ...37
RETURN Statement ..38

Functions ...41
Declaring Functions ..42

Array parameters ...43
Function Prototypes...45
Invoking Functions..46

Built-In Library Functions...47

Function Error Status...47
String Functions ..49

strcmp — String comparison...49
strlen — Determine length of string..50
space — Create blank filled string ..50
trim — Remove spaces from end of a string ...50
cleanspaces — Clean up spaces in string ..51
repeat — Create string with repeated pattern ..51
locate — Locate substring in string...51
rlocate — Reverse locate substring in string ...52
strcount — Count occurrences of a substring..53
strupr — Convert string to upper case...53
strlwr — Convert string to lower case...53
mixcase — Convert string to mixed case ..54
translate — Translate characters in string ...54
char — Convert ASCII value to character ..55
ichar — Convert character to ASCII value ...55
isxxxx — Character type tests..55
insert — Insert one string in another ...56
element — Locate substring using delimiters ...57
validate — Check validity of characters ...57
strip — Remove characters from a string..57
strclean — Remove all but specified characters..58

Math Functions..59
abs — Absolute value..59
acos — Arc cosine...59
asin — Arc sine ...59
atan — Arc tangent..60
ceil — Ceiling ...60
cos — Cosine...60
cosh — Hyperbolic cosine...61
cot — Cotangent..61
csc — Cosecant ...61
deg — Convert radians to degrees...61
exp — Exponential ..62
fabs — Absolute value ..62
factorial — Factorial ...62
floor — Floor...63
log — Natural logarithm ...63
log10 — Base 10 logarithm...63
max — Maximum value..64
min — Minimum value ...64
npd — Normal probability distribution...64
rad — Convert degrees to radians ...65
random — Random number ..65
round — Round to integer...65
sec — Secant ...66
sin — Sine ...66
sinh — Hyperbolic sine...66
sqrt — Square root ..67

tan — Tangent ...67
tanh — Hyperbolic tangent ...67

Array Functions...69
resize — Change the size of an array ..69
arraysize — Determining size of an array ...71
sort — Sort an array ..73

Lag Functions ..75
lag — Get previous value of variable or expression ...75

Input/Output Functions..77
print — Print a line of values ..77
printf — Formatted print function...78
format — Format value string ...80
sscanf — Scan string ...81
fopen — Open a file ..84

Text and Binary Mode Files ..84
File I/O example..85

fclose — Close a file ...85
fprint — Write line to file..86
fprintf — Write formatted line to file..86
fread — Read a record from a file...87
fscanf — Formatted read from file ..88
lseek — Seek to offset in file ..89

Error Status Functions ...91
lasterror — Get last function error code..91
errormsg — Convert error code to message..91

Preprocessing Directives and Macros ...93
Introduction ...93

Examples of substitution rules...94
Including other files, the #include directive ..96
Simple name substitution, the #define directive..98

An advanced example ...99
Conditional compilation ..100

The #if directive ..101
#ifdef and #ifndef ..102

Macro definition and use ...103
Macro arguments; definition and use ..103
Multiple line macros..104

Lexical directives ..105
#cmpeq and #cmpne..105
#quote ..106
#length ...106
#concat...107

Error handling..107
Miscellaneous directives ...108
Advanced macro design ..108

Use of comparison and conditionals..108
Use of other macros within macros ...109
Use of lexical functions to manipulate arguments...109

Index..111

Introduction

Introduction to the DTL Language
DTL is a complete programming language. Using it, you can manage data being analyzed,
generate new variables as a function of input variables and select which records are used in
an analysis. Although DTL does not have all of the features of languages such as C and
Visual Basic you will find that it is a rich language unto itself and includes features not
commonly found in other languages such as fully dynamic string variables and a wide
selection of built-in library functions.

The syntax of the DTL language is intentionally similar to that of the C programming
language. If you have prior experience programming in C you will be able to begin using
DTL almost immediately. The following list summarizes the major differences between C
and DTL:

• DTL does not have structures or pointers.
• Arguments to functions are passed by copying. On entry the values of calling

arguments are copied to the receiving formal parameters. On exit, the values are
copied back to the calling arguments.

• DTL supports three data types: int (32-bit integer), double (64-bit floating point), and
string (variable length strings).

• The DTL string data type provides fully dynamic strings whose size is determined at
execution time rather than by statement declaration. DTL strings can store binary data
including the null character.

• DTL provides a substring operator for extracting or changing a portion of a string.
There is also a string concatenation operator (‘$’).

• DTL supports one and two-dimensional arrays. The syntax for declaring the array size
and for subscripting elements has the form “array[sub1,sub2]” rather than the C
convention of “array[sub1][sub2]”. A “resize” function can be used to change the size
of an array during the execution of a program. When arrays are passed to functions the
size of the array in the function “conforms” to the size of the passed array. Library
functions are provided to determine the actual size of an array.

• DTL is very “liberal” with regard to type conversions. Any type of variable may be
assigned to any other. Any type of variable or expression may be used as an argument
to a function without regard to the type of the formal parameter. String and numeric
values may be used together in expressions.

Using DTL For Data Transformations

DTL is a full-featured programming language. Before getting into the detailed DTL language
reference, we will look at some typical uses of DTL with DTREG analyses.

The main() function

Every DTL program must have a main() function that is executed by DTREG for each data
record. The main() function must contain a return statement that signals DTREG whether
the current record is to be used in the analysis or excluded. If the return statement returns a
value of 1, the record is used in the analysis. If the return statement returns a value of 0
(zero), the record is excluded from the analysis.

Here is a simple main program that accepts all records:

int main()
{
 return(1);
}

Here is an example that accepts records that have a value of “M” for Sex and rejects other
records:

int main()
{
 if (Sex == “M”) {
 return(1);
 } else {
 return(0);
 }
}

Here is an example that accepts records that have a value of “M” for Sex variable and a value
of 65 or greater for Age:

int main()
{
 if (Sex == “M” && Age >= 65) {
 return(1);
 } else {
 return(0);
 }
}

Here is a main program that accepts about half of the records and rejects half:

int main()
{
 if (random() > 0.5) {
 return(1);
 } else {
 return(0);
 }
}

Global Variables

A global variable is a variable defined outside the scope of any function; usually, global
variables are defined at the top of the program. Global variables can be accessed by any
function in the DTL program. Global variables may have any of the three data types, int,
double or string. Global variables you define are called explicit global variables. Global
variables defined automatically by DTREG are called implicit global variables.

Implicit Global Variables

DTREG defines implicit global variables for each variable in the input data file. This
includes all data variables, even variables not designated as predictor, target or weight
variables. The implicit global variables are not visible in the DTL source program, but they can be
used by the program.

If a variable is specified as categorical in the DTREG model, the implicit definition has type
string. If the variable is specified as continuous, the implicit definition has type double. For
example, if a data file contains four continuous variables, Age, BloodPressure, Height,

Weight and one categorical variable Sex, then the implicit definitions (which you will not
see) would be:

double Age;
double BloodPressure;
double Height;
double Weight;
string Sex;

The main() function and any other functions in the DTL program can reference these implicit
global variables.

In addition to generating a global variable for each variable in the data file, DTREG also
generates several other global variables:

int RECORDNUMBER; /* The number of the current data record */
int DOINGSCORE; /* 1 if scoring, 0 if analysis is being run */
double MISSINGVALUE; /* Value used to indicate missing value */

Any changes your program makes to the values of implicit global variables are not used in
the analysis. If you want to transform variables, you must define your own global variables
as described below and store values into them.

Explicit Global Variables

You can define your own global variables by putting their definitions outside the scope of any
function. It is recommended that they be put at the top of the DTL program before main().

Any global variable you define in a DTL program that does not have the “static” declaration
will be available as a variable in the DTREG analysis. This is the way you generate
transformed variables. For example, the following program generates a new variable, Size,
which is the product of two input data variables, Height and Weight:

double Size;
int main()
{
 Size = Height * Weight;
 return(1);
}

With this DTL program defined, the Size variable will be available for use in the DTREG
analysis. The Height and Weight variables also are available.

Here is an example that creates a variable called Republican that is 1 if the value of
PartyAffiliation is “R” and 0 if PartyAffiliation is anything else:

double Republican;
int main()
{
 if (PartyAffiliation == “R”) {
 Republican = 1;
 } else {
 Republican = 0;
 }
 return(1);
}

Here is an example that creates a LogAge variable that is the natural logarithm of the Age
variable:

double LogAge;
int main()
{
 LogAge = log(Age);
 return(1);
}

Here is an example that creates a variable named ZIP3 that has the first three digits of a zip
code whose five-digit code is stored in ZIP5. The substring operator, [start:length], is used to
extract the first three characters.

string ZIP3;
int main()
{
 ZIP3 = ZIP5[0:3];
 return(1);
}

Sometimes missing values for numeric variables are coded with values like “999”. DTREG
uses a special value called “MissingValue” to indicate missing values. Here is an example
DTL program that converts input data values of “999” on an Age variable to the internal
missing value. The new variable with the transformed values is called NewAge.

int main()
double NewAge;
{
 if (Age == 999) {
 NewAge = MissingValue;
 } else {
 NewAge = Age;
 }
 return(1);
}

Static Global Variables

Static global variables are used to store information between calls of the main() function for
each data record. They also can be used to hold information that must be accessed by
multiple functions. Static global variables may not be used as variables in the DTREG
analysis. To declare a static global variable, put the word “static” in front of the declaration
like this:

static int FileNumber;
static int Count;
static double LastAge;
static string LastName;

Using the StoreData() function to generate data records

The main() function is called for each record in the input data file, and it returns 1 to keep the
record or 0 to reject the record. DTL provides a StoreData() function that you can call to
generate additional records. Each time you call StoreData(), the current values of the global
variables are used to generate a new data record which is included in the analysis. This
allows you to generate multiple records from a single input record.

Consider a data set that is to be analyzed using logistic regression. The data set measures the
response of patients to varying dose levels of a drug. There are three variables in the input
data file, Dose (the amount of the drug), Positive (the number of patients with positive
responses) and Negative (the number of patients that did not respond). Hence the implicit
global definitions generated by DTREG for the DTL program are:

double Dose;
double Positive;
double Negative;

The following DTL program defines a new variable, Response, that has the value 1 if the
patient responds positively and 0 if the patient does not respond. The DTL program uses the
StoreData() function to generate a separate record for each patient. After calling StoreData()
the appropriate number of times, it uses the return(0) statement to reject the original record.

double Response; /* Generated variable with 1 or 0 response */
int main()
{
 int count;
 /* Generate the positive response records */
 Response = 1;
 for (count=0; count<Positive; count++) {
 StoreData();
 }
 /* Generate the negative response records */
 Response = 0;
 For (count=0; count<Negative; count++) {
 StoreData();
 }
 /* Reject the original record */
 return(0);
}

The StartRun() and EndRun() Functions

The optional StartRun() and EndRun() functions can be used to perform initialization and
cleanup in a DTL program.

If your DTL program contains a StartRun() function, it is called once at the beginning of the
run before the first data record is processed. It can perform initialization.

If your DTL program contains an EndRun() function, it is called once after the last data
record has been read.

In the following example, the DTL program opens an output file in the StartRun() function,
writes information about each data record in the main() function and closes the file in the

EndRun() function. Note the use of a static global variable to store the file handle number
between iterations.

static int FileHandle;

void StartRun()
{
 FileHandle = fopen(“Data.dat”,”wt”);
 return;
}

int main()
{
 fprintf(FileHandle,”%f %f\n”,x,y);
 return(1);
}

void EndRun()
{
 fclose(FileHandle);
 return;
}

DTL Language Reference

A DTL program is divided into units called “functions”. A simple program may consist of a
single function; large programs are usually divided into multiple functions. It is a good idea
to design your functions so that each one performs a single, identifiable task.

Functions can be divided into two groups: user defined and built-in. User defined functions
are the ones that you write. As you develop programs you will find that functions you wrote
for one program will be useful for other programs and you will begin to develop a library of
functions that do common operations. Built-in functions are a standard part of the DTL
environment, and you can use them without having to write them. Some examples of built-in
functions are those for reading and writing files, computing square roots, and displaying text.

Regardless of the number of functions that you use to create your program, execution begins
at the first statement in a function that you must provide named “main”.

The following is an example of a very simple DTL program that simply displays the string
“Hello world” and then exits:

int main()
{
 printf("Hello world\n");
 return(1);
}

This example consists of a single function named “main” that has only two executable
statements. When the program is run execution begins at the printf statement. When the
return statement is executed in the main program the program exits.

Expressions

Numeric constants
Numeric constants may be written in their natural form (1, 0, 1.5, .0003, etc.) or in
exponential form, n.nnnEppp, where n.nnn is the base value and ppp is the power of ten by
which the base is multiplied. For example, the number 1.5E4 is equivalent to 15000.

 If a number contains a decimal point it is considered to be a real (double) value. Real values
are stored as 64-bit double precision numbers and have a possible range from 1.7E-308 to
1.7E+308.

A number without a decimal point is an integer constant. Integer constants are stored as 32-
bit long values and have the range –2,147,483,648 to +2,147,483,647.

 Hexadecimal constants may be written in the form “0Xnnnn” where “0X” is a prefix
indicating that this is a hexadecimal constant and “nnnn” are the hexadecimal digits from the
set 0..9, A..F, and a..f. For example, the hex constant “0X1A” is equal to the decimal value
26.

String constants
 String constants are written by enclosing the string in quote marks. For example, “Hello
World” is an example of a string constant. In addition to letters, digits, and punctuation signs,
string constants may contain “escape sequences” that represent certain control characters. An
escape sequence in a string constant begins with the backslash character, ‘\’, which is
followed by one or more characters. For example, the string “abc\n” contains the characters
“abc” and a line-feed character which causes the cursor to move to the beginning of the next
line when you print the string using the printf function.

The DTL compiler converts these escape sequences to characters in the string as follows:

 \a — Causes a bell character (hex 07) to be placed in the string.
 \b — Causes a backspace character (hex 08) to be placed in the string.
 \e — Causes an escape character (hex 1B) to be placed in the string.
 \f — Causes a form-feed character (hex 0C) to be placed in the string. Form-feed

characters cause the screen to be cleared. If sent to a hardcopy printer, a form-feed
character causes a page to be ejected.

 \n — Converted to a line-feed character (hex 0A). When a string with a line-feed character
is written to the terminal or a text file, the line-feed character is converted to two
characters: carriage-return followed by line-feed. Thus ‘\n’ is the escape sequence that you
should place in print string where you want a new line to begin.

 \r — Causes a carriage-return character (hex 0D) to be placed in the string. Note: since ‘\n’
generates a carriage-return, line-feed pair, you do not normally need to use the \r escape
sequence.

 \t — Causes a horizontal tab character (hex 09) to be placed in the string.
 \v — Causes a vertical tab (hex 0B) to be placed in the string.
 \xdd — Causes the two or three hexadecimal digits that follow \x to be converted to a

single character. For example, the sequence ‘\x41’ would generate a single character
whose ASCII code is hex 41, this is the letter ‘A’.

 \\ — Causes a single ‘\’ character to be stored in the string.

 \” — Causes a quote mark character to be placed in the string rather than terminating the
string.

For example the statement

s = "Phil\n"

assigns to the variable ‘s’ a string consisting of the characters “Phil” followed by a new line
character.

Note that you must specify “\\” in a quoted string to represent a single ‘\’ character. This is
important when writing string that contain file specifications with directories. For example, to
specify a string for “C:\WORK\TEST.DAT” you would type “C:\\WORK\\TEST.DAT”.

Variable names
A variable name must begin with a letter or the underscore character (‘_ ’). Characters in the
name after the first may be letters, digits, or the underscore character. A variable name may
be up to 31 characters long. DTL variable names are not case sensitive. In other words, the
variables ‘TIME’ and ‘time’ are the same.

Variables defined outside any functions are called “global variables”. They may be used by
any function. Variables declared within a function are “local” to that function and may not be
referenced by another function. In fact, multiple functions may use the same names for local
variables without conflict since they are separate variables.

Statement labels
 A statement label has the same form as a variable name: it may be up to 31 characters long,
must begin with a letter or underscore, and it may be formed of letters, digits, and
underscores after the first character. If a statement label is specified it must be at the
beginning of a statement and must be followed by a colon character. The following is an
example of a program that uses statement labels which are ‘top’ and ‘end’ (note, this program
could be written more cleanly using a ‘for’ statement):

void main()
{
 int i;
 i = 1;
top: if (i > 5) goto end;
 print(i);
 i++;
 goto top;
end: return;
}

Operators

Arithmetic Operators

The following arithmetic operators may be used in expressions:

++ add 1 to a variable
-- subtract 1 from a variable
+ addition
- subtraction or unary minus
* multiplication
/ division
% modulo
** or ^ exponentiation

The “++” and “--” operators may be used either immediately before or after a variable name.
If they are used before the name, the increment or decrement is performed before the value of
the variable is used in the expression. If they are used after the name, the value of the
variable before being modified is used in the expression and then the increment or decrement
takes place. For example, the sequence:

a = 3;
b = 3;
x = ++a;
y = b++;

assigns the value 4 to x and 3 to y. At the end of the sequence, both a and b have the value 4.

String Operators

 There are three string operators: concatenate, append, and substring.

 The dollar sign (‘$’) is the concatenation operator. It causes the strings on either side of it
to be concatenated together. For example, the statement

s = "Hello" $ " " $ "world";

causes the three strings, “Hello”, ” ” (a single space), and “world” to be concatenated,
producing the string “Hello world” that is assigned to the variable s.

 The append operator is “$=” causes the string expression to the right of the operator to be
appended to the end of the string currently contained in the variable to the left of the operator.
For example, the statements

string s;
s = "abc";
s $= "def";

results in s having the string “abcdef”.

If a numeric value is used with a string operator such as ‘$’ the numeric value is converted to
a string before the operation. For example, the statement

string s;
s = "ABC" $ 123;

results in the string “ABC123” being assigned to s.

 The substring operator has the form “[start:length]” where start is the position of the first
character in the string that is to be included in the substring. The leftmost character of a
string has a position index of 0 (zero). The length value specifies how many characters are to
be included in the substring. If you specify only the starting value then a single character is
selected. If you specify a starting value and a colon but omit the length, then the substring
extends from the starting character to the end of the string. The following examples show
what characters are selected by various forms of the substring operator:

Expression Selected substring
---------- ------------------
"abcde"[0:2] ab
"abcde"[1:3] bcd
"abcde"[2] c
"abcde"[2:] cde

The substring operator can be applied to variables, string constants, and string expressions.
You can also apply it to non-string variables and expressions which DTL automatically
converts to strings before applying the substring operator. The following are some examples:

Expression Selected substring
---------- ------------------
("abc"$"123)[2:3] c12
(121+2)[1:2] 23

The substring operator may also be used on the left side of an assignment statement. For
example, the following statement replaces two characters in the middle of a string:

address[2:3] = "TN";

If an assignment is made to a substring that extends beyond the end of the string, the string is
extended with blanks up to the start of the substring. For example, consider the following
sequence of statements:

s = "abc";
s[4:2] = "12";

At the end the string variable s with have the value “abc 12”.

Assignment Operators

 The following assignment operators can be used in expressions:

variable = expression; // Assign expression to variable
variable += expression; // Add expression to variable
variable -= expression; // Subtract expression from variable
variable *= expression; // Multiply variable by expression
variable /= expression; // Divide variable by expression
variable $= expression; // Append the string expression

Comparison Operators

 The following operators compare two values and produce a value of 1 if the comparison is
true, or 0 if the comparison is false:

== Equal
!= Not equal
<= Less than or equal
>= Greater than or equal
< Less than
> Greater than

These operators may be used with integer, real, and string values. String comparisons are
done without regard to the case of the letters. For example, the expression (“ABC” == “abc”)
is true. If the two strings are of unequal lengths, the shorter string is extended with trailing
spaces to match the length of the longer string before the comparison is done. The strcmp
function performs a case-sensitive comparison.

Logical Operators

 The following logical operators may be used:

! Logical NOT (negates true and false)
&& AND
|| OR

The result of a logical operator is integer 1 if the value is true or 0 if the value is false. For
example, the statements

int i,j,k;
i = 1;
j = !i;
k = j || 1;

result in ‘i’ having the value 1, ‘j’ having the value 0, and ‘k’ having the value 1.

Bit Operators

 The following operators perform operations on bits in an integer value.

~ Bitwise negation (flips value of each bit)
& AND
| OR

Conditional Operator

The conditional operator has the form:

operand1 ? operand2 : operand3

The value of operand1 is evaluated. If it is true (not zero) then the value of operand2 is the
result of the expression. If the value of operand1 is false (zero) then operand3 is the result of
the expression. For example, the expression “1?2:3” has the value 2 and “0?2:3” has the
value 3.

Subscript Operator

 There are two other special operators: “[...]” (square brackets) which enclose subscripts on
arrays and “,” (comma) which is used to specify left-to-right, sequential evaluation of a list of
expressions.

 DTL allows you to define arrays with one or two dimensions. A subscript operator selects
an individual element of an array. The first element of an array is numbered 0 (zero). So, if
an array X was defined with three elements, they would be X[0], X[1], and X[2]. A two
dimensional subscript is written in the form “[row,column]”.

If both subscript and substring operators are applied to a string array, the subscript is
specified first. For example, to select a substring from element 2 of an array named address,
you would write it like this: address[2][3:4]. For example, consider the following statements:

string name[3] = {"Phil","John","Dan"};
string c1,c2,c3;
c1 = name[0][0:1]; // Gets first letter from Phil
c2 = name[1][0:1]; // Gets first letter from John
c3 = name[2][0:1]; // Gets first letter from Dan

This results in c1 getting the value “P”, c2 getting “J”, and c3 getting “D”.

Operator Precedence

 Operator precedence, in decreasing order, is as follows: subscript, substring, unary minus,
logical NOT, ++ and --, exponentiation, multiplication, division and modulo, addition and
subtraction, relational (comparison), bit AND (“&”), bit OR (“|”), logical AND (“&&”),
logical OR (“||”), conditional (“? ”), assignment, comma. Parentheses may be used to group
terms.

Comments
 The beginning of a comment is denoted with “//” (two consecutive slash characters).
Everything from the “//” sequence to the end of the line is treated as a comment. Comments
may be on lines by themselves or on the ends of other statements. You also can specify a
comment by beginning the comment with the “/*” character sequence. All characters
following this are treated as comments up to the matching “*/” sequence. This type of
comment can cross lines. The following statements illustrate both types of comments:

// Read the next data value
fread(f,x,y); // Do the read
/*
 * Display main menu.
 */
mainmenu(); /* This is a comment too */

Declarations
DTL supports three types of values: ‘int’ (32-bit integer), ‘double’ (64-bit floating point),
and ‘string’ (variable length text string). You can declare variables to hold any of these
types, and you can write functions that return values of these types. Functions that do not
return values are said to be of type ‘void’.

Variable types
Each variable that you use in your program must be declared before it is used. There are
three types of variables: ‘int’ (32-bit integer), ‘double’ (64-bit floating point), and ‘string’
(variable length character strings). For compatibility with the C language the keyword ‘long’
may be used instead of ‘int’; ‘real’ or ‘float’ may be used instead of ‘double’.

DTL is very “liberal” in performing type conversions. Basically, any type of variable may be
used with any function or operator. When integer and real expressions are used together with
arithmetic or comparison operators the integer expression is first converted to type double.
When a string expression is used where a numeric value is required, the characters in the
string are scanned and the string is decoded as an integer or real value as appropriate. For
example, the following expressions are legal (but not necessarily good form):

i = 2 * "3";
s2 = sqrt("2.31");
area = 2 * X;

Similarly, when an integer or real expression is used where a string is expected, the value of
the expression is converted to a digit string that represents the value. For example, consider
the statement:

i = (21+3) $ "7";

First the integers 21 and 3 are added yielding the numeric value 24. Because the
concatenation operator requires string operands the numeric value is converted to the string
“24” which is concatenated with “7” yielding the string “247”. Assuming ‘i’ is an integer
variable, DTL converts the string “247” to a numeric value which is assigned to i.

When performing a conversion from a string to an integer or real value DTL stops when it
encounters the first character that is not valid in an integer or real numeric value. So the
statement

i = "23W";

would assign the value 23 to the integer variable i.
The statement

i = "ABC";

results in ‘i’ being set to 0.

Variable classes
There are four classes of variables: global, local, static local, and formal parameters:

 global variables — These are variables that are declared outside the body of any function

(usually they are defined at the top of the program before the first function). These
variables may be used by any function. Global variables may be initialized when they are
declared and may be assigned values from within any function. They retain their values
until altered by an explicit assignment.

 local variables (also known as “stack variables”) — these variables are “local” to the

function in which they are defined and are only in existence while the function is active.
If an initial value is specified when they are declared that value is assigned to the variable
each time the function is entered (i.e., they do not retain the value they had when the
function last exited). Two or more functions may have the same local variable names
without conflict since they are separate variables. If a local variable has the same name as
a global variable, the local variable is used in the function where it is defined but other
functions that do not have local variables with the same name could reference the global
variable.

 static local variables — These variables are local to the function in the sense that their

names are only meaningful to the function in which they are defined and multiple function
can use static local variables with the same name without conflict. However, unlike stack
local variables, static local variables are assigned permanent storage space and retain their
values between function calls. If an initial value is specified when a static local variable is
declared, that value is assigned to the variable once before the program begins execution.
If the function with the variable is called and the value of the variable is altered, it retains
the altered value on reentry to the function.

 formal parameter variables — These are the variables that are listed in parentheses

following the function name. At the time that the function is called DTL evaluates each of
the expressions in the calling argument list and copies the values to each corresponding
formal parameter. Thus on entry to the function the formal parameters have been
initialized to the values that were specified as calling arguments. You are free to modify
the values of the parameters during the execution of the function. When you execute a
‘return’ statement to exit from the function the values of the formal parameter variables

are copied back to the variables that were specified with the function call. This copy-back
operation is only performed to calling arguments that are variables, arrays, and substring
variables.

The types of variables specified as arguments to functions do not have to agree with the
types of the formal parameters. If the types are different, DTL does the appropriate
conversions as the values are passed into and out of the function.

The names of formal parameters must be listed in parentheses following the function name
and their declarations must be either part of the list or specified between the close
parenthesis and the open brace that begins the function body.

The following example shows examples of each variable class:

int g1; // Global variable
double pi = 3.14159; // Global variable
double area(double radius) // Formal parameter
{
 double a; // Local (stack) variable
 static int i; // Static local variable
 a = pi * (radius^2);
 return(a);
}

Variable declaration statement

A variable declaration statement has the following form:

[class] type variable[rows,columns] = {value,value,...};

The first item in a variable declaration is a class keyword which may be omitted. The only
class supported by DTL is ‘static’. Global variables are defined by placing the definition
outside any function (it is suggested that all global variable declarations be placed at the top
of the program before the first function definition).

The type of the variable is specified next. It may be ‘int’, ‘double’, or ‘string’.

The name of the variable is specified next. Variable names may be from 1 to 31 characters
long. The first character must be a letter or underscore (‘_ ’). The following characters may
be letters, digits, and underscores. Variable names are not case sensitive.

You may declare more than one variable of the same class and type with a single statement
by listing the variable names, dimension sizes, and initialization values with commas

separating the variable declarations. The following are examples of variable declarations:

int i,j,k;
string Name;
double expdate;
static int count;

Array declarations
If the variable is an array, the name must be followed by the dimension size enclosed in
square brackets. DTL supports arrays with one and two dimensions. For two dimensional
arrays the first dimension value is the number of rows and the second value is the number of
columns. The following is an example declaration for an integer array with 2 rows and 100
columns:

int datary[2,100];

The following statement declares a vector (single dimensional array) of string variables:

string names[20];

When used in expressions, the first element of an array is numbered 0, the second element 1,
and so on. So, the array ‘names’ which is is declared to have 20 elements would be
referenced using index numbers 0,1,...,19. The following is an example of a program that
stores sequential numbers into an integer vector:

void main()
{
 int i,ary[20];

 for (i=0; i<20; i++) ary[i] = i;
}

Note in this example that the for loop causes ‘i’ to vary from 0 up to, but not including, 20
(i.e., 0 to 19).

Variable initialization
An equal sign and one or more initial values may be optionally specified following the
variable name (and array dimension, if any). If the variable is not an array, simply specify an
equal sign and a constant of the appropriate type. The following are examples of variable
declarations with initializations:

int numitems = 10;

string first_name = "Phil";
static double pi = 3.14159;

 If an array is being initialized, the list of values must be enclosed in braces and separated by
commas. When initializing two dimensional arrays the initial values should be specified by
rows (i.e., specify the value for row 0 column 0, row 0 column 1, row 0 column 2, etc.; the
second subscript varies most quickly). The following are examples of array initializations:

int ivec[5] = {12, 15, 18, 21, 24};
int ary[2,3] = {00, 01, 02, 10, 11, 12};

If you specify fewer initialization values than the dimension size of the variable the
uninitialized elements are set to zero for numeric arrays or empty strings for string arrays.

If you do not specify initialization values for a variable the variable will have a random value
until you assign a value to it.

During execution of the program the initialization is handled differently depending on
whether the variable is declared to be of type “static”. Static variables are initialized once at
the beginning of execution of the program. This is true even for local variables declared
within a function that is called repeatedly. Local function variables that are not declared
static (i.e., “automatic” stack variables) are initialized each time the function is entered.
Consider the following example:

int g1 = 1;
void function alpha(void)
{
 int a1 = 2;
 static s1 = 3;
 <<body of function>>
}

The variable ‘g1’, which is global, and the variable ‘s1’, which is static, are initialized once at
the start of execution of the program. If they are subsequently assigned different values they
retain the values until another assignment occurs. The variable ‘a1’ is reinitialized to the
value 2 each time the alpha function is called.

Declaration examples
The following are examples of variable declarations:

int i,j; // Two integer variables
int ary[3,4]; // Integer array: 3 rows, 4 columns
double pi = 3.14159; // Real variable with initial value
int i[2,2]={1,2,3,4}; // Integer array with values
string Name="Phil"; // String with initial value
static int first=1; // Static int variable

The following is an example of a complete program with global variables, local variables,
static local variables, and formal parameter variables.

double pi = 3.14159; // Global variable
prototype double circlearea(1); // Prototype for function

int main()
{
 static double radius = 5; // Static local variable
 double area; // Local variable

 area = circlearea(radius);
 printf("The area is %f\n",area);
 return(1);
}

double circlearea(radius)
double radius; // Declare formal parameter
{
 double area; // Local variable

 area = pi * radius^2;
 return(area);
}

Program Statements

A program consists of declarative and executable statements. Declarative statements are
used to define functions and variables; they do not perform any actions once the program is
running. Executable statements define actions to be carried out by the running program.
Examples of executable statements are assignments, for, while, do, and goto.

Basic Statement Syntax

The basic syntax of DTL statements is very similar to that of C programs. A DTL statement
is composed of one or more “tokens” separated by spaces, tabs, and punctuation characters.
Tokens consist of variable names, numeric constants, string constants, operators, and reserved
keywords. Except within a string constant, space, tab, and carriage-return/line-feed character
sequences are equivalent and serve as token separators.

 DTL statements are terminated with a semicolon character (“;”). You may freely continue a
statement across multiple lines. For example, the statement:

y = 2 * x + sqrt(z);

could also be written as:

y = 2 *
 x +
 sqrt(z);

Reserved Keywords

 The following keywords have reserved meanings and may not be used for the names of
variables or functions (but they may be used inside quoted strings): auto, break, const,
continue, do, double, else, extern, for, goto, if, int, integer, long, loop, proto, prototype, real,
register, return, short, signed, static, stop, string, unsigned, void, volatile, while.

Assignment Statement

 The assignment statement is an executable statement that evaluates an expression and assigns
its value to a variable. The syntax for an assignment statement is:

variable = expression; // Assign expression to variable
variable += expression; // Add expression to variable
variable -= expression; // Subtract expression from variable
variable *= expression; // Multiply variable by expression
variable /= expression; // Divide variable by expression
variable $= expression; // Append expression to end of string

where “variable” is a variable that was previously declared. The variable may be subscripted
if it is an array. “expression” is a numeric, logical, or string expression.

IF Statement

 The form of the IF statement is:

IF (expression) statement1 [ELSE statement2]

If the expression is true (not zero) statement1 is executed, if the expression is false (0) and the
ELSE clause is specified, statement2 is executed. The ELSE clause and the second set of
controlled statements are optional. You may control groups of statements by enclosing them
in braces. The following are examples of valid IF statements:

if (x > bigx) bigx = x;

if (firsttime) {
 for (i=0; i<100; i++) ary[i] = 0;
}

 if (x < Pivot) {
 Y = B0+B1*(X-Pivot);
} else {
 Y = B0+B2*(X-Pivot);
}

If you have multiple conditions that you need to check for you can chain together multiple
IF/ELSE statements in the following form:

if (expression1) {
 <<controlled statements>>
} else if (expression2) {
 <<controlled statements>>
} else if (expression3) {
 <<controlled statements>>
} else {
 <<controlled statements>>
}

WHILE Statement

 The WHILE statement loops until the controlling expression becomes false (0) or a BREAK
statement is executed within the loop. The form of the WHILE statement is:

while (expression) {
 << controlled statements >>
}

 Each time around the loop the expression is evaluated. If it is true (non zero) the controlled
statements are executed and then the process repeats until the expression becomes false. If a
BREAK statement is executed within the loop, execution of the loop terminates and control is
transferred to the first statement beyond the end of the loop. If a CONTINUE statement is
executed in the loop, control is transferred to the conditional test at the top of the loop.

Note that the WHILE statement checks the controlling expression before executing the loop
the first time so if the expression is initially false it will not execute the controlled statements
at all.

The following example shows a WHILE statement that runs until we locate an asterisk
character in a string.

index = 0;
while (s[index:1] != "*") index++;

Note that this example is somewhat dangerous because it does not deal with the case where
the string does not contain an asterisk at all. The following sequence would be safer:

len = strlen(s);
index = 0;
while (index < len && s[index:1] != "*") index++;
if (index >= len) {
 printf("The string does not contain an asterisk\n");
} else {
 printf("The asterisk is at position %d\n",index);
}

DO Statement

 The DO statement is very similar to the WHILE statement except the control expression is
evaluated at the end of the loop rather than the beginning. This causes the loop always to be
executed at least once. The form of the DO statement is:

DO {
 << controlled statements >>
} WHILE (expression);

 For each iteration of the loop the controlled statements are executed and then the conditional
expression is evaluated. If it is true (non-zero) control transfers to the first controlled
statement at the top of the loop. A BREAK statement may be used to terminate the loop
before the conditional expression is evaluated. A CONTINUE statement can be used to cause
control to be transferred from within the loop to the point where the conditional expression is
evaluated.

LOOP Statement

 The LOOP statement is the simplest looping statement. The form of the LOOP statement is:

LOOP {
 << controlled statements >>
}

 Note that there is no conditional expression that controls how long the loop continues. You
must have an IF statement with a BREAK, RETURN, or STOP statement inside the loop to
cause the loop to stop when some condition is met. A CONTINUE statement can be used in
the loop to cause control to be transferred to the top of the loop. The following is an example
of a LOOP statement:

FOR Statement

 The FOR statement is a looping control statement similar to the WHILE statement; however,
the FOR statement also allows you to specify initialization expressions that are executed once
at the beginning of the loop, and loop-end expressions that are executed at the end of each
loop cycle. The form of the FOR statement is:

FOR (expression1; expression2; expression3) statement;

Execution of a FOR statement proceeds as follows:
1. Evaluate expression1. Typically this expression will include assignment operators

(“=”) to set initial values for loop variables. If you need more than one initial
expression, specify them as a list separated by commas.

2. Evaluate expression2. If its value is false (0) terminate the FOR statement and transfer
control to the statement that follows the controlled statement. If expression2 is true,
proceed to the next step.

3. Execute the controlled statement. If more than one statement is to be controlled,
enclose them with brace characters (“{” “}”).

4. Evaluate expression3. This expression will typically contain operators such as “++”,
“+=”, “--”, or “-=” to modify the value of a loop variable.

5. Transfer control to step 2, where expression2 is once again evaluated.

The following is an example of a FOR statement:

sum = 0;
for (i=0; i<10; i++) sum += a[i];

Frequently you will want to have more than a single statement controlled by the FOR
statement. To do this enclose the controlled statements in braces. For example, the following
FOR statement controls 2 statements:

sumx = 0;
sumx2 = 0;
for (i=0; i<10; i++) {
 sumx += x[i];
 sumx2 += x[i]^2;
}

It is possible to specify multiple expressions for ‘expression1’ and ‘expression3’. To do this,
separate the subexpressions with commas and they will be executed in order. For example,
the following statement initializes ‘i’, ‘j’, and ‘sum’ to zero before the loop is started and
increments both ‘i’ and ‘j’ at the end of the loop:

for (i=0,j=0,sum=0; i<10; i++,j++) {
 << controlled statements >>
}

BREAK Statement

 The BREAK statement can be used in FOR, WHILE, LOOP, and DO loops to terminate the
loop and cause control to transfer to the statement beyond the end of the loop. The following
is an example of a BREAK statement:

time = 0;
x = 0;
while (time < endtime) {
 x += delta * xspeed;
 if (x > 10) break;
}

CONTINUE Statement

 The CONTINUE statement can be used in FOR, WHILE, LOOP, and DO loops to terminate
the current iteration and begin the next one. When CONTINUE is executed in a WHILE or
DO statement, control is transferred to the point in the loop where the loop control expression
is evaluated. When CONTINUE is executed in a FOR statement, control is transferred to the
bottom of the loop where expression3 is evaluated (which normally augments the values of
the loop variables for the next iteration). The following is an example of a CONTINUE
statement that skips over the statements that follow it and advances to the next value of ‘i’ if
x[i] is negative.

sumsqrt = 0;
for (i=0; i<10; i++) {
 if (x[i] < 0) continue;
 sumsqrt += sqrt(x[i]);
}

GOTO Statement

 The GOTO statement causes program control to be transferred to a statement with a
specified label. The form of the GOTO statement is:

GOTO label;

where “label” is a label on the statement to which control is to be transferred. The following
is an example of a GOTO statement:

int main()
{
 string s,c;
 int i;

 s = "ABC*DEF";
 i = 0;
top: c = s[i:1];
 if (c == "*") goto end;
 i++;
 goto top;
end: printf("* is at location %d\n",i);
 return(1);
}

Note that it is usually better programming form to use FOR, WHILE, DO, or LOOP
statements to perform looping type operations rather than GOTO.

RETURN Statement

 The RETURN statement is used to return control from a function to the calling program or
function. Executing a RETURN statement in the main program terminates the entire DTL
program.

The form of the statement is:

RETURN [expression];

If the function being executed returns a value (i.e., it is not of type void) then you must
specify an expression with the RETURN statement. This expression is the value returned for
the function. If the function is of type void then the RETURN statement should not have an
associated expression. The following is an example of a RETURN statement:

prototype double circlearea(1);

int main()
{
 double radius,area;

 radius = 2;
 area = circlearea(radius);
 printf("Radius = %f, Area = %f\n",radius,area);
 return(1);
}

double circlearea(radius)
{
 double area;

 area = 3.14159 * radius ^ 2;
 return(area);
}

Functions

The only practical way to write a large and complex program is to divide into manageable
units. Ideally, this division should be done so that each unit performs a well defined task and
the interdependencies between units is minimized. The “function” is the basic program unit
in the DTL programming language (other programming languages use the term “procedure”
or “subroutine” for essentially the same thing).

In DTL there are two classes of functions: (1) built-in library functions that are written by the
developers of DTL and are available for your use, and (2) user defined functions that you
write and call from your DTL programs. Many built-in library functions are provided with
DTL. This chapter is focused toward user defined functions.

Before getting into the details of using functions let’s look at a simple example that has a
main program and a function. The function accepts a string argument and returns an index
number indicating the character position of the first ‘*’ character in the string:

prototype int findstar(1);
int main()
{
 int index;
 index = findstar("ABC*DEF");
 printf("The first * is at offset %d\n",index);
 return(1);
}

int findstar(string s)
{
 int i,len;
/*
 * Determine the length of the string.
 */
 len = strlen(s);
/*
 * Try to find the first occurrence of '*'.
 */
 for (i=0; i<len; i++) {
 if (s[i:1] == "*") return(i);
 }
/*
 * String does not contain a '*'. Return -1.
 */
 return(-1);
}

Declaring Functions
The general form of a function declaration is as follows:

[type] name([formal parameters])
[parameter declarations]
{
 body of function
}

Here is an example of a simple function that accepts two integer arguments, adds them
together and returns the sum as the result of the function:

int add(value1,value2)
int value1; // First value to add
int value2; // Second value to add
{
 int sum;

 sum = value1 + value;
 return(sum);
}

The first item in a function declaration is the type keyword that specifies what type of value
the function will return. The valid keywords are “int”, “double”, “string”, and “void”. If you
do not specify a keyword, void is assumed by default. Void means that the function does not
return a value.

The name of the function must follow the type keyword (if there is a type specification).
Function names have the same form as variable names: they must begin with a letter or an
underscore and following the first character may consist of letters, digits, and underscores.
They may be up to 31 characters long and they are not case sensitive.

The name of the function must be followed by the list of “formal parameters” for the function
enclosed in parentheses. If there are no formal parameters specify “()” or “(void)” after the
function name.

Formal parameters are like local variables for the function and may have the same names as
formal parameters or local variables for other functions. You may not define a local variable
with the same name as a formal parameter. When a function is called the value of the
expression that corresponds positionally to the formal parameter is copied into the formal
parameter. When the function exits the value of the formal parameter at the time that the
function exits is copied back to the calling argument. The copy-back is done if, and only if,
the calling argument is a variable (possibly subscripted or substringed).

Array arguments are handled differently. Rather than copying all of the values for an array
into the local variable for the function, DTL indirectly references the array so that as you
access or alter the formal parameter variable in the function the values in the array that was
passed as an argument to the function are accessed.

You can call a function using arguments that have different types than the corresponding
formal parameters. In this case DTL converts the values to the correct type for the formal
parameters on entry to the function and converts the value of the formal parameters on exit to
the type of the argument variables as the values are passed back.

There are two ways to specify the types of the formal parameters. The first method is to
specify a type keyword in front of each parameter name in the argument list. The following
example illustrates this type of declaration:

int sub1(int i, double r, string s)
{
 << body of function >>
}

The second method is to declare the types of the parameters using separate statements
between the close parenthesis at the end of the parameter list and the open brace that begins
the function body. The following example illustrates this type of declaration:

int sub1(i,r,s)
int i; // Integer formal parameter
double r; // Real formal parameter
string s; // String formal parameter
{
 << body of function >>
}

The formal parameter declarations use the same style as variable declarations. Note that there
is no semicolon between the close parenthesis at the end of the formal parameter list and the
first parameter declaration or the open brace for the function body.

You can choose which style of parameter type declaration to use based on your own taste.
There is no difference in terms of the effect on the program.

Array parameters
 If a formal parameter is an array, the number of rows and columns is determined by the size
of the array that is specified as the argument when the function is called. In other words, a

formal parameter array “conforms” to the size of whatever array is passed to an argument so
you can write a function that will work with different size arrays. Because of this, the
number of columns and rows specified for the formal parameter array are ignored and you
may specify 0 to emphasize that the size is dependent on the passed array. The arraysize1()
and arraysize2() library functions can be used to determine the actual number of rows and
columns that an array has.

The following is an example of a program with a function that accepts a single dimension
array and returns the sum of the elements in the array:

prototype int vsum(1);

int main()
{
 int vec[5] = {1,2,3,4,5};
 int sum;

 sum = vsum(vec);
 printf("The sum is %d\n",sum);
 return(1);
}

/*
 * Function to compute sum of entries in an array.
 */
int vsum(vec)
int vec[0];
{
 int i,sum,size;

/*
 * Use the arraysize1 library function to determine number of
 * items in the array.
 */
 size = arraysize1(vec);
/*
 * Compute sum of entries.
 */
 sum = 0;
 for (i=0; i<size; i++) {
 sum += vec[i];
 }
 return(sum);
}

Function Prototypes
A function prototype statement provides information to the DTL compiler about a function
whose definition has not yet been encountered by the compiler. You must specify a
prototype for any function whose return type is not void if you have a call of the function
before the function definition.

The form of a function prototype statement is:

prototype type function(number_of_parameters);

Where ‘type’ specifies the type of value returned by the function. it must be ‘int’, ‘double’,
‘string’, or ‘void’. ‘Void’ indicates that the function does not return a value. After the
function name specify in parentheses the number of parameters that the function expects.
Note to C programmers: since DTL performs automatic run-time conversion of argument
types it is not necessary to specify the type of the formal parameters, only a count of how
many there are.

Function prototype declarations must occur before the point where a function is called.
Typically they are grouped together before the first function and frequently they are stored in
an external file that is included in the source program by use of the #include statement.

The following are examples of function prototype statements:

prototype double area(1);
prototype void showmenu(0);
prototype int countusers(2);

Invoking Functions
To invoke a function simply specify the name of the function followed by an open
parenthesis, any argument values, and a close parenthesis. If the function does not require
any arguments specify “()” after the function name.

 DTL functions may call themselves recursively. The following example shows a function
that computes a factorial by recursive calls to a function:

prototype int fact(1);

int main()
{
 int f;

/*
 * Compute and print 5 factorial.
 */
 f = fact(5);
 printf("5 factorial = %d\n",f);
 return(1);
}

/*
 * Function to recursively compute a factorial.
 */
int fact(value)
{
 int f;

/*
 * One factorial is 1.
 */
 if (value == 1) return(1);
/*
 * Call this routine recursively to compute the factorial.
 */
 f = value * fact(value-1);
 return(f);
}

Built-In Library Functions

The functions described in the following chapters are predefined and built into DTL. The
prototypes are also built in so you do not need to specify function prototypes.

Each function description that follows includes a prototype specification for the function.
The prototype shows the type of value returned by the function, the number of arguments,
and the type of each argument. The special type designation “any_ type” means that any type
argument may be specified. If you specify an argument that is of a different type than shown
by the prototype, the type of the argument is automatically converted to the correct type when
the function is called.

For example, here is the prototype for the strlen function:

int strlen(string str)

This prototype indicates that the strlen function returns an int type value and it expects a
single string argument.

Some functions accept a variable number of arguments. In this case the optional arguments
are enclosed in bracket characters in the prototype specification. For example, the following
is the prototype for the fopen function:

int fopen(filename,mode[,share][,recsize])
string filename; /* File specification */
string mode; /* File open mode */
string share; /* (optional) File sharing flags */
int recsize; /* (optional) Relative file rec size */

The fopen returns an int type value. It requires at least two string arguments (‘filename’ and
‘mode’). There is an optional third string argument named ‘share’.

Function Error Status
Many library functions may encounter errors under some conditions. For example, if you use
the fopen() function to attempt to open an existing file and the file does not exist, an error is
detected. When an error occurs an error code is stored in an internal library data cell. This
error code can be retrieved by subsequent use of the lasterror() function. The errormsg()
function converts an error status code into a text message describing the error. The perror()
function can be used to display a message associated with an error code.

String Functions

String variables and functions are an important part of the DTL programming language.
String variables have variable lengths, they can hold different length strings at different times.
DTL strings can hold binary data including the null character.

strcmp — String comparison

 Function prototype:

int strcmp(string str1, string str2)

The strcmp function performs a case sensitive comparison between two strings and returns
the following result values:

 1 = str1 is greater than str2
 0 = str1 is equal to str2
-1 = str1 is less than str2

This function is similar to the “==” relational comparison operator except the “==” operator
is case insensitive whereas the strcmp function is case sensitive. A second difference is that
when the “==” operator is used to compare two strings of unequal lengths, the shorter string
is extended with blanks to match the length of the longer string. The strcmp function does
not extend shorter strings. For example, the expression “ABC”==“ABC ” is true because the
first string is extended with blanks to match the length of the second string. On the other
hand, strcmp(“ABC”,“ABC “) returns the value –1 because the first string is less than the
second string.

strlen — Determine length of string

 Function prototype:

int strlen(string str)

This function returns an integer value corresponding to the number of characters in the string
argument. For example, the value of strlen(“abc”) is 3. Some functions return null (empty)
strings in some cases. The strlen function is the easiest way to check for a null length string.

space — Create blank filled string

 Function prototype:

string space(int length)

The space function creates a string of space characters of the specified length.

trim — Remove spaces from end of a string

 Function prototype:

string trim(string instr)

The trim function accepts a string argument, removes any trailing spaces from the end of the
string, and returns the resulting string as its result.

cleanspaces — Clean up spaces in string

 Function prototype:

string cleanspaces(string instr)

The cleanspaces function removes extraneous spaces and tabs from a string. It operates in the
following steps: (1) convert any tab characters in the string to spaces; (2) remove any spaces
from the front of the string; (3) remove any spaces from the end of the string; (4) collapse
multiple consecutive spaces within the string to a single space.

repeat — Create string with repeated pattern

 Function Prototype:

string repeat(string instr, int count)

The repeat function creates a string with a specified pattern string repeated a specified
number of times. For example, the function call repeat(“abc”,3) produces the string
“abcabcabc”.

locate — Locate substring in string

 Function prototype:

int locate(string substr, string primary, int startpos)

The locate function tries to find the first occurrence of a substring specified by ‘substr’ in a
string specified by ‘primary’. The target substring may consist of one or more characters.
The comparison is case sensitive. f the substring is found the value returned by the function
is the index number of the character in the primary string where the first character of the
substring occurs. The index number is 0 based (i.e., if the substring starts at the beginning of
the primary string the value will be 0). If the substring is not found in the primary string –1 is
returned. The comparison is case sensitive.

If the optional third argument, ‘startpos’, is specified the search begins at the specified
starting character position in the primary string. If you do not specify the ‘startpos’ argument
a value of 0 is used by default and the search starts from the beginning of the primary string.

The following are example function calls and the resulting values:

locate("xy","abcxydefxy") = 3
locate("xy","abcxydefxy",4) = 8
locate("rx","abcxydefxy") = -1

rlocate — Reverse locate substring in string

 Function prototype:

int rlocate(string substr, string primary, int startpos)

The rlocate function tries to find the last occurrence of a substring specified by ‘substr’ in a
string specified by ‘primary’. The comparison is case sensitive. If the substring is found the
value returned by the function is the index number of the character in the primary string
where the first character of the substring occurs. The index number is 0 based (i.e., if the
substring starts at the beginning of the primary string the value will be 0). If the substring is
not found in the primary string –1 is returned. The target substring may consist of one or
more characters. The comparison is case sensitive.

If the optional third argument, ‘startpos’, is specified the search begins at the specified
starting character position in the primary string. If you do not specify the ‘startpos’ argument
the search begins at the right end of the primary string and progresses to the left.

The following are example function calls and the resulting values:

rlocate("xy","abcxydefxy") = 8
rlocate("xy","abcxydefxy",6) = 3
rlocate("rx","abcxydefxy") = -1

strcount — Count occurrences of a substring

 Function prototype:

int strcount(string substr, string primary)

The strcount function counts the number of occurrences of a substring specified by the
‘substr’ that occurs in the string specified by the ‘primary’ argument. The target substring
may consist of one or more characters. The comparison is case sensitive. For example, the
following call would return a value of 2.

count = strcount("A","ABCADE");

This function can be used to determine how many lines will be required to print a string with
embedded line-feed characters. To do this, specify “\n” as the substing to search for.

strupr — Convert string to upper case

 Function prototype:

string strupr(string instr)

The strupr function converts all lower case letters in the input string to upper case and returns
the resulting string as the result. Characters in the input string that are not lower case letters
are not changed. For example, strupr(“Abc12”) produces the string “ABC12”.

strlwr — Convert string to lower case

 Function prototype:

string strlwr(string instr)

The strlwr function converts all upper case letters in the input string to lower case and returns
the resulting string. Characters in the input string that are not upper case letters are not
changed. For example, strlwr(“Abc12”) produces the string “abc12”.

mixcase — Convert string to mixed case

 Function prototype:

string mixcase(string instr)

Converts a string to mixed upper and lower case. The first character of the string is
capitalized and also letters following space or period. Other letters are converted to lower
case. For example, the value of mixcase(“PHIL sherrod”) is “Phil Sherrod”.

translate — Translate characters in string

 Function prototype:

string translate(string str1, string str2, string str3)

The translate function translates the characters in ‘str1’ according to the two strings ‘str2’ and
‘str3’. Each character in ‘str1’ is examined. If it matches any character in ‘str2’ the character
in ‘str3’ which is at the same position in the string as the matching character in ‘str2’ is
substituted for the original character in ‘str1’. Any character in ‘str1’ that is not found in
‘str2’ is left untranslated. The character comparison is case sensitive. The returned value of
the function is the translated string. The input arguments are not altered. For example, the
statements

string s;
s = translate("Alpha1","Aa","Xs");

result in ‘s’ receiving the translated string “Xlphs1”.

char — Convert ASCII value to character

 Function prototype:

string char(int value)

The char function produces a single character whose ASCII code corresponds to the integer
value argument. For example char(65) produces the letter ‘A’ and char(66) produces the
letter ‘B’.

ichar — Convert character to ASCII value

 Function prototype:

int ichar(string c)

The ichar function returns an integer value that corresponds to the ASCII code for the
character that is specified as an argument. If a string is provided as an argument, the ASCII
value of the first character is returned. For example, ichar(“A”) is 65.

isxxxx — Character type tests

Function prototypes:

int isxxxxx(string c)

DTL provides a set of library functions for testing to see if a character is part of a particular
set. For example, the isalpha function returns the value true (1) if the specified string consists
only of upper or lower case letters and false (0) if the string contains any characters other than
upper and lower case letters. Each of the following functions accepts a string argument and
returns an integer value that is either 0 or 1.
 int isalpha(c) — Tests if the string consists of upper or lower case letters.
 int islower(c) — Tests if the string consists of lower case letters.
 int isupper(c) — Tests if the string consists of upper case letters.

 int isdigit(c) — Tests if the string consists of digits.
 int isalnum(c) — Tests if the string consists of letters or digits.
 int iscntrl(c) — Tests if the string consists of control characters (i.e., characters whose

ASCII code is less than hex 20).
 int isgraph(c) — Tests for printable characters not including space (i.e., characters whose

ASCII code is in the range hex 21 to 7E).
 int isprint(c) — Tests for printable characters (i.e., characters whose ASCII code is in the

range hex 20 to 7E).
 int ispunct(c) — Tests for punctuation characters.
 int isspace(c) — Tests for space, form-feed, carriage-return, line-feed, tab, and vertical tab.
 int isxdigit(c) — Tests for hexadecimal digits (‘0’-’9’, ‘A’-’F’, or ‘a’-’f’).

For example:

isalpha("a") ==> 1 (true)
isalpha("1") ==> 0 (false)
isalpha("a1") ==> 0 (false)
isdigit("123") ==> 1 (true)
isdigit("1A3") ==> 0 (false)

insert — Insert one string in another

 Function prototype:

string insert(string str1, string str2, int pos)

The insert function returns a string corresponding to ‘str1’ with ‘str2’ inserted in front of
character position ‘pos’ of ‘str1’. A value of 0 for ‘pos’ would insert ‘str2’ at the front of
‘str1’. For example, insert(“abcdef”,“12”,2) produces “ab12cdef”.

element — Locate substring using delimiters

 Function prototype:

string element(int number, string delim, string main)

The element function extracts a substring delimited by ‘delim’ characters from the ‘main’
string. The ‘number’ argument specifies which occurrence of the substring if there is more
than one. The first occurrence is number 0. The following examples illustrate its action:

element(0,".","ab.cd.ef") ab
element(1,".","ab.cd.ef") cd
element(2,".","ab.cd.ef") ef
element(3,".","ab.cd.ef") (null string)

validate — Check validity of characters

 Function prototype:

int validate(string test, string valchar)

The validate function searches the ‘test’ string to see if it contains any characters that are not
contained in the ‘valchar’ string. If there are any characters in ‘test’ that are not part of
‘valchar’ it returns the position number of first such character found in ‘test’. The index is 0
based. If all of the characters in ‘test’ are contained in ‘valchar’, it returns -1. For example,
the value of validate(“abxba”,“abcd”) is 2 because character in position 2 is ‘x’ which is not
contained in “abcd”.

strip — Remove characters from a string

 Function prototype:

string strip(string source, string remchar)

The strip function returns a string consisting of the ‘source’ input string with any characters
that are found in the ‘remchar’ string removed. For example, the value of

strip(“abcdef”,“acf”) is “bde”. The strclean function performs the reverse operation.

strclean — Remove all but specified characters

 Function prototype:

string strclean(string source, string wantchars)

The strclean function returns a string consisting of the ‘source’ input string with all characters
removed except the characters specified in the ‘wantchars’ string. For example, the value of
strclean(“(615)-327-3670”,“0123456789”) is “6153273670” because all characters other than
digits were removed. The strip function performs the reverse operation.

Math Functions

DTL includes a generous assortment of math functions that can be used for scientific,
statistical, or business calculations. All of the math functions use 64-bit floating point values
and produce values accurate to about 18 significant digits.

abs — Absolute value

 Function prototype:

double abs(double value)

Computes the absolute value of the argument.

acos — Arc cosine

 Function prototype:

double acos(double value);

Computes the arc cosine of the value. The returned value is an angle in radians..

asin — Arc sine

 Function prototype:

double asin(double value)

Computes the arc sine of the value. The returned value is an angle in radians..

atan — Arc tangent

 Function prototype:

double atan(double value)

Computes the arc tangent of the value. The returned value is an angle in radians..

ceil — Ceiling

 Function prototype:

double ceil(double x)

Computes the ceiling of x. Returns the smallest integer that is at least as large as x. For
example, ceil(1.5)=2; ceil(4)=4; ceil(-2.6)=-2.

cos — Cosine

 Function prototype:

double cos(double angle)

Computes the cosine of the angle. The angle must be in radians.

cosh — Hyperbolic cosine

 Function prototype:

double cosh(double x)

Computes the hyperbolic cosine of x.

cot — Cotangent

 Function prototype:

double cot(double angle)

Computes the cotangent of the angle. The angle must be in radians.

csc — Cosecant

 Function prototype:

double csc(double angle)

Computes the cosecant of the angle. The angle must be in radians.

deg — Convert radians to degrees

 Function prototype:

double deg(double angle)

Convert an angle that is in units of radians to the equivalent angle in units of degrees.

exp — Exponential

 Function prototype:

double exp(double x)

Compute the value of e (the base of natural logarithms) raised to the x power.

fabs — Absolute value

 Function prototype:

double fabs(double x)

Compute the absolute value of x. This function is equivalent to abs and is provided for
compatibility with C.

factorial — Factorial

 Function prototype:

double factorial(double x)

Compute x factorial (x!). Note, the factorial function is computed using the gamma function
(factorial(x)=gamma(x+1)) so non-integer argument values may be computed.

floor — Floor

 Function prototype:

double floor(double x)

Returns the largest integer that is less than or equal to x. For example, floor(2.5)=2;
floor(4)=4; floor(-3.6)=-4.

log — Natural logarithm

 Function prototype:

double log(double x)

Computes the natural logarithm (base e) of x.

log10 — Base 10 logarithm

 Function prototype:

double log10(double x)

Computes the logarithm base 10 of x.

max — Maximum value

 Function prototype:

double max(double val1, double val2, double val3,...)

Returns the value of the largest argument. Up to 40 argument values may be specified.

min — Minimum value

 Function prototype:

double min(double val1, double val2, double val3,...)

Returns the value of the smallest argument. Up to 40 argument values may be specified.

npd — Normal probability distribution

 Function prototype:

double npd(x, mean, std)
double x; /* Point on std distribution curve */
double mean; /* Mean value of distribution */
double std; /* Standard dev of distribution */

Normal probability distribution of x with specified mean and standard deviation. X is in units
of standard deviations from the mean.

rad — Convert degrees to radians

 Function prototype:

double rad(double angle)

Convert an angle in units of degrees to the equivalent angle in units of radians.

random — Random number

 Function prototype:

double random()

Returns a random value uniformly distributed in the range 0 to 1.

round — Round to integer

 Function prototype:

double round(double x)

Rounds x to the nearest integer. For example, round(1.1)=1; round(1.8)=2; round(-2.8)=-3;

sec — Secant

 Function prototype:

double sec(double angle)

Computes the secant of the angle. The angle must be in radians.

Secant of x. (sec(x) = 1/cos(x)).

sin — Sine

 Function prototype:

double sin(double angle)

Computes the sine of the angle. The angle must be in radians.

sinh — Hyperbolic sine

 Function prototype:

double sinh(double x)

Compute the hyperbolic sine of an angle.

sqrt — Square root

 Function prototype:

double sqrt(double x)

Square root of x.

tan — Tangent

 Function prototype:

double tan(double angle)

Computes the tangent of the angle. The angle must be in radians.

tanh — Hyperbolic tangent

 Function prototype:

double tanh(double x)

Compute the hyperbolic tangent of x.

Array Functions

 DTL supports one dimensional arrays (vectors) and two dimensional arrays (matrices).
Array entries may hold integer, real, and string values; string values are of variable lengths.

As with scalar variables, arrays may be global (defined outside any function) or local (defined
within a function). Local arrays may be static, in which case they hold their values between
function calls, or dynamic, in which case they are freed and reallocated each time the function
is called.

Arrays may be passed as arguments to functions. In this case references to the array from
within the function are mapped to the actual array that is passed as the argument to the
function. The size of the array within the function is set to match the size of the array that is
passed as an argument; the size is said to “conform” to the size of the passed array. This
makes it possible to write general purpose array manipulation routines that can be called at
different times with different size arrays. The arraysize1() and arraysize2() functions that are
described later in this chapter are used to determine the actual size of an array.

In addition to function array parameters that conform to the size of the passed array, DTL
also lets you change the size of static and global arrays. This is a very powerful feature
because it allows you to write programs that can handle varying amounts of data without
having to declare all arrays with the maximum possible sizes. The resize function which is
described below is used to change the size of an array.

resize — Change the size of an array

 Function prototype:

void resize(array, size1 [,size2])
any_type array; /* Name of array to be resized */
int size1; /* New size for first dimension */
int size2; /* New size for second dimension */

The resize function alters the size of an array. The ‘array’ argument is the name of the array
whose size is to be changed. The array may be of any type and may have one or two
dimensions. The ‘size1’ argument is the new size for the first dimension (or only dimension
if it is a one dimensional array). The ‘size2’ argument is the new size of the second
dimension; it should be specified if and only if the array has two dimensions.

If you reduce the size of an array the old elements that are no longer present are discarded
and freed. If you increase the size of an array the values of the original elements are
preserved and the new elements are set to 0 for int and real arrays or empty strings for string
type arrays.

If you use the resize function to change the size of an array that has been passed as an
argument to the function, the size of the array that was passed in the call is changed. If you
change the size of a global array or a local static array the size change remains in effect until
it is changed again by calling resize. If you change the size of a dynamic local array (i.e., a
stack array) the size change remains in effect only until the function exits; the array is
reallocated with its declared size on the next call of the function.

The following example opens a file and reads each line of the file into a string array named
filelines. The size of the filelines array is increased using the resize function to hold each
additional line that is read. Note: although this technique works and is very efficient in terms
of memory space utilization is it extremely inefficient in terms of speed. Each time resize is
called it allocates a new array, copies the existing elements from the old array to the new one,
and then deallocates the old array; this is an expensive operation. A more efficient approach
would be to expand the array in large steps (say 1000 entries) each time it fills up.

int main()
{
 int f,line,status;
 string inline,filelines[1];

/*
 * Open the file.
 */
 f = fopen("test.dat","rt");
 if (f == 0) {
 print("Unable to open file");
 return(0);
 }
/*
 * Begin loop to read from the file.
 */
 for (line=0; ; line++) {
/*
 * Read the next line. Exit loop if end of file hit.
 */
 /* Try to read another line from the file */
 status = fread(f,inline);
 /* Exit loop if read returned an error code */
 if (status != 0) break;
/*
 * Expand the size of the array to hold this line.
 */
 if (line >= arraysize1(filelines)) {
 /* Expand the array */

 resize(filelines,line+1);
 }
/*
 * Store the line into the array.
 */
 filelines[line] = inline;
 }
/*
 * Close the file.
 */
 fclose(f);
/*
 * Display each line in the array.
 */
 for (line=0; line<arraysize1(filelines); line++) {
 print(filelines[line]);
 }
 return(0);
}

arraysize — Determining size of an array

 Function prototypes:

int arraysize1(array)
any_type array; /* Name of array */

int arraysize2(array)
any_type array; /* Name of array */

The arraysize1 and arraysize2 functions determine the size (number of elements) of the first
and second dimensions of an array. Arraysize2 should only be applied to an array with two
dimensions. These functions are especially useful inside functions to determine the size of
the array passed as an argument to the function. However, they can be used to determine the
size of any array.

The following example shows a function named arraysum that accepts a two dimensional
array of arbitrary size and returns the sum of its elements:

prototype int arraysum(1);
void main()
{
 static a[2,3] = {4, 1, 5, 2, 7, 3};
 int sum;

 sum = arraysum(a);
 print("The sum is",sum);
 stop;
}

/*
 * Function to sum the elements of an array.
 */
int arraysum(x)
int x[0,0]; /* Array to be summed */
{
 int sum,i,j;

/*
 * Sum the entries in the array.
 */
 sum = 0;
 for (i=0; i<arraysize1(x); i++) {
 for (j=0; j<arraysize2(x); j++) {
 sum += x[i,j];
 }
 }
/*
 * Finished -- Return the sum.
 */
 return(sum);
}

sort — Sort an array

 Function prototype:

void sort(keyvec, indexvec [,numitems]);
any_type keyvec; /* Vector with keys to sort */
int indexvec; /* Parallel index vector */
int numitems; /* (optional) number of items to sort */

The sort function sorts an array of items. The keys to be sorted may be of any type: integer,
real, or string. String sorts are done ignoring case differences.

Rather than rearranging the items in the array being sorted, the sort function produces an
index array that has the subscripts for the key array sorted in ascending order. For example,
consider the following statements:

int keys[4] = {3,1,4,2};
int index[4];
sort(keys,index);

The sort function examines the values in the keys array and stores into the index array the
subscripts for the keys array that would cause the key values to be in ascending order. In the
case of this example, the values stored in the index array will be 1, 3, 0, 2 (remember, array
subscripts are 0 based). Thus keys[1] has the smallest value (1), keys[3] has the next smallest
value (2), etc. To access the elements of the key in ascending order, use the values in
successive elements of the index array as subscripts. That is, keys[index[0]] is the smallest
entry, keys[index[1]] is the next smallest, etc. If you wish to access the elements of the key
in descending order, use the sorted index array elements in reverse order.

The third argument to sort, ‘numitems’, is optional. If specified, it is the number of items in
the ‘keyvec’ and ‘indexvec’ arrays to be sorted; this may be less than the dimension size of
the key and index arrays. If you omit the ‘numitems’ argument then the sort function sorts all
elements in the key vector and expects the index vector to be at least as large as the key
vector.

The following example is a complete program which sorts a small array and prints the entries
in sorted order. Note how the values in the index array are used as subscripts to the names
array to cause the names to be printed in ascending order.

int main()
{
 static string names[8] = {"Phil","John","Dan",
 "Harry","Richard","Vicki",
 "Steve","Debi"};
 int index[8],i;
 sort(names,index,8);
 for (i=0; i<8; i++) {
 print(names[index[i]]);
 }
 return(1);
}

Lag Functions

The functions described in this chapter are used to access prior values of variables. The lag()
function is often used when processing time series data to reference an earlier value in the
series.

lag — Get previous value of variable or expression

 Function prototype:

double lag(double expression, int index)

Each time the lag() function is called, it stores the specified value of the expression argument and
retuns some previously stored expression value. The index argument selects which previous value is
to be returned. If the value of index is 1 then the previous value is returned, if index is 2 than the
value from two calls earlier is returned.

The expression argument can be a simple variable name or a complex expression.

The index argument should have a constant value.

Often, the lag() function is used in DTL programs that process time series data. The values stored by
lag() are global and retained between each iteration of the program invocation, so lag() can be used to
reference a previous value of a variable.

If the lag() function requests a value prior to a stored value, the missing value is returned. For
example, the first time lag(x,1) is called, there is no previous value of x, so missing value is returned.

Input/Output Functions

The functions described in this chapter perform general I/O operations.

Functions such as print and printf which in a C program would write output to the console,
write the output to the DTREG run log file.

print — Print a line of values

 Function prototype:

int print(val1,val2,...)
any_type val1; /* First value to print */
any_type val2; /* Second value to print */

The print function writes to the log file a line of output consisting of each of the values
concatenated with a single space separating them. The cursor is advanced to the next line
after the values are printed. The returned value of the function is 0 if the function is
successful. An error code is returned if an error occurs during the function execution.

A variable number of arguments may be specified. Integer values are converted to character
strings before they are displayed. For example, the function print(“Beginning execution”)
would display the string “Beginning execution” at the current cursor location and then would
advance the cursor to the start of the next line. Here is an example:

i = 123;
print("The value of i is",i);

This would display the line “The value of i is 123”.

printf — Formatted print function

 Function prototype:

int printf(format,val1,val2,...)
string format; /* Format pattern string */
any_type val1; /* First value to insert */
any_type val2; /* Second value to insert */

The printf function is an extremely versatile way for your program to write messages to the
execution log. Printf requires at least one argument, the ‘format’ string which consists of
ordinary characters, control characters such as “\n” which prints a carriage-return and line-
feed sequence, and conversion specifications such as “%d” and “%s” which cause successive
value arguments (‘val1’, ‘val2’, etc.) to be converted to printable form and inserted in the
string that is displayed.

The simplest form of the printf function has only a single argument, the format string. In this
case the string is simply written to the log file. For example, the following statement displays
the string “Program is running”,

printf("Program is running\n");

You can print multiple lines with a single statement by embedding “\n” in the string where
ever you want to advance to a new line. For example, the statement

printf("line 1\nline 2\nline 3\n");

prints three lines:

line 1
line 2
line 3

If you wish to have values inserted in the string as it is printed you can place conversion
operators in the format string. Conversion operators begin with a percent sign (‘%’) and end
with a conversion character. Between the percent sign and the conversion character you may
have the following optional items:

• A minus sign, which specifies that the converted value is to be left justified in the

field.
• A digit string specifying a minimum field width. The converted value will use at least

this many columns and more if necessary. If the converted value requires fewer
characters than then specified width it will be padded on the left (or right if minus sign
was specified) to fill the field. The padding character is blank normally but zero will be
used if you specify a 0 as the first digit of the field width value. For example, the
specification “%6d” would print a 6 digit numeric value with leading blanks if
necessary to fill the field. The specification “%06d” would also print a 6 digit numeric
field but leading zeros would be used to fill the field if necessary.

• A period followed by a number which specifies the maximum number of digits to be
printed to the right of the decimal point for real values or the number of characters to
be printed from a string value. For example, the specification “%8.4f” prints a real
value in a field that is 8 characters wide and has 4 characters to the right of the decimal
point.

The conversion character comes after the percent sign and the optional items described
above. The following conversion characters may be used:

 s — Insert a string value into the format string.

 d — An integer value is converted to a decimal digit string. A leading minus sign is printed

if the value is negative. This conversion character may be used for int items or real items if
you do not want any decimal places printed. For example, the specification “%d” prints
an integer value using the minimum number of characters required to display the value.

 f — The value is converted to a real digit string with a decimal point and decimal digits. See

the optional items described above for information about specifying the maximum field
width and the number of digits to the right of the decimal point. For example, “%f” prints
a real value using the minimum number of characters required to display the value.
“%8.4f” prints a real value using a total of 8 characters for the field and printing 4 digits to
the right of the decimal point.

 e — The value is printed in scientific notation of the form “-m.nnnne+xx”.

 E — Same as %e except the letter ‘E’ in the printed string is upper case.

 g — The “%g” conversion operator is equivalent to using %e or %f, whichever is shorter.

In other words, the printed value will either be in natural form (nnn.nnn) or scientific
notation (n.nnnne+xx) depending on the range of the value being printed.

 G — Same as %g except the letter ‘E’ used for scientific notation format is upper case.
 x — Print the value as a hexadecimal digit string in the form “0xnnnn”.

Here are some example statements showing what they print:

int i = 5;
double x = 3.14;
string s = "Phil";

printf("i is %d\n",i); i is 5
printf("x is %f\n",x); x is 3.14
printf("s is %s\n",s); s is Phil
printf("%s has %d dollars\n",s,i); Phil has 5 dollars
printf("x = %10.3E\n",x); x = 3.140E+00

format — Format value string

 Function prototype:

string format(format,val1,val2,...)
string format; /* Format pattern string */
any_type val1; /* First value to insert */
any_type val2; /* Second value to insert */

The format function operates in the same fashion as the printf function described above
except that instead of printing the formatted string it returns the string as the value of the
function. For example, the statements:

string s;
int numrec = 8;
s = format("There are %d records",numrec);

results in the string variable ‘s’ containing the string “There are 8 records”. Note that we did
not use a “\n” operator in the pattern string because we did not want a carriage-return, line-
feed sequence at the end of the resulting string.

sscanf — Scan string

 Function prototype:

int sscanf(input,format,val1,val2,...)
string input; /* String to be scanned */
string format; /* Scan format pattern */
any_type val1; /* Variable to get first value */
any_type val2; /* Variable to get second value */

The sscanf() function scans the string specified as the first argument (input) and exacts values
from the string under the direction of a format string that is specified as the second argument
(format). The values extracted from the string are stored in the variables specified as the third
and following arguments.

The value returned by the function is the count of the values scanned and assigned to
variables.

For example, the statements

string instring = "12 34";
int i,j,count;
count = sscanf(instring,"%d %d",i,j);

sets the value of ‘i’ to 12, ‘j’ to 34, and ‘count’ to 2.

As with printf, the conversion operators in the format string begin with a percent sign, may
contain optional field width specifications, and end with a conversion character. The
following conversion characters may be specified:
 d — An integer value is expected to be the next thing in the input string. It is converted to

an integer value and stored into the corresponding variable in the argument list. The value
may consist of one or more digit and it may have an optional sign.

 x — Similar to integer processing except that the value is hexadecimal (for example, 1A3).
 f — A real (double) value is expected to be the next thing. The converted real value is

stored into the corresponding variable.
 s — A string value is moved from the input string to the next variable. If a width is

specified for the field (for example “%6s”) then the specified number of characters are
moved. If no width is specified (i.e., “%s”) then the remainder of the record is moved to
the next variable.

 (space) — When a space is encountered in the format pattern it is skipped over along with
any other consecutive space characters. If the next character in the input string is a space
it is skipped over along with any consecutive spaces in the input string.

 (other characters) — If any other character is found in the format pattern a check is made
to see if it matches the next character in the input string. If the characters match they are
both skipped over and the scanning continues. If the next character in the input string
does not match the format pattern character then the sscanf function terminates its scan.

For example, consider the following statements:

string instring = “5 -37”;
int i,j,count;
count = sscanf(instring,"%d %d",i,j);

then the variable ‘i’ receives the value 5 and ‘j’ receives –37. The returned value of the
function (which is assigned to the ‘count’ variable) is 2. Since one or more spaces in the
format pattern match any number of consecutive spaces in the input string, the same values
would be assigned if the input string had been

string instring = “5 -37”;

Now consider the following statements:

string inline = “1234567”;
int i,j;
string v;
sscanf(inline,"%2d%2d%3s",i,j,v);

in this case there are no spaces in the format pattern but field widths are specified. The first
field pattern, “%2d”, has a width of 2 so the first two characters, “12” are converted to
decimal 12 and stored into the variable ‘i’. Similarly, ‘j’ gets 34, and ‘v’ gets the string
“456”.

Now consider these statements:

string instring = “4/30/2004”;
int month,day,year;
sscanf(instring,"%d/%d/%d",month,day,year);

then ‘month’ gets the value 4, ‘day’ gets the value 30, and ‘year’ gets the value 2004. Note
that the ‘/’ character in the format pattern matched the corresponding character in the input
string and was skipped over.

The value returned by the sscanf function is the number of values which were successfully
scanned and assigned to variables. If the input string does not contain enough characters to

fill all fields, the returned value of sscanf can be used to detect that. For example, consider
the statements:

string instring = “12 23”;
int count,i,j;
count = sscanf(instring,"%d %d",i,j);

then ‘i’ gets the value 12, ‘j’ gets the value 23, and ‘count’ gets the value 2 because two
values were successfully accrued. However, if the input string had been:

string instring = “12”;

Then ‘i’ would get the value 12, ‘j’ would get the value 0, and ‘count’ would get the value 1
because only a single input value was accrued.

fopen — Open a file

 Function prototype:

int fopen(string filename, string mode)

The fopen function opens a file. The ‘filename’ argument is the file specification for the file
being opened.

The value returned by the fopen function is a file “handle” number that is used by subsequent
I/O functions such as fprintf, and fclose to identify the file. If the fopen function is
unsuccessful, a handle number of 0 is returned. You can have many files open at once. The
handle number is used to direct the I/O operations to the right file.

Text and Binary Mode Files
The ‘mode’ argument is a string containing one or more of the following characters:
 “r” — Open an existing file for read access. The file must exist when the fopen is executed.

If ‘w’ and ‘r’ are both specified (“rw”), then an existing file is opened for reading and
writing.

 “w” — Create a new file. If a file with the same name already exists it is replaced by the
new file. However, if ‘w’ and ‘r’ are both specified (“rw”), then an existing file is opened
for reading and writing.

 “a” — Open a file in append mode. Data written to the file will be appended to the end of it.
If the specified file does not exist, a new file is created.

 “t” — Open file in text mode. Records consist of ASCII characters and are terminated by
carriage-return, line-feed.

If you wish to open a file for update (i.e., the file must exist and you will be reading and
writing it) specify “rw” as the access flags. For compatability with C, you can also specify
“r+”.

File I/O example
The following example opens a file named TEST.DAT and prints each text line in the file:

void main()
{
 int handle,status;
 string inbuf;

/*
 * Try to open the file.
 */
 handle = fopen("test.dat","rt");
 if (handle == 0) {
 print("Unable to open test.dat");
 stop;
 }
/*
 * Read and print all records in the file.
 */
 loop {
 status = fread(handle,inbuf);
 if (status != 0) break;
 print(inbuf);
 }
/*
 * Close the file and exit.
 */
 fclose(handle);
 stop;
}

fclose — Close a file

 Function prototype:

void fclose(int handle)

The fclose function closes a file that was previously opened using the fopen function. The
‘handle’ argument is the integer file handle number returned by the fopen function.

fprint — Write line to file

 Function prototype:

int fprint(handle,val1,val2,...)
int handle; /* File handle number */
any_type val1; /* First value to print */
any_type val2; /* Second value to print */

The fprint function combines a series of values into a single text line and writes it to a file. It
operates in the same fashion as the print function described above except that the text is
written to a file rather than being written to the program log.

The ‘handle’ argument is a file handle number as returned by the fopen function. A variable
number of value arguments may be specified and they may be of type string, integer, or real.
Integer and real values are converted to strings before they are written to the file. If multiple
value arguments are specified they are concatenated with a single blank between them to
form the line. The line is terminated with a carriage-return line-feed sequence when it is
written to the file.

The returned value of the function is 0 if the function is successful. An error code is returned
if an error occurs during the function execution.

fprintf — Write formatted line to file

 Function prototype:

int fprintf(handle,format,val1,val2,...)
int handle; /* File handle number */
string format; /* Format pattern string */
any_type val1; /* First value to insert */
any_type val2; /* Second value to insert */

The fprintf function operates in the same fashion as the printf function except that the
formatted print line is written to a file rather than the program log.

The ‘handle’ argument is a file handle number returned by the fopen function Remember to
specify “\n” in your format string to terminate each line.

fread — Read a record from a file

 Function prototype:

int fread(handle,val1,val2,val3,...)
int handle; /* File handle number */
any_type val1; /* Variable to get first value */
any_type val2; /* Variable to get second value */
any_type val3; /* Variable to get third value */

The fread function reads a record from a file, divides the record into a series of values and
stores the values into a set of variables that you specify as arguments.

When reading from a text mode file, a single record is read up to the next carriage-return,
line-feed sequence. The values of the variables are separated by spaces and/or commas. If
you specify a string type variable it must the the last argument. A string variable receives all
characters in the line starting after any earlier numeric values.

The returned value of the function is 0 if it is successful. An error status code is returned if
an error is detected.

The ‘handle’ argument is a file handle number returned by the fopen function.

The following example opens a file, reads through it, and prints each line of the file.

void main()
{
 int handle,status;
 string inbuf;

/*
 * Try to open the file.
 */
 handle = fopen("test.dat","r");
 if (handle == 0) {
 print("Unable to open test.dat");
 stop;
 }
/*
 * Read and print all records in the file.
 */
 loop {
 status = fread(handle,inbuf);
 if (status != 0) break;
 print(inbuf);
 }

/*
 * Close the file and exit.
 */
 fclose(handle);
 stop;
}

fscanf — Formatted read from file

 Function prototype:

int fscanf(handle,format,val1,val2,...)
int handle; /* File handle number */
string format; /* Scan format pattern */
any_type val1; /* Variable to get first value */
any_type val2; /* Variable to get second value */

The fscanf function performs the same function as the sscanf function described above except
that the text line that it scans is read from a file rather than being specified as a string
variable.

The ‘handle’ argument is a file handle number returned by the fopen function.

The value returned by the function is the count of the values scanned and assigned to
variables.

lseek — Seek to offset in file

 Function prototype:

int lseek(handle,offset[,origin]);
int handle; /* File handle number */
int offset; /* Byte position to move to */
int origin; /* (optional) Origin of seek */

Normally, file read and write operations progress through a file in sequential order.
However, there are some cases where it is desirable to position to a specific location in a file
different than the next sequential location.

The lseek function moves the “file pointer” to a specified location so that the next read or
write operation begins at that location.

The ‘handle’ argument is the file handle number as returned by the fopen function.

The ‘offset’ argument is the byte position to move to. This offset can be relative to the
beginning of the file, the end of the file, or the current location.

The ‘origin’ argument determines how the ‘offset’ argument is interpreted. ‘origin’ may have
one of three values:
 0 — The offset is relative to the start of the file.
 1 — The offset is relative to the current position. Specify a negative value for ‘offset’ to

move to a position closer to the start of the file or a positive value to move further towards
the end of the file.

 2 — The offset is relative to the end of the file. An offset value of 0 would cause the file
pointer to be positioned to the end of the file. Specify a negative value for ‘offset’ to move
to a location in front of the end of the file.

The ‘origin’ argument is optional. If you omit it, it defaults to 0 (offset is relative to the start
of the file).

For example, the following function call would position the file pointer to the front of the file
so that the next fread function would read the first record in the file:

lseek(handle,0,0);

The value returned by the lseek function is the byte position of the file pointer (relative to the
base of the file) after the lseek function completes its positioning. To determine the current
location of the file pointer without moving it, specify 0 for ‘offset’ and 1 for ‘origin’ (i.e.,
position to an offset 0 bytes from the current location).

Error Status Functions

lasterror — Get last function error code

 Function prototype:

int lasterror(void)

The lasterror function returns the numeric error code stored by the previous function. If there
is no stored error code, a value of 0 is returned.

errormsg — Convert error code to message

 Function prototype:

string errormsg([int code])

The errormsg function converts an error status code as produced by a library function into a
text string that describes the error. The ‘code’ argument is the error status code to convert. If
the ‘code’ argument is omitted, the last pending error code is converted to a message.

Preprocessing Directives and Macros

Introduction

DTL is a “compiled” programming language. This means that the DTL compiler reads the
DTL source program that you create and generates an “object” file that can be executed.

There are several stages that the compiler goes through while compiling each statement of
your program. The first stage is called the “preprocessor”. The preprocessor is responsible
for reading your program from its disk file and performing certain preliminary operations on
the program before passing it to the actual compiler.

The preprocessor is somewhat like an automatic editor that uses “directives” in your source
program to cause it to make changes to your program. These editing changes do not change
your source program file but occur between the time that the program is read from disk and
passed to the compiler.

Note: Although the preprocessor is a very powerful and useful part of the DTL language, it is
not necessary to use any of the preprocessor directives described in this chapter to write DTL
programs. If you are just learning to program, or are just learning the DTL language, you
may want to skip this chapter now and read it later once you master the essentials of writing
DTL programs.

The following is a summary of the operations performed by the preprocessor:

1. Strips out comments.
2. Looks for “#include” directives which cause additional source files to be read and

inserted at the point where the directive occurs.
3. Expands “macro” directives which cause text defined by earlier directives to be

inserted in the source program. That is, the macro is replaced by some previously
defined text.

4. Looks for “#if” directives that can cause portions of your program to be conditionally
skipped over.

These operations are performed on a character-by-character basis as the source program is
read. The output from the preprocessor is fed into the main body of the compiler which
parses the program and generates the object file.

If you have never used a language with a preprocessor, you may find yourself getting
confused between preprocessor directives and DTL language statements. Relax, you can

begin by writing DTL programs that use no preprocessor directives and then gradually
advance to using simple directives and then more complex ones. All preprocessor directives
begin with a ‘#’ sign so you can always distinguish a directive from other parts of the
language.

 The pre-processor is told what to do through “directives” which are sometimes called
“macros”. Directives are commands that are specified with a ‘#’ followed by the directive
name. However, there are some circumstances where you want to use a literal ‘#’ character
in your program that is unrelated to preprocessor directives. To do this, specify the two
character sequence “##” where you want a literal ‘#’ character to be inserted. For example,
the statement

printf("The ## of items is %d\n",count);

prints the string “The # of times is...” because the “##” sequence was converted to a single ‘#’
character. If a ‘#’ is not followed by another ‘#’ or a letter or a digit it is interpreted as just a
single ‘#’.

Other than DTL, there are only a few “higher level” languages that provide preprocessor
directives. The best known of these is C. If you are a C programmer you will be able to
quickly learn how to use the DTL preprocessor directives. However, be careful; the DTL
preprocessor is somewhat different than the C preprocessor. It is much more character
oriented rather than line oriented. This means that many constructs can operate within the
same line, rather than across lines. Substitution can occur inside quoted strings, which is
different than C. The #macro directive is more powerful than the ‘C’ #define form with
arguments.

Examples of substitution rules

Before getting into the details of preprocessor directives, let’s look at a couple of simple
examples. The “#define” directive defines a name and an associated string. The form of the
directive is

#define name string

where “name” is the name being defined and “string” is a string of characters that may
consist of multiple words and spaces. For example, consider the following directive:

#define MAXPEOPLE 100

This defines the name “MAXPEOPLE” and associates it with the string “100”. At any point
in your program following this directive you can cause the string “100” to be inserted in the
text of the program by using “#MAXPEOPLE”. When the preprocessor sees ‘#’ followed by
a name, it replaces the “#name” characters with the string that was associated with the name
in the #define directive. For example, consider the following portion of a program:

#define MAXPEOPLE 100
void main()
{
 int age[#MAXPEOPLE];
 string name[#MAXPEOPLE];
 << remainder of program >>
}

When the preprocessor sees “#MAXPEOPLE” it replaces it with the string “100” before
passing it on to the compiler. Thus, the program that the compiler sees is:

void main()
{
 int age[100];
 string name[100];
 << remainder of program >>
}

By writing your program in this way, you can change the string “100” in the #define directive
and have all occurrences of #MAXPEOPLE in your program change value. Note that
because preprocessor directives are processed before the compiler sees the program, you can
use substitution operations at places where variables could not be used, such as in array size
declarations.

In addition to words that you define using the #define directive, there are some built-in
preprocessor directives that cause strings to be substituted for the directives. For example,
the “#time” directive causes the preprocessor to replace “#time” with a string corresponding
to the current time. Similarly, “#date” will be replaced by the current date.

main()
{
 string now = "Program was compiled at #time on #date.";
 printf("%s\n",now);
}

Assuming that the processor processed these directives on 15:15 May 23, 2005, the
preprocessor would replace #time with the string 15:15:00 and #date with 05/23/2005. The
value of the string passed to the compiler would be “This program was compiled at 15:15:00
on 05/23/1994.”.

The preprocessor will substitute inside or outside of quoted strings and the output of the
preprocessor is not necessarily valid DTL. For example, the following use of #date and #time
would produce a program which would not compile.

main()
{
 printf("Todays date and time are %s %s",#date,#time);
}

The preprocessor will expand this into

printf("Todays date and time are %s %s",05/23/1994,15:15:00);

These arguments to printf are not valid.

Including other files, the #include directive

The most common use of the preprocessor is to include one source file in another. In any
significantly sized project it is very useful to separate commonly used definitions into
separate source files. These commonly used definitions are then “included” into source files
which need them.

The #include directive will substitute the contents of one file into another. The form of this
directive is

#include "filename"

Where “filename” is the name of the file to be inserted into your source program. The file
name may include device, directory, and extension portions.

For example, assume we have the two source files X1.DTL and X2.DTL with the following
contents:

/*------------------------
 * This is the file X1.DTL
 */
string names[6] = {
 "Shelley",
 "Susan",
 "Ann",
 "Patty",
 "Helen",
 "Elaine"};

/*------------------------
 * This is the file X2.DTL
 */
#include "x1.dtl"
main()
{
 int i;
 for (i=0; i < arraysize1(names); i++) {
 printf("Name %d is %s\n",i,names[i]);
 }
}

The x1.dtl file does not contain a complete program. Rather, it contains the definition of a
string array initialized to six values. The x2.dtl file is a program source file that can be
compiled. When the preprocessor encounters the #include directive in x2.dtl it inserts the
contents of the x1.dtl file into the t2.dtl program. The resulting program which is passed to
the compiler is as follows:

/*------------------------
 * This is the file X2.DTL
 */
/*------------------------
 * This is the file X1.DTL
 */
string names[6] = {
 "Shelley",
 "Susan",
 "Ann",
 "Patty",
 "Helen",
 "Elaine"};
main()
{
 int i;
 for (i=0; i < arraysize1(names); i++) {
 printf("Name %d is %s\n",i,names[i]);
 }
}

There can be many #include directives in your program and you can use #include directives
within files that are being included (i.e., you can nest #include directives).

Simple name substitution, the #define directive

 The second most common use of the preprocessor is to assign a symbolic name to a constant
which is used in the program.

The form of the #define is:

#define name value

where “name” is the symbolic name and “value” is everything else on the line up to the end
of the line. Thus all of the following are valid.

#define pi 3.14
#define note Remember to ask dan about that new terminal type.
#define expression ((x >= 17 ? 123 : 456) || qwe() && qwe2())
#define backslash \
#define success 0 // Successful return code

Note that the values of the #define’s do not have to be valid DTL statements or names —

they are simply strings that will be substituted into the source text of your program. Also
note that the value of the #define “backslash” is the character ‘\’. In DTL, ‘\’ at the end of a
line does not mean to append the next line as it does in the C preprocessor.

In the case of the “#define success” note that there is a valid comment after the define. This
comment IS NOT part of the value of “success”. Comments are stripped before #define
processing occurs.

The symbolic name is substituted by specifying #name in the program, where “name” is a
previously defined name. For example,

#define pi 3.14
 double radius,diameter;
 diameter = 10.;
 diameter = #pi * radius ** 2;
 printf("The value of pi is #pi\n");

Note that substitution can occur inside or outside of a quoted string. As mentioned before,
two #’s (##) will collapse to a single ‘#’.

In C, the #define directive is also used to define macros with arguments. In DTL this
functionality is maintained with the more flexible #macro directive

.

An advanced example
The next example demonstrates some of the more subtle aspects of name substitution. While
rarely useful, the example demonstrates the order that the preprocessor performs its tasks.

1. You can have, as part of the value of one #define, the value of another define. In this
example the value of ‘msg’ is part of the value of ‘errmsg’.

2. It was not necessary for ‘msg’ to be defined in order for ‘errmsg’ to want its value.
While ‘errmsg’ is defined on line 1, ‘msg’ is defined on line 2. The secret to this is that
the value of ‘errmsg’ is stored internally as containing the string ‘#msg’, not the
expanded value.

3. When ‘errmsg’ gets expanded the first time at line 6 it gets the current value of ‘msg’
which was defined on line 2.

4. Using the #undef ‘msg’ was redefined as a different value on line 8. The ‘errmsg’
expansion on line 9 gets this second, longer value.

1. #define errmsg printf(#msg);
2. #define msg "This is a message"
3.
4. main()
5. {
6. #errmsg
7. #undef msg;
8. #define msg "This is a longer message"
9. #errmsg
10.}

Conditional compilation

Another use of the preprocessor is to conditionally compile sections of code. This provides an
ability to block out lines of text in a source file which are not to be compiled. Frequently
during development you may find that a certain portion of the program is not quite ready for
compilation or needs to be fleshed out later. Conditional compilation allows you to skip over
parts of a program, making them invisible to the compiler. The lines being blocked out do not
even have to be valid DTL statements.

Comments, of course, can be used to block out lines in a file but if the the lines to be blocked
out themselves contain comments it is more difficult.

In DTL, the #if, #ifdef, and #ifndef directives are used to conditionally compile sections of a
program. The section of code to be blocked out is signalled with a #if and terminated with a
#endif. There is always a pairing of these two directives. The #if, #ifdef, and #ifndef
directives accept arguments which are evaluated to 1 or 0. If the result is 1 the code is passed
through for compilation. If it is 0 the code is not passed through for compilation (it is
discarded as if it were a comment).

There can be #if/#endif pairs nested within other #if/#endif pairs.

Within the #if/#endif there can be a #else directive. The program following the #else will be
expanded if the #if condition is false. This is analogous to the behaviour of the if/else
construct in DTL, although the #if processing only occurs during compilation and only
affects the source lines of the program.

There is one other difference between the ‘C’ and DTL implementations of the #if suite. In
‘C’ these are strictly line oriented. The #if must be on a line by itself and it delineates a set of
lines terminated by #endif. In DTL the directives are character oriented; they can block out a
set of characters within a line. The examples will illustrate.

The #if directive
 The form of he #if directive is

#if (value)

The #if directive accepts the value 1 or 0 to indicate whether the section of code is to be
compiled or not. Unlike ‘C’, the value specified to #if is enclosed in parenthesis. In addition
to specifying the character ‘1’ or ‘0’ you can use preprocessing lexical directives whose value
is ‘1’ or ‘0’. One example is the #length directive. The value of #length(a) is the character
‘1’. Thus, #if (#length(a)) is equivalent to #if (1).

Here is a sample of the use of #if. This will demonstrate the use of the true and false
conditions, as well as the use of #else.

#if (1)
 printf("The condition is true\n");
#endif

#if (0)
 printf("This statement will be omitted.\n");
#endif

#if (1)
 printf("The condition is true.\n");
#else
 printf("This statement will be omitted.\n");
#endif

#if (0)
 printf("This statement will be omitted.\n");
#else
 printf("The condition is true.\n");
#endif

Here is an example of the use of #if within a line.

#if (1) printf("True\n"); #else printf("False\n"); #endif

Here is a more complex example. Note that substitution is occurring within a line and within
a quoted string.

printf("#if (1) True #else False #endif condition\n");

#ifdef and #ifndef
 The #ifdef directive is another conditional compilation directive. Its form is

#ifdef (name)

where “name” is a name that may have been previously defined using a #define directive.
The #ifdef directive compiles the characters that follow if the specified name has been
defined. If the name has not been defined then #ifdef begins skipping over characters until the
next #endif or #else directive is found.

The #ifndef directive is the reverse of #ifdef, it processes the following characters if the
specified name is not defined. The form of this directive is

#ifndef (name)

Here is an example showing #ifdef and #else.

#define version_420 1

#ifdef (version_420)
 count = read(size,action_type);
#else
 count = read(size,action_type,sequence_indicator);
#endif

Here is another, more common use.

#define debug 1

#ifdef (debug)
 printf("<DEBUG> security level set to %d\n",seclevel);
#endif

Again note that in these examples the use of #defines and #if blocks controls the way that the
program compiles, not the way it executes. Preprocessing directives affect the source
program before it is compiled.

Macro definition and use

 Users familiar with C will remember that the #define directive can be used to define macros
with arguments. The syntactic rules which make the distinction between a macro and regular
define are rather strict. In addition, multiple line macros must have their lines terminated with
‘\’ to indicate that the next line contains more data.

The “#macro” DTL directive overcomes these limitations and is the mechanism for defining
multi-line macros and macros with arguments.

 The basic form of the #macro is:

#macro name(arg) value

The ‘name’ is the name of the macro. The ‘(arg)’ indicates arguments to the macro. The
‘value’ is the value to be substituted for the macro.

The value part of the macro can be within one line or it can extend across lines. By default,
the macro value is contained in a line

Macro arguments; definition and use

The arguments to a DTL macro are different than the arguments to a ‘C’ macro. In DTL the
number of arguments to a macro are specified, not the names of the arguments as in ‘C’.
There can be from 0 up to 9 arguments to a macro. When the argument count is not specified
it means that a variable number of arguments can be specified. If an argument count is
specified the count is verified when the macro is expanded.

Within the body of the macro the arguments are referred to with the directives #0, #1, #2, etc.
up to #9. The directive #0 substitutes as the name of the macro and #1 through #9 are
arguments 1 through 9. The directive #argcnt is the number of arguments specified to the
macro. Here are some examples which demonstrate the one line macro definition.

#macro noargs(0) This macro, named #0, has no arguments.
#macro someargs(3) Macro, named #0, has arguments #1 #2 #3
#macro varargs() This macro, named #0, had #argcnt args
main()
{
 printf("#noargs()\n");
 printf("#someargs(1,2,3)\n");
 printf("#varargs(1,2,3,4)\n");
}

Note that even though the ‘noargs’ macro has no arguments it still requires the parenthesis
after the name when it was referenced. The reason for this is consistency. Names defined with
#define’s never require the parenthesis and names defined with #macro always require them.
This eliminates the possibility of syntactic ambiguity.

Multiple line macros
 In order to define multiple line macros the directives “#{” and “#}” are used. These have a
similar use to the ‘{’ and ‘}’ characters in the DTL programming language; they group
together a set of things. In the case of macro definitions the #{ and #} can be used to span
lines in a macro definition. The following sample will demonstrate this.

#macro multiline(3) #{
/*
 * Handle this test case
 */
 switch (testcase) {
 case #1:
 test_1(#1,#3); // Normal case
 break;
 case #2: // Special case
 break;
 case #3:
 printf("?Unknown state #3\n");
 break;
 }
#}

Note that the definition can contain comments; these are stripped and are not part of the
definition. Note that the body of the macro does not require ‘\’ at the end of the line, as it
would have in ‘C’. The value terminates at the “#}”. Although the “#{” and “#}” were at the
top and bottom of the definition for readability, it is not necessary for them to be on separate
lines. The following is valid, if not as readable:

#macro testit(2) #{ if (#1 == 16 || #2 == 19) {
printf("I am unable to process this at this time); } #}

Lexical directives

DTL lexical directives return values that are strings. The “value” of the #date directive is, for
instance, the string consisting of the date.

In that light there are certain directives which manipulate strings and return strings as results.
The directives can use other directives as arguments. The internal directives are evaluated
first, then the outer. In all cases, the lexical functions accept arguments within parenthesis
and evaluate those arguments character by character. The directive #length, for instance,
returns the length of the string in parenthesis. The value of #length() is 1 since there is a
single blank. The value of #length(ab) is 2, the ‘a’ and the ‘b’. Spaces are significant
(counted) in #length argument strings.

#cmpeq and #cmpne
 These two directives can be used to compare two strings. The directives return the value 1 or
0, depending on whether the strings match or not. The form of these directives is:

#cmpeq(string1,string2)
#cmpne(string1,string2)

Where ‘string1’ and ‘string2’ are the items to be compared and #cmpeq returns 1 if the
strings are equal and #cmpne return 1 if the strings are not equal.

Here are some examples of #cmpeq. #cmpne returns opposite results. Note the sensitivity to
spaces in the string comparison.

#cmpeq(abc,def) --> 0
#cmpeq(abc,abc) --> 1
#cmpeq(abc ,abc) --> 0
#cmpeq(abc , abc) --> 0

#define backslash \
#cmpeq(\,#backslash) --> 1

#cmpeq(#length(abc),3) --> 1

#quote
 The #quote directive will replace its string argument with the argument surrounded by quote
signs. This is very useful in a macro for creating a quoted string. Note that if the argument is
already a quoted string #quote will place another pair around it.

The form of #quote is:

#quote(argument)

Some examples and their results:

#quote(1) --> "1"
#quote(1,2,3) --> "1,2,3"
#quote("string") --> ""string""
#quote(#concat(a,b) #length(#date)) --> "ab 10"

#length
 The #length directive returns the length of the string which is its argument. Spaces are
significant (counted) in the #length argument string. The form is

#length(arg)

The length of the argument string is evaluated and the directive is replaced with a string
corresponding to the numeric length. Some samples and what they generate shown below:

#length(123) --> 3
#length("ABC") --> 5
#length(#date) --> 10
#length(#length(#date)) --> 2

Think about that last one. The length of #date is 10 (mm/dd/yyyy). The length of 10 (which is
itself a string containing ‘1’ and ‘0’) is 2. The argument to the macro is evaluated before the
macro is expanded.

Here is an example of a macro definition that uses the #length directive:

#macro arglength(1) #{
 printf("The length of arg1 is #length(#1)\n");
#}

In this example the macro will generate a printf which contains the length of the argument to
the macro.

Since lexical directives can use other directives as arguments, the value of #length(#include
“x.c”) is the length of the file ‘x.c’.

#concat
 The #concat directive will concatenate a series of strings into a single string. This can be
very useful in macros for creating new variable or precedure names

The form of #concat is

#concat (s1,s2,...)

#concat accepts a variable number of arguments. Here are some samples. Note that an
argument to a lexical directive can be a sinqle quote character. Quoted strings are not
maintained as separate items as they are in ‘C’.

#concat() -->
#concat(1,b) --> 1b
#concat(1, ,b, ,c) --> 1 b c
#concat(1,b,"xyz") --> 1b"xyz"
#concat(1,b,#length(this is a string)) --> 1b16
#concat(",this is a string,") --> "this is a string"

Error handling

 There are directives which can be used in error processing. They are useful inside macros to
validate argument values or validate symbol values. All operate in a similar fashion but
produce different messages. They accept a string argument which is echoed to the terminal.

• #info (msg) produces a message defined as informational.
• #warn (msg) produces a message defined as a warning.
• #error (msg) produces a message defined as a error.
• #fatal (msg) produces a message defined as fatal. A fatal message will result in an

abort of the compile.

An example use might be:

#ifndef (version_4)
 #fatal (Symbol version_4 must be defined for this compile)
#endif

Or perhaps

#info (Compiling #file. Remember to record source changes)

Miscellaneous directives
There are several other directives, performing various functions.

• #undef is used to ‘undefine’ a name defined via #define or #macro.
• #date has the value of the current date in the form mm/dd/yyyy.
• #time has the current time (the time the compile is performed) in the form hh:mm:ss

where the hours are military time.
• #file is the name of the current source file.
• #line is the current line number of the current source file.

Advanced macro design
Using lexical directives as well as the error handling it is possible to design complex macros
which perform string manipulation and comparison and conditional expansion. While some
of these examples offer little practical use, the knowledge of such abilities can strengthen
knowledge of macro use.

Use of comparison and conditionals
The arguments to a macro, remember, are #0 through #9. Using the #cmpeq and #cmpne
directives and the #if extensive argument verification can be performed.

#macro build_list(3) #{
 #if (#cmpne(#1,arg1))
 #warn(Expected arg1 as first argument, got #1)
 #endif
 #if (#cmpne(#2,arg2))
 #warn(Expected arg2 as second argument, got #2)
 #endif
 #if (#cmpeq(7,#length(#3)))
 #info(Argument 3 to build_list is of length 7)
 #endif
#}

Use of other macros within macros
Macros can invoke other macros. Macros can even define other macros. Common macros
can be used between other macros. Here are some samples.

/*
 * Define a set of defines. The defines will take
 * value when the macro is invoked.
 */
#macro mass_define(0) #{
#define md_1 1
#define md_2 2
#define md_3 3
#define md_4 4
#}

Here we use one macro to invoke a set of other macros.

/*
 * Invoke a set of initialization macros
 */
#macro macro_init(4) #{
 #init1(#1)
 #init2(#2)
 #init3(#3)
 #init4(#4)
#}

Use of lexical functions to manipulate arguments
 The #concat and #quote can be very useful for constructing strings from macro arguments as
shown in the following example.

#macro debug_check() #{
/*
 * Handle one and two argument cases separately
 */
 #if (#cmpeq(#argcnt,1))
 printf(#quote(#concat(DEBUG: ,#1,\n)));
 #endif

 #if (#cmpeq(#argcnt,2))
 printf(#quote(#concat(TEST: ,#1,\n)));
 printf(#quote(#concat(TEST: ,#2,\n)));
 #endif
#}

Index

character, 94
#cmpeq directive, 105
#cmpne directive, 105
#concat directive, 107, 109
#date directive, 108
#define directive, 98
#else directive, 101
#endif directive, 101
#error directive, 107
#fatal directive, 107
#file directive, 108
#if directive, 101
#ifdef directive, 102
#ifndef directive, 102
#include directive, 96
#info directive, 107
#length directive, 106
#macro definition, 103
#quote directive, 106, 109
#time directive, 108
#undef directive, 108
#warn directive, 107
abs function, 59
acos function, 59
AND operator, 21
Append operator, 19
Arc cosine function, 59
Arc sine function, 59
Arc tangent function, 60
Arithmetic operators, 18
Arrays, 6, 22
arraysize1 function, 71
arraysize2 function, 71
ASCII character code, 55
asin function, 59
Operators, 21
Assignment operators, 21, 32
atan function, 60
Backspace character, 16
Bell character, 16
Bit operators, 22
BREAK statement, 33, 34, 35, 36
Case-sensitive comparison, 49
ceil function, 60
Arrays, 69
char function, 55

cleanspaces function, 51
Operators, 22
Comma operator, 22
Comments, 23
Operators, 21
Comparison operators, 21
Concatenation operator, 19
Operators, 22
Conditional compilation, 100
Conditional operator, 22
Continuation of statements, 31
CONTINUE statement, 33, 34, 35, 37
cos function, 60
Cosecant function, 61
cosh function, 61
cot function, 61
Cotangent function, 61
csc function, 61
deg function, 61
Degrees to radians, 65
Arrays, 71
DO statement, 34
DoingScore implicit value, 9
Dynamic array sizes, 69
element function, 57
EndRun() function, 12
Error status functions, 91
errormsg function, 91
ESC character, 16
exp function, 62
Explicit global variables, 9
Exponentiation operator, 18
fabs function, 62
factorial function, 62
fclose function, 85
floor function, 63
fopen function, 84
FOR statement, 35
Arrays, 43
format function, 80
fprint function, 86
fprintf function, 86
fread function, 87
fscanf function, 88
Arrays, 43
Global variables, 8

GOTO statement, 37
Hex characters, 16
Hexadecimal constants, 16
Horizontal tab, 16
Hyperbolic cosine, 61
hyperbolic sine, 66
Hyperbolic tangent, 67
ichar function, 55
IF statement, 32
Implicit global variables, 8
Arrays, 29
insert function, 56
isalnum function, 55
isalpha function, 55
iscntrl function, 55
isdigit function, 55
isgraph function, 55
islower function, 55
isprint function, 55
Keywords, 31
Labels, 17
lag function, 75
lasterror function, 91
Lexical directives, 105
Arrays, 69
locate function, 51
log function, 63
log10 function, 63
Operators, 21
Logical operators, 21
LOOP statement, 35
Lower case conversion, 53
lseek function, 89
Macro error handling, 107
Macros, 103
main() function, 7
max function, 64
min function, 64
Missing value code, 9, 11
MissingValue implicit value, 9, 11
mixcase function, 54
Modulo operator, 18
Multi-line macros, 104
Natural logarithm, 63
Normal probability, 64
NOT operator, 21
npd function, 64
OR operator, 21
Operators, 23
Precedence of operators, 23

Preprocessor, 93
print function, 77
printf function, 78
Probability distribution, 64
rad function, 65
Radians to degrees, 61
random function, 65
Real numbers, 15
RecordNumber implicit value, 9
Recusrive function calls, 46
Relational operators, 21
Remainder operator (modulo), 18
repeat function, 51
Reserved keywords, 31
resize function, 69
Return statement, 7
RETURN statement, 38
rlocate function, 52
round function, 65
sec function, 66
Secant function, 66
seek function, 89
Semicolon character, 31
sin function, 66
sinh function, 66
sort function, 73
space function, 50
sqrt function, 67
Square root function, 67
sscanf function, 81
StartRun() function, 12
Statement continuation, 31
Statement labels, 17
Static global variables, 11
StoreData() function, 11
strclean function, 58
strcmp function, 49
strcount function, 53
Operators, 19
String comparison, 49
String constants, 16
String length, 50
String operators, 19
strip function, 57
strlen function, 50
strlwr function, 53
strupr function, 53
Operators, 22
Subscript operator, 22
Substring operator, 10, 19

Tab chracter, 16
tan function, 67
Tangent function, 67
tanh function, 67
Time series lag function, 75
translate function, 54
trim function, 50

Upper case conversion, 53
validate function, 57
Arrays, 28
Variable names, 17
Vertical tab character, 16
WHILE statement, 33
Zip code shortening, 10

	Contents
	Introduction
	Introduction to the DTL Language

	Using DTL For Data Transformations
	The main() function
	Global Variables
	Implicit Global Variables
	Explicit Global Variables
	Static Global Variables

	Using the StoreData() function to generate data records
	The StartRun() and EndRun() Functions

	DTL Language Reference
	Expressions
	Numeric constants
	String constants
	Variable names
	Statement labels
	Operators
	Arithmetic Operators
	String Operators
	Assignment Operators
	Comparison Operators
	Logical Operators
	Bit Operators
	Conditional Operator
	Subscript Operator
	Operator Precedence

	Comments

	Declarations
	Variable types
	Variable classes
	Variable declaration statement
	Array declarations
	Variable initialization
	Declaration examples

	Program Statements
	Basic Statement Syntax
	Reserved Keywords
	Assignment Statement
	IF Statement
	WHILE Statement
	DO Statement
	LOOP Statement
	FOR Statement
	BREAK Statement
	CONTINUE Statement
	GOTO Statement
	RETURN Statement

	Functions
	Declaring Functions
	Array parameters

	Function Prototypes
	Invoking Functions

	Built-In Library Functions
	Function Error Status

	String Functions
	strcmp — String comparison
	strlen — Determine length of string
	space — Create blank filled string
	trim — Remove spaces from end of a string
	cleanspaces — Clean up spaces in string
	repeat — Create string with repeated pattern
	locate — Locate substring in string
	rlocate — Reverse locate substring in string
	strcount — Count occurrences of a substring
	strupr — Convert string to upper case
	strlwr — Convert string to lower case
	mixcase — Convert string to mixed case
	translate — Translate characters in string
	char — Convert ASCII value to character
	ichar — Convert character to ASCII value
	isxxxx — Character type tests
	insert — Insert one string in another
	element — Locate substring using delimiters
	validate — Check validity of characters
	strip — Remove characters from a string
	strclean — Remove all but specified characters

	Math Functions
	abs — Absolute value
	acos — Arc cosine
	asin — Arc sine
	atan — Arc tangent
	ceil — Ceiling
	cos — Cosine
	cosh — Hyperbolic cosine
	cot — Cotangent
	csc — Cosecant
	deg — Convert radians to degrees
	exp — Exponential
	fabs — Absolute value
	factorial — Factorial
	floor — Floor
	log — Natural logarithm
	log10 — Base 10 logarithm
	max — Maximum value
	min — Minimum value
	npd — Normal probability distribution
	rad — Convert degrees to radians
	random — Random number
	round — Round to integer
	sec — Secant
	sin — Sine
	sinh — Hyperbolic sine
	sqrt — Square root
	tan — Tangent
	tanh — Hyperbolic tangent

	Array Functions
	resize — Change the size of an array
	arraysize — Determining size of an array
	sort — Sort an array

	Lag Functions
	lag — Get previous value of variable or expression

	Input/Output Functions
	print — Print a line of values
	printf — Formatted print function
	format — Format value string
	sscanf — Scan string
	fopen — Open a file
	Text and Binary Mode Files
	File I/O example

	fclose — Close a file
	fprint — Write line to file
	fprintf — Write formatted line to file
	fread — Read a record from a file
	fscanf — Formatted read from file
	lseek — Seek to offset in file

	Error Status Functions
	lasterror — Get last function error code
	errormsg — Convert error code to message

	Preprocessing Directives and Macros
	Introduction
	Examples of substitution rules

	Including other files, the #include directive
	Simple name substitution, the #define directive
	An advanced example

	Conditional compilation
	The #if directive
	#ifdef and #ifndef

	Macro definition and use
	Macro arguments; definition and use
	Multiple line macros

	Lexical directives
	#cmpeq and #cmpne
	#quote
	#length
	#concat

	Error handling
	Miscellaneous directives
	Advanced macro design
	Use of comparison and conditionals
	Use of other macros within macros
	Use of lexical functions to manipulate arguments

	Index

